Polynomials and Rational Functions (2.1) The shape of the graph of a polynomial function is related to the degree of the polynomial

Size: px
Start display at page:

Download "Polynomials and Rational Functions (2.1) The shape of the graph of a polynomial function is related to the degree of the polynomial"

Transcription

1 Polynomials and Rational Functions (2.1) The shape of the graph of a polynomial function is related to the degree of the polynomial

2 Shapes of Polynomials Look at the shape of the odd degree polynomials 3 f( x) = x 27x 5 3 f( x) = x 5x + 4x+ 1

3 Graph of Odd polynomial y=x^5-5x^3+4x

4 Graph of Odd Polynomial f ( x) = x 27x 3 y=x^3-27x

5 Graphs of even degree polynomials Now, look at the shape of the even degree polynomial f ( x) = x 6x 4 2 y=x^4-6x^

6 Graph of even degree polynomial Here is another example of an even degree polynomial : f( x) = 3x + 6x 1 2 f(x)=3x^2+6x

7 Generalization: The graphs of odd-degree polynomials start negative, end positive and cross the x-axis at least once. The even-degree polynomial graphs start positive, end positive, and may not cross the x axis at all

8 Characteristics of polynomials: Graphs of polynomials are continuous. One can sketch the graph without lifting up the pencil. 2. Graphs of polynomials have no sharp corners. 3. Graphs of polynomials usually have turning points, which is a point that separates an increasing portion of the graph from a decreasing portion.

9 Turning points and x intercepts Theorem 1 : Turning points and x Intercepts of Polynomials The graph of a polynomial function of positive degree n can have at most n-1 turning points and can cross the x axis at most n times.

10 Largest value of the roots of a polynomial Theorem 2: Maximum value of an x- intercept of a polynomial. If r is a zero of the polynomial P(x) this means that P(r) = 0. For example, 2 px ( ) = x 4x is a second degree polynomial. and 2 p (4) = 4 4(4) = 0, so r = 4 is a zero of the polynomial as well as being an x-intercept of the graph of p(x).

11 Cauchy s Theorem A theorem by a French mathematician named Cauchy allows one to determine the maximum value of a zero of a polynomial (maximum value of the x- intercept). Let s take an example: the polynomial 2 p( x) = x 4x

12 Cauchy s Theorem According to this theorem r < 1 + maximum value of { 1, 4 } = = 5 The numbers within the absolute value symbols are the coefficients of the polynomial p(x). 2 p( x) = x 4x

13 Result of application of Cauchy s theorem From this result we have, which means -5 < r < 5. This tells us that we should look for any potential x intercepts within the range of -5 and 5 on the x axis. In other words, no intercepts (roots) will be found that are greater than 5 nor less than -5.

14 , Conclusion From the graph of 2 px () = x 4x we find that the other zero is located at (0,0). Thus, the two zeros, 0, -4, are within the range of -5 to 5 on the x-axis. Now, let s try another example:

15 An Example: Example: Approximate the real zeros of Px x x x 3 2 ( ) = First step: Coefficient of cubic term must equal one, so divide each term by three to get a new polynomial Q(x)= x + 4x + 3x+ 3 Roots of new polynomial are the same as the roots of P(x).

16 Example, continued Step 2: Use the theorem: 1 r < 1+ max 4, 3, 3 r < 1+ 4= 5 r < 5

17 Example, continued Step3: We know that all possible x intercepts (roots) are found along the x-axis between -5 and 5. So we set our viewing rectangle on our calculator to this window and graph the polynomial function. Step 4. Use the zero command on our calculator to determine that the root is approximately (there is only one root).

18 Rational Functions Definition: Rational function: a quotient of two polynomials, P(x) and Q(x), is a rational function for all x such that Q(x) is not equal to zero. Example: Let P(x) = x + 5 and Q(x) = x 2 then R(x)= x + 5 x 2 is a rational function that is defined for all real values of x with the exception of 2 (Why?)

19 Domain of rational functions Domain : { xx 2} and x is a real number. This is read as the set of all numbers, x, such that x is not equal to 2. X intercepts of a rational function: To determine the x- intercepts of the graph of any function, we find the values of x for which y = 0. In our case y = 0 implies that 0 = x x This implies that x + 5 = 0 or x = -5.

20 Y-intercept of a rational function Y intercept: The y intercept of a function is the value of y for which x = 0. Setting x = 0 in the equation we have y =, or -5/2. So, the y- intercept is located at ( 0, -2.5). Notice that the y-intercept is a point described by an ordered pair, not just a single number. Also, remember that a function can have only one y intercept but more than one x-intercept ( Why?)

21 Graph of a Rational function: 1. Plot points near the value at which the function is undefined. In our case, that would be near x = 2. Plot values such as 1.5, and 2.1, 2.3, 2.5. Use your calculator to evaluate function values and make a table. 2. Determine what happens to the graph of f(x) if x increases or decreases without bound. That is, for x approaching positive infinity or x approaching negative infinity. 3. Sketch a graph of a function through these points. 4. Confirm the results using a calculator and a proper viewing rectangle.

22 Graph of rational function y=(x+5)/(x-2) approaches zero as x gets small 10 approaches zero as x gets large 0 Series undefined at x =

23 Conclusions: From the graph we see that there is a vertical asymptote at x = 2 because the graph approaches extremely large numbers as x approaches 2 from either side. We also see that y = 0 is a horizontal asymptote of the function since y tends to go to zero as x tends to either a very large positive number or very small negative number.

24 Exponential functions The equation f ( x) = b defines the exponential function with base b. The domain is the set of all real numbers, while the range is the set of all positive real numbers ( y > 0). Note y cannot equal to zero. x

25 Riddle Here is a problem related to exponential functions: Suppose you received a penny on the first day of December, two pennies on the second day of December, four pennies on the third day, eight pennies on the fourth day and so on. How many pennies would you receive on December 31 if this pattern continues? 2) Would you rather take this amount of money or receive a lump sum payment of $10,000,000?

26 Solution (Complete the table) Day No. pennies ^1 2^2 2^3

27 Generalization Now, if this pattern continued, how many pennies would you have on Dec. 31? Your answer should be 2^30 ( two raised to the thirtieth power). The exponent on two is one less than the day of the month. See the preceding slide. What is 2^30? 1,073,741,824 pennies!!! Move the decimal point two places to the left to find the amount in dollars. You should get: $10,737,418.24

28 Solution, continued The obvious answer to question two is to take the number of pennies on December 31 and not a lump sum payment of $10,000,000 (although, I would not mind having either amount!) This example shows how an exponential function grows extremely rapidly. In this case, the exponential function f( x ) = 2 x is used to model this problem.

29 Graph of f( x ) = 2 x Use a table to graph the exponential function above. Note: x is a real number and can be replaced with numbers such as 2 as well as other irrational numbers. We will use integer values for x in the table:

30 Table of values x y = = = = = = = = 4

31 Graph of y = f ( x ) = 2 x

32 Characteristics of the graphs of f( x) = b x where b> 1 1. all graphs will approach the x-axis as x gets large. 2. all graphs will pass through (0,1) (y-intercept) 3. There are no x intercepts. 4. Domain is all real numbers 5. Range is all positive real numbers. 6. The graph is always increasing on its domain. 7. All graphs are continuous curves.

33 f ( x) = b Graphs of if 0 < b < 1 1. all graphs will approach the x-axis as x gets large. 2. all graphs will pass through (0,1) (y-intercept) 3. There are no x intercepts. 4. Domain is all real numbers 5. Range is all positive real numbers. 6. The graph is always decreasing on its domain. 7. All graphs are continuous curves. x

34 Graph of x f() x = 2 = 1 2 x Using a table of values once again, you will obtain the following graph. x The graphs of f ( x) = b and f ( x) = b x will be symmetrical with respect to the y-axis, in general graph of y = 2^(-x) 6 approaches the positive x-axis as x gets large 4 2 passes through (0,1)

35 Graphing other exponential functions Now, let s graph f( x ) = 3 x Proceeding as before, we construct a table of values and plot a few points.be careful not to assume that the graph crosses the negative x- axis. Remember, it gets close to the x-axis, but never intersects it.

36 f( x ) = 3 x Preliminary graph of

37 Complete graph y = 3^x Series

38 Other exponential graphs This is the graph of f( x) = 4 x It is symmetric to the graph of f( x ) = 4 x with respect to the y-axis Notice that it is always decreasing. It also passes through (0,1).

39 Exponential function with base e ( / x ) ^ x The table to the left illustrates what happens to the expression 1+ 1 x x as x gets increasingly larger. As we can see from the table, the values approach a number whose approximation is 2.718

40 Leonard Euler Leonard Euler first demonstrated that x will approach a fixed constant we now call e. So much of our mathematical notation is due to Euler that it will come as no surprise to find that the notation e for this number is due to him. The claim which has sometimes been made, however, that Euler used the letter e because it was the first letter of his name is ridiculous. It is probably not even the case that the e comes from "exponential", but it may have just be the next vowel after "a" and Euler was already using the notation "a" in his work. Whatever the reason, the notation e made its first appearance in a letter Euler wrote to Goldbach in ( x

41 Leonard Euler He made various discoveries regarding e in the following years, but it was not until 1748 when Euler published Introductio in Analysis in infinitorum that he gave a full treatment of the ideas surrounding e. He showed that e = 1 + 1/1! + 1/2! + 1/3! +... and that e is the limit of (1 + 1/n)^n as n tends to infinity. Euler gave an approximation for e to 18 decimal places, e =

42 Graph of f ( x) = e x graph of y = e^x Series1 Graph is similar to the graphs of f( x ) = 2 x and f( x ) = 3 x Has same characteristics as these graphs

43 Growth and Decay applications The atmospheric pressure p decreases with increasing height. The pressure is related to the number of kilometers h above the sea level by the formula: Ph ( ) = h e Find the pressure at sea level ( h =1) Find the pressure at a height of 7 kilometers.

44 Solution: Find the pressure at sea level ( h =1) P 0.145(1) (1) = 760e = Find the pressure at a height of 7 kilometers P 0.145(7) (7) = 760e =

45 Depreciation of a machine A machine is initially worth V dollars 0 but loses 10% of its value each year. Its value after t years is given by the formula Vt () = V(0.9) t 0 Solution: Vt () = V(0.9) t 0 8 V (8) = 30000(0.9 ) = $12,914 Find the value after 8 years of a machine whose initial value is $30,000

46 Compound interest The compound interest formula is nt r A= P 1+ n Here, A is the future value of the investment, P is the initial amount (principal), r is the annual interest rate as a decimal, n represents the number of compounding periods per year and t is the number of years

47 Problem: Find the amount to which $1500 will grow if deposited in a bank at 5.75% interest compounded quarterly for 5 years. Solution: Use the compound interest formula: A= P 1+ r n Substitute 1500 for P, r = , n = 4 and t = 5 to obtain A = nt (4)(5) =$

48 Logarithmic Functions In this section, another type of function will be studied called the logarithmic function. There is a close connection between a logarithmic function and an exponential function. We will see that the logarithmic function and exponential functions are inverse functions. We will study the concept of inverse functions as a prerequisite for our study of logarithmic function.

49 One to one functions We wish to define an inverse of a function. Before we do so, it is necessary to discuss the topic of one to one functions. First of all, only certain functions are one to one. Definition: A function is said to be one to one if distinct inputs of a function correspond to distinct outputs. That is, if

50 Graph of one to one function This is the graph of a one to one function. Notice that if we choose two different x values, the corresponding values are also different. Here, we see that if x =- 2, y = 1 and if x = 1, y is about 3.8. Now, choose any other pair of x values. Do you see that the corresponding y values will always be different?

51 Horizontal Line Test Recall that for an equation to be a function, its graph must pass the vertical line test. That is, a vertical line that sweeps across the graph of a function from left to right will intersect the graph only once. There is a similar geometric test to determine if a function is one to one. It is called the horizontal line test. Any horizontal line drawn through the graph of a one to one function will cross the graph only once. If a horizontal line crosses a graph more than once, then the function that is graphed is not one to one.

52 Which functions are one to one?

53 Definition of inverse function Given a one to one function, the inverse function is found by interchanging the x and y values of the original function. That is to say, if ordered pair (a,b) belongs to the original function then the ordered pair (b,a) belongs to the inverse function. Note: If a function is not one to one (fails the horizontal line test) then the inverse of such a function does not exist.

54 Logarithmic Functions The logarithmic function with base two is defined to be the inverse of the one to one exponential function y = 2 x Notice that the exponential function y = 2 x is one to one and therefore has an inverse graph of y = 2^(x) 4 approaches the negative x-axis as x gets 3 2 large passes through (0,1)

55 Inverse of exponential function Start with y = 2 x Now, interchange x and y coordinates: x = 2 y There are no algebraic techniques that can be used to solve for y, so we simply call this function y the logarithmic function with base 2. log2 x = y So the definition of this new function is log x= y if and only if 2 y 2 x = (Notice the direction of the arrows to help you remember the formula)

56 Graph, domain, range of logarithmic function 1. The domain of the logarithmic function is the same as the range of the exponential function (Why?) y = 2 x 2. The range of the logarithmic function is the same as the domain of the exponential function y = 2 x (Again, why?) 3. Another fact: If one graphs any one to one function and its inverse on the same grid, the two graphs will always be symmetric with respect the line y = x.

57 y = 2 x 2 log x = y Three graphs:,, y = x Notice the symmetry:

58 Logarithmic-exponential conversions Study the examples below. You should be able to convert a logarithmic into an exponential expression and vice versa. 1. x log 4(16) = x 4 = 16 x = ( 3 log ) 3 = log3 log 3 = 3 3 = = ( ) 5 log 125 = = 9 81 = 9 log 9 = 81 ( ) 1 2

59 Solving equations Using the definition of a logarithm, you can solve equations involving logarithms: See examples below: log (1000) = 3 = 1000 = 10 = 10 b b b b 6 ( ) 5 log x = 5 6 = x 7776 = x

60 Properties of logarithms These are the properties of logarithms. M and N are positive real numbers, b not equal to 1, and p and x are real numbers. 1.log (1) = b log ( b) = 1 b log b = 1 b log 4. b b x x = x 5. logb MN = logb M + logb N 6. M logb = logb M logb N N p 7. logb M = plogb M 8. log M = log N iff M = N b b

61 Solving logarithmic equations 1. Solve for x: 2. Product rule 3. Special product 4. Definition of log 5. X can be 10 only 6. Why? log 4( x+ 6) + log 4( x 6) = 3 log ( x+ 6)( x 6) = ( 2 x ) log 36 = 3 = x = x x ± 10 = x x = 10 2 =

62 Another example Solve: 2. Quotient rule 3. Simplify (divide out common factor of pi) 4. rewrite 5 definition of logarithm 6. Property of exponentials logπ log(10000 π ) = x π log = x π 1 log = x log = 4 = x x = 4 x

63 Common logs and Natural logs Common log Natural log log x= log x 10 ln( x) = log e x e

64 Solving an equation 1. Solve for x. Obtain the exact solution of this equation in terms of e ( ) 2. Quotient property of logs 3. Definition of (natural log) 4. Multiply both sides by x 5. Collect x terms on left side 6. Factor out common factor 7. Solve for x Solution: ln( x+ 1) = 1 = ln( x) ln( x+ 1) ln( x) = 1 x + 1 ln = 1 x 1 x + 1 e = x ex = x ex x = 1 xe ( 1) = 1 1 x = e 1

65 Solving an exponential equation Solve the equation x = Take natural logarithm of both sides 2. Exponent property of logarithms 3. Distributive property 4. Isolate x term on left side 5. Solve for x Solution: 2x 1 5 = 80 ( 2x 1) ln 5 = ln(80) ( 2x 1)ln(5) = ln(80) 2x ln(5) 1ln(5) = ln 80 2x ln(5) = ln80 ln5 ln 80 ln 5 x = 2ln(5)

66 Application How long will it take money to double if compounded monthly at 4 % interest? 1. compound interest formula 2. Replace A by 2P (double the amount) 3. Substitute values for r and m 4. Take ln of both sides 5. Property of logarithms 6. Solve for t and evaluate expression Solution: A= P 1+ 2P= P 1+ r m mt = ( ) 12t 12t ( 12t ) ln 2 = ln ( ) ln 2 = 12t ln( ) ln 2 12ln( ) = t t = 17.36

Chapter 2 Functions and Graphs

Chapter 2 Functions and Graphs Chapter 2 Functions and Graphs Section 5 Exponential Functions Objectives for Section 2.5 Exponential Functions The student will be able to graph and identify the properties of exponential functions. The

More information

Chapter 2 Functions and Graphs

Chapter 2 Functions and Graphs Chapter 2 Functions and Graphs Section 6 Logarithmic Functions Learning Objectives for Section 2.6 Logarithmic Functions The student will be able to use and apply inverse functions. The student will be

More information

Simplifying Radical Expressions

Simplifying Radical Expressions Simplifying Radical Expressions Product Property of Radicals For any real numbers a and b, and any integer n, n>1, 1. If n is even, then When a and b are both nonnegative. n ab n a n b 2. If n is odd,

More information

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x?

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x? Inverse Functions Question: What is the relationship between f(x) = x 3 and g(x) = 3 x? Question: What is the relationship between f(x) = x 2 and g(x) = x? Definition (One-to-One Function) A function f

More information

1 Functions, Graphs and Limits

1 Functions, Graphs and Limits 1 Functions, Graphs and Limits 1.1 The Cartesian Plane In this course we will be dealing a lot with the Cartesian plane (also called the xy-plane), so this section should serve as a review of it and its

More information

Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions. Recall that a power function has the form f(x) = x r where r is a real number.

Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions. Recall that a power function has the form f(x) = x r where r is a real number. L7-1 Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions Recall that a power function has the form f(x) = x r where r is a real number. f(x) = x 1/2 f(x) = x 1/3 ex. Sketch the graph of

More information

Topic 33: One-to-One Functions. Are the following functions one-to-one over their domains?

Topic 33: One-to-One Functions. Are the following functions one-to-one over their domains? Topic 33: One-to-One Functions Definition: A function f is said to be one-to-one if for every value f(x) in the range of f there is exactly one corresponding x-value in the domain of f. Ex. Are the following

More information

6.1 Polynomial Functions

6.1 Polynomial Functions 6.1 Polynomial Functions Definition. A polynomial function is any function p(x) of the form p(x) = p n x n + p n 1 x n 1 + + p 2 x 2 + p 1 x + p 0 where all of the exponents are non-negative integers and

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Exponential and Logarithmic Functions Learning Targets 1. I can evaluate, analyze, and graph exponential functions. 2. I can solve problems involving exponential growth & decay. 3. I can evaluate expressions

More information

Name Advanced Math Functions & Statistics. Non- Graphing Calculator Section A. B. C.

Name Advanced Math Functions & Statistics. Non- Graphing Calculator Section A. B. C. 1. Compare and contrast the following graphs. Non- Graphing Calculator Section A. B. C. 2. For R, S, and T as defined below, which of the following products is undefined? A. RT B. TR C. TS D. ST E. RS

More information

INTERNET MAT 117. Solution for the Review Problems. (1) Let us consider the circle with equation. x 2 + 2x + y 2 + 3y = 3 4. (x + 1) 2 + (y + 3 2

INTERNET MAT 117. Solution for the Review Problems. (1) Let us consider the circle with equation. x 2 + 2x + y 2 + 3y = 3 4. (x + 1) 2 + (y + 3 2 INTERNET MAT 117 Solution for the Review Problems (1) Let us consider the circle with equation x 2 + y 2 + 2x + 3y + 3 4 = 0. (a) Find the standard form of the equation of the circle given above. (i) Group

More information

Part 4: Exponential and Logarithmic Functions

Part 4: Exponential and Logarithmic Functions Part 4: Exponential and Logarithmic Functions Chapter 5 I. Exponential Functions (5.1) II. The Natural Exponential Function (5.2) III. Logarithmic Functions (5.3) IV. Properties of Logarithms (5.4) V.

More information

Skill 6 Exponential and Logarithmic Functions

Skill 6 Exponential and Logarithmic Functions Skill 6 Exponential and Logarithmic Functions Skill 6a: Graphs of Exponential Functions Skill 6b: Solving Exponential Equations (not requiring logarithms) Skill 6c: Definition of Logarithms Skill 6d: Graphs

More information

Logarithmic and Exponential Equations and Inequalities College Costs

Logarithmic and Exponential Equations and Inequalities College Costs Logarithmic and Exponential Equations and Inequalities ACTIVITY 2.6 SUGGESTED LEARNING STRATEGIES: Summarize/ Paraphrase/Retell, Create Representations Wesley is researching college costs. He is considering

More information

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved.

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved. 3 Exponential and Logarithmic Functions Copyright Cengage Learning. All rights reserved. 3.1 Exponential Functions and Their Graphs Copyright Cengage Learning. All rights reserved. What You Should Learn

More information

Summer MA Lesson 20 Section 2.7 (part 2), Section 4.1

Summer MA Lesson 20 Section 2.7 (part 2), Section 4.1 Summer MA 500 Lesson 0 Section.7 (part ), Section 4. Definition of the Inverse of a Function: Let f and g be two functions such that f ( g ( )) for every in the domain of g and g( f( )) for every in the

More information

Topics from Algebra and Pre-Calculus. (Key contains solved problems)

Topics from Algebra and Pre-Calculus. (Key contains solved problems) Topics from Algebra and Pre-Calculus (Key contains solved problems) Note: The purpose of this packet is to give you a review of basic skills. You are asked not to use the calculator, except on p. (8) and

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Graduate T.A. Department of Mathematics Dynamical Systems and Chaos San Diego State University April 9, 11 Definition (Exponential Function) An exponential function with base a is a function of the form

More information

1 Functions and Graphs

1 Functions and Graphs 1 Functions and Graphs 1.1 Functions Cartesian Coordinate System A Cartesian or rectangular coordinate system is formed by the intersection of a horizontal real number line, usually called the x axis,

More information

10 Exponential and Logarithmic Functions

10 Exponential and Logarithmic Functions 10 Exponential and Logarithmic Functions Concepts: Rules of Exponents Exponential Functions Power Functions vs. Exponential Functions The Definition of an Exponential Function Graphing Exponential Functions

More information

5.1. EXPONENTIAL FUNCTIONS AND THEIR GRAPHS

5.1. EXPONENTIAL FUNCTIONS AND THEIR GRAPHS 5.1. EXPONENTIAL FUNCTIONS AND THEIR GRAPHS 1 What You Should Learn Recognize and evaluate exponential functions with base a. Graph exponential functions and use the One-to-One Property. Recognize, evaluate,

More information

Algebra II. Slide 1 / 261. Slide 2 / 261. Slide 3 / 261. Linear, Exponential and Logarithmic Functions. Table of Contents

Algebra II. Slide 1 / 261. Slide 2 / 261. Slide 3 / 261. Linear, Exponential and Logarithmic Functions. Table of Contents Slide 1 / 261 Algebra II Slide 2 / 261 Linear, Exponential and 2015-04-21 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 261 Linear Functions Exponential Functions Properties

More information

INTERNET MAT 117 Review Problems. (1) Let us consider the circle with equation. (b) Find the center and the radius of the circle given above.

INTERNET MAT 117 Review Problems. (1) Let us consider the circle with equation. (b) Find the center and the radius of the circle given above. INTERNET MAT 117 Review Problems (1) Let us consider the circle with equation x 2 + y 2 + 2x + 3y + 3 4 = 0. (a) Find the standard form of the equation of the circle given above. (b) Find the center and

More information

Course Number 432/433 Title Algebra II (A & B) H Grade # of Days 120

Course Number 432/433 Title Algebra II (A & B) H Grade # of Days 120 Whitman-Hanson Regional High School provides all students with a high- quality education in order to develop reflective, concerned citizens and contributing members of the global community. Course Number

More information

R1: Sets A set is a collection of objects sets are written using set brackets each object in onset is called an element or member

R1: Sets A set is a collection of objects sets are written using set brackets each object in onset is called an element or member Chapter R Review of basic concepts * R1: Sets A set is a collection of objects sets are written using set brackets each object in onset is called an element or member Ex: Write the set of counting numbers

More information

for every x in the gomain of g

for every x in the gomain of g Section.7 Definition of Inverse Function Let f and g be two functions such that f(g(x)) = x for every x in the gomain of g and g(f(x)) = x for every x in the gomain of f Under these conditions, the function

More information

Rational Functions. Elementary Functions. Algebra with mixed fractions. Algebra with mixed fractions

Rational Functions. Elementary Functions. Algebra with mixed fractions. Algebra with mixed fractions Rational Functions A rational function f (x) is a function which is the ratio of two polynomials, that is, Part 2, Polynomials Lecture 26a, Rational Functions f (x) = where and are polynomials Dr Ken W

More information

Section Properties of Rational Expressions

Section Properties of Rational Expressions 88 Section. - Properties of Rational Expressions Recall that a rational number is any number that can be written as the ratio of two integers where the integer in the denominator cannot be. Rational Numbers:

More information

Advanced Mathematics Unit 2 Limits and Continuity

Advanced Mathematics Unit 2 Limits and Continuity Advanced Mathematics 3208 Unit 2 Limits and Continuity NEED TO KNOW Expanding Expanding Expand the following: A) (a + b) 2 B) (a + b) 3 C) (a + b)4 Pascals Triangle: D) (x + 2) 4 E) (2x -3) 5 Random Factoring

More information

Advanced Mathematics Unit 2 Limits and Continuity

Advanced Mathematics Unit 2 Limits and Continuity Advanced Mathematics 3208 Unit 2 Limits and Continuity NEED TO KNOW Expanding Expanding Expand the following: A) (a + b) 2 B) (a + b) 3 C) (a + b)4 Pascals Triangle: D) (x + 2) 4 E) (2x -3) 5 Random Factoring

More information

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 HW#1 Name Unit 4B Logarithmic Functions HW #1 Algebra II Mrs. Dailey 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 2) If the graph of y =6 x is reflected

More information

Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals

Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals By the end of this chapter, you should be able to Graph exponential growth functions. (8.1) Graph exponential

More information

Concept Category 2. Exponential and Log Functions

Concept Category 2. Exponential and Log Functions Concept Category 2 Exponential and Log Functions Concept Category 2 Check List *Find the inverse and composition of functions *Identify an exponential from a table, graph and equation *Identify the difference

More information

Continuously Compounded Interest. Simple Interest Growth. Simple Interest. Logarithms and Exponential Functions

Continuously Compounded Interest. Simple Interest Growth. Simple Interest. Logarithms and Exponential Functions Exponential Models Clues in the word problems tell you which formula to use. If there s no mention of compounding, use a growth or decay model. If your interest is compounded, check for the word continuous.

More information

Polynomial Expressions and Functions

Polynomial Expressions and Functions Hartfield College Algebra (Version 2017a - Thomas Hartfield) Unit FOUR Page - 1 - of 36 Topic 32: Polynomial Expressions and Functions Recall the definitions of polynomials and terms. Definition: A polynomial

More information

Sec. 4.2 Logarithmic Functions

Sec. 4.2 Logarithmic Functions Sec. 4.2 Logarithmic Functions The Logarithmic Function with Base a has domain all positive real numbers and is defined by Where and is the inverse function of So and Logarithms are inverses of Exponential

More information

Exponential and Logarithmic Functions. 3. Pg #17-57 column; column and (need graph paper)

Exponential and Logarithmic Functions. 3. Pg #17-57 column; column and (need graph paper) Algebra 2/Trig Unit 6 Notes Packet Name: Period: # Exponential and Logarithmic Functions 1. Worksheet 2. Worksheet 3. Pg 483-484 #17-57 column; 61-73 column and 76-77 (need graph paper) 4. Pg 483-484 #20-60

More information

Numerical Methods. Exponential and Logarithmic functions. Jaesung Lee

Numerical Methods. Exponential and Logarithmic functions. Jaesung Lee Numerical Methods Exponential and Logarithmic functions Jaesung Lee Exponential Function Exponential Function Introduction We consider how the expression is defined when is a positive number and is irrational.

More information

Comparison of Virginia s College and Career Ready Mathematics Performance Expectations with the Common Core State Standards for Mathematics

Comparison of Virginia s College and Career Ready Mathematics Performance Expectations with the Common Core State Standards for Mathematics Comparison of Virginia s College and Career Ready Mathematics Performance Expectations with the Common Core State Standards for Mathematics February 17, 2010 1 Number and Quantity The Real Number System

More information

Solving Multi-Step Equations

Solving Multi-Step Equations 1. Clear parentheses using the distributive property. 2. Combine like terms within each side of the equal sign. Solving Multi-Step Equations 3. Add/subtract terms to both sides of the equation to get the

More information

a factors The exponential 0 is a special case. If b is any nonzero real number, then

a factors The exponential 0 is a special case. If b is any nonzero real number, then 0.1 Exponents The expression x a is an exponential expression with base x and exponent a. If the exponent a is a positive integer, then the expression is simply notation that counts how many times the

More information

f (x) = x 2 Chapter 2 Polynomial Functions Section 4 Polynomial and Rational Functions Shapes of Polynomials Graphs of Polynomials the form n

f (x) = x 2 Chapter 2 Polynomial Functions Section 4 Polynomial and Rational Functions Shapes of Polynomials Graphs of Polynomials the form n Chapter 2 Functions and Graphs Section 4 Polynomial and Rational Functions Polynomial Functions A polynomial function is a function that can be written in the form a n n 1 n x + an 1x + + a1x + a0 for

More information

3 Inequalities Absolute Values Inequalities and Intervals... 18

3 Inequalities Absolute Values Inequalities and Intervals... 18 Contents 1 Real Numbers, Exponents, and Radicals 1.1 Rationalizing the Denominator................................... 1. Factoring Polynomials........................................ 1. Algebraic and Fractional

More information

Logarithms involve the study of exponents so is it vital to know all the exponent laws.

Logarithms involve the study of exponents so is it vital to know all the exponent laws. Pre-Calculus Mathematics 12 4.1 Exponents Part 1 Goal: 1. Simplify and solve exponential expressions and equations Logarithms involve the study of exponents so is it vital to know all the exponent laws.

More information

Skill 6 Exponential and Logarithmic Functions

Skill 6 Exponential and Logarithmic Functions Skill 6 Exponential and Logarithmic Functions Skill 6a: Graphs of Exponential Functions Skill 6b: Solving Exponential Equations (not requiring logarithms) Skill 6c: Definition of Logarithms Skill 6d: Graphs

More information

Math 115 Spring 11 Written Homework 10 Solutions

Math 115 Spring 11 Written Homework 10 Solutions Math 5 Spring Written Homework 0 Solutions. For following its, state what indeterminate form the its are in and evaluate the its. (a) 3x 4x 4 x x 8 Solution: This is in indeterminate form 0. Algebraically,

More information

Algebra 1. Math Review Packet. Equations, Inequalities, Linear Functions, Linear Systems, Exponents, Polynomials, Factoring, Quadratics, Radicals

Algebra 1. Math Review Packet. Equations, Inequalities, Linear Functions, Linear Systems, Exponents, Polynomials, Factoring, Quadratics, Radicals Algebra 1 Math Review Packet Equations, Inequalities, Linear Functions, Linear Systems, Exponents, Polynomials, Factoring, Quadratics, Radicals 2017 Math in the Middle 1. Clear parentheses using the distributive

More information

8th Grade Math Definitions

8th Grade Math Definitions 8th Grade Math Definitions Absolute Value: 1. A number s distance from zero. 2. For any x, is defined as follows: x = x, if x < 0; x, if x 0. Acute Angle: An angle whose measure is greater than 0 and less

More information

4 Exponential and Logarithmic Functions

4 Exponential and Logarithmic Functions 4 Exponential and Logarithmic Functions 4.1 Exponential Functions Definition 4.1 If a > 0 and a 1, then the exponential function with base a is given by fx) = a x. Examples: fx) = x, gx) = 10 x, hx) =

More information

2(x 4 7x 2 18) 2(x 2 9)(x 2 + 2) 2(x 3)(x + 3)(x 2 + 2)

2(x 4 7x 2 18) 2(x 2 9)(x 2 + 2) 2(x 3)(x + 3)(x 2 + 2) Completely factor 2x 4 14x 2 36 2(x 4 7x 2 18) 2(x 2 9)(x 2 + 2) 2(x 3)(x + 3)(x 2 + 2) Add and simplify Simplify as much as possible Subtract and simplify Determine the inverse of Multiply and simplify

More information

Algebraic. techniques1

Algebraic. techniques1 techniques Algebraic An electrician, a bank worker, a plumber and so on all have tools of their trade. Without these tools, and a good working knowledge of how to use them, it would be impossible for them

More information

Exponential and Logarithmic Functions. By Lauren Bae and Yamini Ramadurai

Exponential and Logarithmic Functions. By Lauren Bae and Yamini Ramadurai Exponential and Logarithmic Functions By Lauren Bae and Yamini Ramadurai What is an Exponential Function? An exponential function any function where the variable is now the power, rather than the base.

More information

Composition of Functions

Composition of Functions Math 120 Intermediate Algebra Sec 9.1: Composite and Inverse Functions Composition of Functions The composite function f g, the composition of f and g, is defined as (f g)(x) = f(g(x)). Recall that a function

More information

Algebra One Dictionary

Algebra One Dictionary Algebra One Dictionary Page 1 of 17 A Absolute Value - the distance between the number and 0 on a number line Algebraic Expression - An expression that contains numbers, operations and at least one variable.

More information

An equation of the form y = ab x where a 0 and the base b is a positive. x-axis (equation: y = 0) set of all real numbers

An equation of the form y = ab x where a 0 and the base b is a positive. x-axis (equation: y = 0) set of all real numbers Algebra 2 Notes Section 7.1: Graph Exponential Growth Functions Objective(s): To graph and use exponential growth functions. Vocabulary: I. Exponential Function: An equation of the form y = ab x where

More information

Intermediate Algebra Chapter 12 Review

Intermediate Algebra Chapter 12 Review Intermediate Algebra Chapter 1 Review Set up a Table of Coordinates and graph the given functions. Find the y-intercept. Label at least three points on the graph. Your graph must have the correct shape.

More information

Example. Determine the inverse of the given function (if it exists). f(x) = 3

Example. Determine the inverse of the given function (if it exists). f(x) = 3 Example. Determine the inverse of the given function (if it exists). f(x) = g(x) = p x + x We know want to look at two di erent types of functions, called logarithmic functions and exponential functions.

More information

The student will become familiar with a beginning library of. Calculus for Business & Economics 1

The student will become familiar with a beginning library of. Calculus for Business & Economics 1 Learning Objectives for Section 2.2 2 Elementary Functions: - Graphs &Transformations The student will become familiar with a beginning library of elementary functions. The student will be able to transform

More information

Section 5.1 Determine if a function is a polynomial function. State the degree of a polynomial function.

Section 5.1 Determine if a function is a polynomial function. State the degree of a polynomial function. Test Instructions Objectives Section 5.1 Section 5.1 Determine if a function is a polynomial function. State the degree of a polynomial function. Form a polynomial whose zeros and degree are given. Graph

More information

Polynomial and Rational Functions. Chapter 3

Polynomial and Rational Functions. Chapter 3 Polynomial and Rational Functions Chapter 3 Quadratic Functions and Models Section 3.1 Quadratic Functions Quadratic function: Function of the form f(x) = ax 2 + bx + c (a, b and c real numbers, a 0) -30

More information

Analysis of Functions

Analysis of Functions Lecture for Week 11 (Secs. 5.1 3) Analysis of Functions (We used to call this topic curve sketching, before students could sketch curves by typing formulas into their calculators. It is still important

More information

Math 119 Main Points of Discussion

Math 119 Main Points of Discussion Math 119 Main Points of Discussion 1. Solving equations: When you have an equation like y = 3 + 5, you should see a relationship between two variables, and y. The graph of y = 3 + 5 is the picture of this

More information

Function: State whether the following examples are functions. Then state the domain and range. Use interval notation.

Function: State whether the following examples are functions. Then state the domain and range. Use interval notation. Name Period Date MIDTERM REVIEW Algebra 31 1. What is the definition of a function? Functions 2. How can you determine whether a GRAPH is a function? State whether the following examples are functions.

More information

Rising 8th Grade Math. Algebra 1 Summer Review Packet

Rising 8th Grade Math. Algebra 1 Summer Review Packet Rising 8th Grade Math Algebra 1 Summer Review Packet 1. Clear parentheses using the distributive property. 2. Combine like terms within each side of the equal sign. Solving Multi-Step Equations 3. Add/subtract

More information

Reference Material /Formulas for Pre-Calculus CP/ H Summer Packet

Reference Material /Formulas for Pre-Calculus CP/ H Summer Packet Reference Material /Formulas for Pre-Calculus CP/ H Summer Packet Week # 1 Order of Operations Step 1 Evaluate expressions inside grouping symbols. Order of Step 2 Evaluate all powers. Operations Step

More information

College Algebra and College Algebra with Review Final Review

College Algebra and College Algebra with Review Final Review The final exam comprises 30 questions. Each of the 20 multiple choice questions is worth 3 points and each of the 10 open-ended questions is worth 4 points. Instructions for the Actual Final Exam: Work

More information

Polynomial Functions and Models

Polynomial Functions and Models 1 CA-Fall 2011-Jordan College Algebra, 4 th edition, Beecher/Penna/Bittinger, Pearson/Addison Wesley, 2012 Chapter 4: Polynomial Functions and Rational Functions Section 4.1 Polynomial Functions and Models

More information

Another enormous super-family of functions are exponential functions.

Another enormous super-family of functions are exponential functions. Hartfield College Algebra (Version 2018 - Thomas Hartfield) Unit FIVE Page - 1 - of 39 Topic 37: Exponential Functions In previous topics we ve discussed power functions, n functions of the form f x x,

More information

Math 137 Exam #3 Review Guide

Math 137 Exam #3 Review Guide Math 7 Exam # Review Guide The third exam will cover Sections.-.6, 4.-4.7. The problems on this review guide are representative of the type of problems worked on homework and during class time. Do not

More information

9.1 Exponential Growth

9.1 Exponential Growth 9.1 Exponential Growth 1. Complete Activity 1 a. Complete the chart using the x formula y = 300 2 Advanced Algebra Chapter 9 - Note Taking Guidelines Complete each Now try problem after studying the previous

More information

A Partial List of Topics: Math Spring 2009

A Partial List of Topics: Math Spring 2009 A Partial List of Topics: Math 112 - Spring 2009 This is a partial compilation of a majority of the topics covered this semester and may not include everything which might appear on the exam. The purpose

More information

Math 180 Chapter 4 Lecture Notes. Professor Miguel Ornelas

Math 180 Chapter 4 Lecture Notes. Professor Miguel Ornelas Math 80 Chapter 4 Lecture Notes Professor Miguel Ornelas M. Ornelas Math 80 Lecture Notes Section 4. Section 4. Inverse Functions Definition of One-to-One Function A function f with domain D and range

More information

Final Exam Study Guide Mathematical Thinking, Fall 2003

Final Exam Study Guide Mathematical Thinking, Fall 2003 Final Exam Study Guide Mathematical Thinking, Fall 2003 Chapter R Chapter R contains a lot of basic definitions and notations that are used throughout the rest of the book. Most of you are probably comfortable

More information

Do you know how to find the distance between two points?

Do you know how to find the distance between two points? Some notation to understand: is the line through points A and B is the ray starting at point A and extending (infinitely) through B is the line segment connecting points A and B is the length of the line

More information

Do you know how to find the distance between two points?

Do you know how to find the distance between two points? Some notation to understand: is the line through points A and B is the ray starting at point A and extending (infinitely) through B is the line segment connecting points A and B is the length of the line

More information

NOTES: EXPONENT RULES

NOTES: EXPONENT RULES NOTES: EXPONENT RULES DAY 2 Topic Definition/Rule Example(s) Multiplication (add exponents) x a x b = x a+b x 4 x 8 x 5 y 2 x 2 y Power to a Power (multiply exponents) x a ( ) b = x ab ( x ) 7 ( x ) 2

More information

Math M111: Lecture Notes For Chapter 10

Math M111: Lecture Notes For Chapter 10 Math M: Lecture Notes For Chapter 0 Sections 0.: Inverse Function Inverse function (interchange and y): Find the equation of the inverses for: y = + 5 ; y = + 4 3 Function (from section 3.5): (Vertical

More information

5.4 - Quadratic Functions

5.4 - Quadratic Functions Fry TAMU Spring 2017 Math 150 Notes Section 5.4 Page! 92 5.4 - Quadratic Functions Definition: A function is one that can be written in the form f (x) = where a, b, and c are real numbers and a 0. (What

More information

Chapter 1- Polynomial Functions

Chapter 1- Polynomial Functions Chapter 1- Polynomial Functions Lesson Package MHF4U Chapter 1 Outline Unit Goal: By the end of this unit, you will be able to identify and describe some key features of polynomial functions, and make

More information

Algebra 2 Honors: Final Exam Review

Algebra 2 Honors: Final Exam Review Name: Class: Date: Algebra 2 Honors: Final Exam Review Directions: You may write on this review packet. Remember that this packet is similar to the questions that you will have on your final exam. Attempt

More information

Name Date Per. Ms. Williams/Mrs. Hertel

Name Date Per. Ms. Williams/Mrs. Hertel Name Date Per. Ms. Williams/Mrs. Hertel Day 7: Solving Exponential Word Problems involving Logarithms Warm Up Exponential growth occurs when a quantity increases by the same rate r in each period t. When

More information

5.3 Other Algebraic Functions

5.3 Other Algebraic Functions 5.3 Other Algebraic Functions 397 5.3 Other Algebraic Functions This section serves as a watershed for functions which are combinations of polynomial, and more generally, rational functions, with the operations

More information

THE EXPONENTIAL AND NATURAL LOGARITHMIC FUNCTIONS: e x, ln x

THE EXPONENTIAL AND NATURAL LOGARITHMIC FUNCTIONS: e x, ln x Mathematics Revision Guides The Exponential and Natural Log Functions Page 1 of 17 M.K. HOME TUITION Mathematics Revision Guides Level: A-Level Year 1 / AS THE EXPONENTIAL AND NATURAL LOGARITHMIC FUNCTIONS:

More information

p351 Section 5.5: Bases Other than e and Applications

p351 Section 5.5: Bases Other than e and Applications p351 Section 5.5: Bases Other than e and Applications Definition of Exponential Function to Base a If a is a positive real number (a 1) and x is any real number, then the exponential function to the base

More information

MATH 1113 Exam 2 Review. Spring 2018

MATH 1113 Exam 2 Review. Spring 2018 MATH 1113 Exam 2 Review Spring 2018 Section 3.1: Inverse Functions Topics Covered Section 3.2: Exponential Functions Section 3.3: Logarithmic Functions Section 3.4: Properties of Logarithms Section 3.5:

More information

Algebra 2 Standards. Essential Standards:

Algebra 2 Standards. Essential Standards: Benchmark 1: Essential Standards: 1. Alg2.M.F.LE.A.02 (linear): I can create linear functions if provided either a graph, relationship description or input-output tables. - 15 Days 2. Alg2.M.A.APR.B.02a

More information

Graphs of Polynomial Functions

Graphs of Polynomial Functions Graphs of Polynomial Functions By: OpenStaxCollege The revenue in millions of dollars for a fictional cable company from 2006 through 2013 is shown in [link]. Year 2006 2007 2008 2009 2010 2011 2012 2013

More information

Section 6.3: Exponential Equations and Inequalities, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D.

Section 6.3: Exponential Equations and Inequalities, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. Section 6.3: Exponential Equations and Inequalities, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative Commons Attribution-NonCommercial-

More information

Radicals: To simplify means that 1) no radicand has a perfect square factor and 2) there is no radical in the denominator (rationalize).

Radicals: To simplify means that 1) no radicand has a perfect square factor and 2) there is no radical in the denominator (rationalize). Summer Review Packet for Students Entering Prealculus Radicals: To simplify means that 1) no radicand has a perfect square factor and ) there is no radical in the denominator (rationalize). Recall the

More information

Exponential and logarithm functions

Exponential and logarithm functions ucsc supplementary notes ams/econ 11a Exponential and logarithm functions c 2010 Yonatan Katznelson The material in this supplement is assumed to be mostly review material. If you have never studied exponential

More information

Foundations of Math II Unit 5: Solving Equations

Foundations of Math II Unit 5: Solving Equations Foundations of Math II Unit 5: Solving Equations Academics High School Mathematics 5.1 Warm Up Solving Linear Equations Using Graphing, Tables, and Algebraic Properties On the graph below, graph the following

More information

College Algebra Through Problem Solving (2018 Edition)

College Algebra Through Problem Solving (2018 Edition) City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College Winter 1-25-2018 College Algebra Through Problem Solving (2018 Edition) Danielle Cifone

More information

Unit 8: Exponential & Logarithmic Functions

Unit 8: Exponential & Logarithmic Functions Date Period Unit 8: Eponential & Logarithmic Functions DAY TOPIC ASSIGNMENT 1 8.1 Eponential Growth Pg 47 48 #1 15 odd; 6, 54, 55 8.1 Eponential Decay Pg 47 48 #16 all; 5 1 odd; 5, 7 4 all; 45 5 all 4

More information

Use a graphing utility to approximate the real solutions, if any, of the equation rounded to two decimal places. 4) x3-6x + 3 = 0 (-5,5) 4)

Use a graphing utility to approximate the real solutions, if any, of the equation rounded to two decimal places. 4) x3-6x + 3 = 0 (-5,5) 4) Advanced College Prep Pre-Calculus Midyear Exam Review Name Date Per List the intercepts for the graph of the equation. 1) x2 + y - 81 = 0 1) Graph the equation by plotting points. 2) y = -x2 + 9 2) List

More information

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes Limits at Infinity If a function f has a domain that is unbounded, that is, one of the endpoints of its domain is ±, we can determine the long term behavior of the function using a it at infinity. Definition

More information

Chapter 4E - Combinations of Functions

Chapter 4E - Combinations of Functions Fry Texas A&M University!! Math 150!! Chapter 4E!! Fall 2015! 121 Chapter 4E - Combinations of Functions 1. Let f (x) = 3 x and g(x) = 3+ x a) What is the domain of f (x)? b) What is the domain of g(x)?

More information

MA Lesson 14 Notes Summer 2016 Exponential Functions

MA Lesson 14 Notes Summer 2016 Exponential Functions Solving Eponential Equations: There are two strategies used for solving an eponential equation. The first strategy, if possible, is to write each side of the equation using the same base. 3 E : Solve:

More information

notes.notebook April 08, 2014

notes.notebook April 08, 2014 Chapter 7: Exponential Functions graphs solving equations word problems Graphs (Section 7.1 & 7.2): c is the common ratio (can not be 0,1 or a negative) if c > 1, growth curve (graph will be increasing)

More information

17 Exponential and Logarithmic Functions

17 Exponential and Logarithmic Functions 17 Exponential and Logarithmic Functions Concepts: Exponential Functions Power Functions vs. Exponential Functions The Definition of an Exponential Function Graphing Exponential Functions Exponential Growth

More information