Skill 6 Exponential and Logarithmic Functions

Size: px
Start display at page:

Download "Skill 6 Exponential and Logarithmic Functions"

Transcription

1 Skill 6 Exponential and Logarithmic Functions Skill 6a: Graphs of Exponential Functions Skill 6b: Solving Exponential Equations (not requiring logarithms) Skill 6c: Definition of Logarithms Skill 6d: Graphs of Logarithms Skill 6e: Properties of logarithms (product rule, quotient rule, power rule, change of base) Skill 6f: Logarithmic Equations (not requiring exponentials) Skill 6g: Exponential and Logarithmic Equations requiring inverse operations

2 Skill 6a: Graphs of Exponential Functions An exponential function is defined as an expression with a constant base with a variable exponent. The following are examples of exponential functions: f(x) = x g(x) = π 3x h(x) = 3 x + In general an exponential function is of the form f(x) = a x, where a > 0 and a. Why is it necessary for a > 0? What can't a =? Say, a = then f ( ) = ( ) = i, but we want real numbers. Say, a =, then the range would be {}.. Complete the table below for the function f(x) = x. Then graph the function at the right. x f(x) What is the domain of the basic exponential function? D = (, ) What is the range of the basic exponential function? R = (0, ) What is the equation of the horizontal asymptote of the basic exponential function? y = 0. Complete the table for the function f(x) = x. 3. Complete the table for f(x) = ( )x. Then graph the function above Then graph the function above. x f(x) x f(x)

3 . If < a < b. Sketch a graph that illustrates the difference between f(x) = a x and g(x) = b x 5. If 0 < a < b <. Sketch a graph that illustrates the difference between f(x) = a x and g(x) = b x 6. If a >, how does the graph of f(x) = a x compare to the graphs of g(x) = ( a )x and h(x) =? a x They all have the same graph (they re equivalent). Match the function below with the correct graph. A 7. y = 3 x C 8. y = 3 x D 9. y = 3 x + 5 C E B F E C 0. y = ( 3 )x. y = ( 3 )x. y = ( 3 )x 3. y = 3 x. y = ( 3 ) x 5. y = 3 x A 6. y = 3 x

4 7. What is the domain, range, y-intercept, and the equation of the horizontal asymptote for f(x) = x+ 3. Domain = (, ) Range = ( 3, ) The number e is defined as the value of ( + n )n as n approaches infinity. e is an irrational number, but to ten decimal places it can be approximated as When e is the base of an exponential function, it is called the natural exponential function. 8. Sketch the graph of y = 3e 0.5x x y = Skill 6b: Solving Exponential Equations (not requiring logarithms) Some exponential equations can be solved by rewriting constants values in terms of the base. Solve for x:. 3 x = x 7 + = 0 3 x = 3 x = 6 3x 7 = x 7 = 6 3x 7 = 3x = 9 x = = ( x ). 6 x = 6 6 = x = x x = ( 3 ) x = 3x = 3x = x = 3

5 5. 5 x = x+3 = 6 3x 5 (5 3 ) x = 5 ( 5 ) (x+3) = ( ) (3x 5) 5 6x = 5 6x = x = 3 5x+5 = x 0 5x + 5 = x 0 35 = 7x x = 5 Skill 6c: Definition of Logarithms A logarithm is defined as the inverse of an exponential function.. f(x) = x, A) What is f(3)? B) What is f (8)? f(3) = 3 = 8 f (x) = log x f (8) = log 8 = 3 The exponential equation 3 = 8 can be written as the logarithmic (or log) equation log 8 = 3. Rewrite the following exponential equations as logarithmic equations.. 5 = = = e log 5 65 = log 3 3 = 5 log 000 = 3 ln Note that log 0 x is usually written log x, so instead of writing log 0 00 =, write log 00 =. Also log e x is written ln x. Rewrite the following logarithmic equations as exponential equations. 5. log 7 3 = 3 6. log = 7. log = 8. ln = = 3 0 = = 5 e 0 = Rewrite the following logarithmic equations as exponential equations and determine the value of x. 9. log x = 0. log 6 = x. log x = 5 = x x = 6 x = 6 x = 3 x = 3 5 = x x = 3

6 . log 5 5 = x 3. log x 8 =. log,000,000 = x 5 x = 5 5 x = 5 x = x = x = 8 x = 9 Note: The base must be greater than zero and not equal to one. 0 x =,000,000 0 x = 0 6 x = 6 Skill 6d: Graphs of Logarithms Since a logarithm is the inverse of an exponential function, the graph of a y = log x is the reflection of the graph of y = x across the line y = x. x x x log x 0 0 For a basic logarithm: Domain: (0, ) Range: (, ) Vertical Asymptote: x = 0 X - Intercept: x = State the domain, range, x-intercept, and give the equation of the vertical asymptote for each function below:. f(x) = 5log (x). f(x) = log 5 (x ) Domain: (0, ) Range: (, ) Domain: (, ) Range: (, ) Vertical Asymptote: x = 0 Vertical Asymptote: x = X - Intercept: x = 5 X - Intercept: x = 5

7 3. f(x) = log 3 (9x 7). f(x) = ln( x + ) Domain: ( 7, ) Range: (, ) Domain: (, ) Range: (, ) 9 Vertical Asymptote: x = 7 9 Vertical Asymptote: x = X - Intercept: x = X - Intercept: x = e Match the function below with the correct graph. D 5. y = log 3 x A B C B 6. y = log 3 x C 7. y = log 3 ( x) B 8. y = log x 3 F 9. y = log 3 (x ) D E F E 0. y = log3(x) A. y = log 3 ( x 6 ) B. y = log 3 ( x ) Note:

8 Match the function below with the correct graph. B 3. y = ln x A B C C. y = log 5 x A 5. y = log x Skill 6e: Properties of Logarithms Derivation of the Product Rule log(ab) = y, a = 0 m, and b = 0 n 0 y = ab 0 y = 0 m+n so, y = m + n since a = 0 m and b = 0 n, m = log a and n = log b So, log(ab) = y log(ab) = m + n log(ab) = log a + log b Product Rule of Logarithms log(ab) = log a + log b Also since log(a n ) = log(a a a) = log a + log a + log a = n log a Power Rule of Logarithms log(a n ) = n log a And recall log = log b b Quotient Rule of Logarithms log ( a ) = log a log b b

9 Rewrite the following using the properties of logarithms:. log 3x. log x log x 0 = log 3 + log x = 5 + log x = log x log 00 = log x = + log x = 0 log x. log 3 x 3 y = log 3 x 3 log 3 y = 3 log 3 x log 3 y 5. log 5 ab = log 5 (ab) = log 5 (ab) = [log 5 a + log 5 b] = log 5 a log 5 b 3 x 6. log = log 7 x log 7 7 = log 7 (x) 3 = 3 log 7 x Combine the following using the properties of logarithms into a single logarithm: 7. log(x) + log(y) log (z) 8. + log x 9. log 3 x + log 3 y = log(x) + log(y) log (z) = log x + log y log z = log (x y ) log z = log ( x y z ) = log 6 + log x = log (6x) = log 3 x log log 3 y = log 3 ( x 3 ) + log 3 y = log 3 ( yx 3 )

10 If log and log 8 3 = 0. 58, determine the following: 0. log 8 5. log 8 5. log 8 30 = log 8 5 = log 8 5 (0.77) = log = log 8 5 log = 0.6 = log 8 (5 9) = log log 8 9 = log log 8 3 = log log (0.58) =.83. log = log 8 5 log 8 8 = log 8 (5 3 ) = 3 log 8 (5) 3(0.77) =.3 = log 8 (5 6) = log log 8 6 = log log 8 6 = log log 8 8 = log log = log 8 0 = log 8 ( 5) = log 8 + log 8 5 = log log 8 5 = 3 log log Changing Bases: log a b = c can be rewritten as a c = b so, or, log a c = log b c log a = log b so, c = log b log a log a b = c log a b = log b log a

11 So with just a 'log' or 'ln' button on a calculator, any logarthin can be found. Change of Base Rule for Logarithms log a b = log b log a or log a b = ln b ln a Determine the following to four decimal places: 6. log log 3 8. log 7 ( ) = log 60 log.953 = ln ln = undefined Skill 6f: Logarithmic Equations (not requiring inverse operations) Solve for x:. log(5) + log(x) = log(3) + log (0). log 3 + log x = log 5 + log (x ) log(5x) = log (30) 5x = 30 x = 6 log (3x) = log (5(x )) log (3x) = log (5x 0) 3x = 5x 0 x = 0 x = 5 3. log (x ) = log (5) log (x). log x = log + log (3x ) log (x ) = log ( 5 x ) x = 5 x x x 5 = 0 (x 5)(x + ) = 0 x = 5, x = 5 x = is extraneous log x = log((3x )) log x = log(6x 8) x = 6x 8 x 6x + 8 = 0 (x )(x ) = 0 x =, x =

12 5. log 3 (5 x) = 3 6. log (x + ) + log (x) = = 5 x x = x = log (x(x + )) = 3 log (x + x) = 3 3 = x + x x + x 8 = 0 (x + )(x ) = 0 x = (is extraneous) x = x = Skill 6g: Logarithmic and Exponential Equations Exponential Functions and Logarithmic Functions are inverses of each other; f(x) = x g(x) = ln x f (x) = log x g (x) = e x Simplify the following expressions:. 3 log 3(x+3). log 6 6 x 3. e ln(x 5). ln e (9 x) = x + 3 = x = x 5 = 9 x Solve each equation using inverse functions. Approximate solutions to 3 decimal places when needed x = log(x) 6 = 7. e 5 x = log 0 x = log 50 x log 0 = log 50 x = log 50 x.699 log(x) 6 = log( x ) = = x x = 08 x = ± 08 ln e 5 x = ln (5 x) ln e = ln 5 x = ln x = 5 ln x 3.6 x = ± 0 x = 50 (is extraneous) x = 50

13 8. 5ln(x ) = x+ = x x = 5 x ln(x ) = 3 e 3 = x x = + e 3 x.086 log 5 (x+) = log (x+) (x + ) log 5 = (x + ) log x log 5 + log 5 = x log + log x log 5 x log = log log 5 x(log 5 log ) = log log 5 x (log 5 log ) = log log 5 x log 5 6 = log 5 x = log( 5 ) log( 5 6 ) log 0 ( x) = log 5 x ( x) log 0 = x log 5 x = x log 5 = x + x log 5 = x( + log 5) x = (+log 5) x.589 x.9

Skill 6 Exponential and Logarithmic Functions

Skill 6 Exponential and Logarithmic Functions Skill 6 Exponential and Logarithmic Functions Skill 6a: Graphs of Exponential Functions Skill 6b: Solving Exponential Equations (not requiring logarithms) Skill 6c: Definition of Logarithms Skill 6d: Graphs

More information

5.6 Logarithmic and Exponential Equations

5.6 Logarithmic and Exponential Equations SECTION 5.6 Logarithmic and Exponential Equations 305 5.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following: Solving Equations Using a Graphing

More information

Logarithms Dr. Laura J. Pyzdrowski

Logarithms Dr. Laura J. Pyzdrowski 1 Names: (8 communication points) About this Laboratory An exponential function of the form f(x) = a x, where a is a positive real number not equal to 1, is an example of a one-to-one function. This means

More information

Example. Determine the inverse of the given function (if it exists). f(x) = 3

Example. Determine the inverse of the given function (if it exists). f(x) = 3 Example. Determine the inverse of the given function (if it exists). f(x) = g(x) = p x + x We know want to look at two di erent types of functions, called logarithmic functions and exponential functions.

More information

Section 6.1: Composite Functions

Section 6.1: Composite Functions Section 6.1: Composite Functions Def: Given two function f and g, the composite function, which we denote by f g and read as f composed with g, is defined by (f g)(x) = f(g(x)). In other words, the function

More information

for every x in the gomain of g

for every x in the gomain of g Section.7 Definition of Inverse Function Let f and g be two functions such that f(g(x)) = x for every x in the gomain of g and g(f(x)) = x for every x in the gomain of f Under these conditions, the function

More information

Intermediate Algebra Chapter 12 Review

Intermediate Algebra Chapter 12 Review Intermediate Algebra Chapter 1 Review Set up a Table of Coordinates and graph the given functions. Find the y-intercept. Label at least three points on the graph. Your graph must have the correct shape.

More information

Composition of Functions

Composition of Functions Math 120 Intermediate Algebra Sec 9.1: Composite and Inverse Functions Composition of Functions The composite function f g, the composition of f and g, is defined as (f g)(x) = f(g(x)). Recall that a function

More information

4 Exponential and Logarithmic Functions

4 Exponential and Logarithmic Functions 4 Exponential and Logarithmic Functions 4.1 Exponential Functions Definition 4.1 If a > 0 and a 1, then the exponential function with base a is given by fx) = a x. Examples: fx) = x, gx) = 10 x, hx) =

More information

Use a graphing utility to approximate the real solutions, if any, of the equation rounded to two decimal places. 4) x3-6x + 3 = 0 (-5,5) 4)

Use a graphing utility to approximate the real solutions, if any, of the equation rounded to two decimal places. 4) x3-6x + 3 = 0 (-5,5) 4) Advanced College Prep Pre-Calculus Midyear Exam Review Name Date Per List the intercepts for the graph of the equation. 1) x2 + y - 81 = 0 1) Graph the equation by plotting points. 2) y = -x2 + 9 2) List

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Exponential and Logarithmic Functions Learning Targets 1. I can evaluate, analyze, and graph exponential functions. 2. I can solve problems involving exponential growth & decay. 3. I can evaluate expressions

More information

Chapter 3. Exponential and Logarithmic Functions. 3.2 Logarithmic Functions

Chapter 3. Exponential and Logarithmic Functions. 3.2 Logarithmic Functions Chapter 3 Exponential and Logarithmic Functions 3.2 Logarithmic Functions 1/23 Chapter 3 Exponential and Logarithmic Functions 3.2 4, 8, 14, 16, 18, 20, 22, 30, 31, 32, 33, 34, 39, 42, 54, 56, 62, 68,

More information

f(x) = 2x + 5 3x 1. f 1 (x) = x + 5 3x 2. f(x) = 102x x

f(x) = 2x + 5 3x 1. f 1 (x) = x + 5 3x 2. f(x) = 102x x 1. Let f(x) = x 3 + 7x 2 x 2. Use the fact that f( 1) = 0 to factor f completely. (2x-1)(3x+2)(x+1). 2. Find x if log 2 x = 5. x = 1/32 3. Find the vertex of the parabola given by f(x) = 2x 2 + 3x 4. (Give

More information

Exponential and Logarithmic Functions. 3. Pg #17-57 column; column and (need graph paper)

Exponential and Logarithmic Functions. 3. Pg #17-57 column; column and (need graph paper) Algebra 2/Trig Unit 6 Notes Packet Name: Period: # Exponential and Logarithmic Functions 1. Worksheet 2. Worksheet 3. Pg 483-484 #17-57 column; 61-73 column and 76-77 (need graph paper) 4. Pg 483-484 #20-60

More information

Teacher: Mr. Chafayay. Name: Class & Block : Date: ID: A. 3 Which function is represented by the graph?

Teacher: Mr. Chafayay. Name: Class & Block : Date: ID: A. 3 Which function is represented by the graph? Teacher: Mr hafayay Name: lass & lock : ate: I: Midterm Exam Math III H Multiple hoice Identify the choice that best completes the statement or answers the question Which function is represented by the

More information

Section 4.2 Logarithmic Functions & Applications

Section 4.2 Logarithmic Functions & Applications 34 Section 4.2 Logarithmic Functions & Applications Recall that exponential functions are one-to-one since every horizontal line passes through at most one point on the graph of y = b x. So, an exponential

More information

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x?

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x? Inverse Functions Question: What is the relationship between f(x) = x 3 and g(x) = 3 x? Question: What is the relationship between f(x) = x 2 and g(x) = x? Definition (One-to-One Function) A function f

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus I - Homework Chapter 2 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether the graph is the graph of a function. 1) 1)

More information

6.4 Logarithmic Equations and Inequalities

6.4 Logarithmic Equations and Inequalities 6.4 Logarithmic Equations and Inequalities 459 6.4 Logarithmic Equations and Inequalities In Section 6.3 we solved equations and inequalities involving exponential functions using one of two basic strategies.

More information

GUIDED NOTES 6.4 GRAPHS OF LOGARITHMIC FUNCTIONS

GUIDED NOTES 6.4 GRAPHS OF LOGARITHMIC FUNCTIONS GUIDED NOTES 6.4 GRAPHS OF LOGARITHMIC FUNCTIONS LEARNING OBJECTIVES In this section, you will: Identify the domain of a logarithmic function. Graph logarithmic functions. FINDING THE DOMAIN OF A LOGARITHMIC

More information

4A: #1e-l,2-5,6g-l (Base 10 logs) 4B: #1-3last col,4,5,6 last col (Base a logs)

4A: #1e-l,2-5,6g-l (Base 10 logs) 4B: #1-3last col,4,5,6 last col (Base a logs) 1. Understand the meaning of and use logs of base 10 and base a 4A: #1e-l,2-5,6g-l (Base 10 logs) 4B: #1-3last col,4,5,6 last col (Base a logs) We have been looking at exponential functions of the form

More information

Module 6 Lecture Notes

Module 6 Lecture Notes Module 6 Lecture Notes Contents 6. An Introduction to Logarithms....................... 6. Evaluating Logarithmic Expressions.................... 4 6.3 Graphs of Logarithmic Functions......................

More information

An equation of the form y = ab x where a 0 and the base b is a positive. x-axis (equation: y = 0) set of all real numbers

An equation of the form y = ab x where a 0 and the base b is a positive. x-axis (equation: y = 0) set of all real numbers Algebra 2 Notes Section 7.1: Graph Exponential Growth Functions Objective(s): To graph and use exponential growth functions. Vocabulary: I. Exponential Function: An equation of the form y = ab x where

More information

6.1 Polynomial Functions

6.1 Polynomial Functions 6.1 Polynomial Functions Definition. A polynomial function is any function p(x) of the form p(x) = p n x n + p n 1 x n 1 + + p 2 x 2 + p 1 x + p 0 where all of the exponents are non-negative integers and

More information

Hello Future Calculus Level One Student,

Hello Future Calculus Level One Student, Hello Future Calculus Level One Student, This assignment must be completed and handed in on the first day of class. This assignment will serve as the main review for a test on this material. The test will

More information

7.1 Exponential Functions

7.1 Exponential Functions 7.1 Exponential Functions 1. What is 16 3/2? Definition of Exponential Functions Question. What is 2 2? Theorem. To evaluate a b, when b is irrational (so b is not a fraction of integers), we approximate

More information

Exponential Functions Dr. Laura J. Pyzdrowski

Exponential Functions Dr. Laura J. Pyzdrowski 1 Names: (4 communication points) About this Laboratory An exponential function is an example of a function that is not an algebraic combination of polynomials. Such functions are called trancendental

More information

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 HW#1 Name Unit 4B Logarithmic Functions HW #1 Algebra II Mrs. Dailey 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 2) If the graph of y =6 x is reflected

More information

Objectives. Use the number e to write and graph exponential functions representing realworld

Objectives. Use the number e to write and graph exponential functions representing realworld Objectives Use the number e to write and graph exponential functions representing realworld situations. Solve equations and problems involving e or natural logarithms. natural logarithm Vocabulary natural

More information

Goal: Simplify and solve exponential expressions and equations

Goal: Simplify and solve exponential expressions and equations Pre- Calculus Mathematics 12 4.1 Exponents Part 1 Goal: Simplify and solve exponential expressions and equations Logarithms involve the study of exponents so is it vital to know all the exponent laws.

More information

Final Exam Review Problems

Final Exam Review Problems Final Exam Review Problems Name: Date: June 23, 2013 P 1.4. 33. Determine whether the line x = 4 represens y as a function of x. P 1.5. 37. Graph f(x) = 3x 1 x 6. Find the x and y-intercepts and asymptotes

More information

INTERNET MAT 117 Review Problems. (1) Let us consider the circle with equation. (b) Find the center and the radius of the circle given above.

INTERNET MAT 117 Review Problems. (1) Let us consider the circle with equation. (b) Find the center and the radius of the circle given above. INTERNET MAT 117 Review Problems (1) Let us consider the circle with equation x 2 + y 2 + 2x + 3y + 3 4 = 0. (a) Find the standard form of the equation of the circle given above. (b) Find the center and

More information

Exponential and Logarithmic Functions. By Lauren Bae and Yamini Ramadurai

Exponential and Logarithmic Functions. By Lauren Bae and Yamini Ramadurai Exponential and Logarithmic Functions By Lauren Bae and Yamini Ramadurai What is an Exponential Function? An exponential function any function where the variable is now the power, rather than the base.

More information

Practice Calculus Test without Trig

Practice Calculus Test without Trig Practice Calculus Test without Trig The problems here are similar to those on the practice test Slight changes have been made 1 What is the domain of the function f (x) = 3x 1? Express the answer in interval

More information

Logarithmic Functions and Their Graphs

Logarithmic Functions and Their Graphs Section 3. Logarithmic Functions and Their Graphs Look at the graph of f(x) = x Does this graph pass the Horizontal Line Test? es What does this mean? that its inverse is a function Find the inverse of

More information

Section 4.4 Logarithmic and Exponential Equations

Section 4.4 Logarithmic and Exponential Equations Section 4.4 Logarithmic and Exponential Equations Exponential Equations An exponential equation is one in which the variable occurs in the exponent. EXAMPLE: Solve the equation 2 x = 7. Solution 1: We

More information

Part I: Multiple Choice Questions

Part I: Multiple Choice Questions Name: Part I: Multiple Choice Questions. What is the slope of the line y=3 A) 0 B) -3 ) C) 3 D) Undefined. What is the slope of the line perpendicular to the line x + 4y = 3 A) -/ B) / ) C) - D) 3. Find

More information

AP Calculus Summer Prep

AP Calculus Summer Prep AP Calculus Summer Prep Topics from Algebra and Pre-Calculus (Solutions are on the Answer Key on the Last Pages) The purpose of this packet is to give you a review of basic skills. You are asked to have

More information

Review of Functions A relation is a function if each input has exactly output. The graph of a function passes the vertical line test.

Review of Functions A relation is a function if each input has exactly output. The graph of a function passes the vertical line test. CA-Fall 011-Jordan College Algebra, 4 th edition, Beecher/Penna/Bittinger, Pearson/Addison Wesley, 01 Chapter 5: Exponential Functions and Logarithmic Functions 1 Section 5.1 Inverse Functions Inverse

More information

Section 5.1 Determine if a function is a polynomial function. State the degree of a polynomial function.

Section 5.1 Determine if a function is a polynomial function. State the degree of a polynomial function. Test Instructions Objectives Section 5.1 Section 5.1 Determine if a function is a polynomial function. State the degree of a polynomial function. Form a polynomial whose zeros and degree are given. Graph

More information

44 Wyner PreCalculus Spring 2017

44 Wyner PreCalculus Spring 2017 44 Wyner PreCalculus Spring 207 CHAPTER FIVE: EXPONENTIAL AND LOGARITHMIC FUNCTIONS Review January 30 Test February 7 An exponential function is one with the independent variable in the exponent, such

More information

Chapter 6: Exponential and Logarithmic Functions

Chapter 6: Exponential and Logarithmic Functions Section 6.1: Algebra and Composition of Functions #1-9: Let f(x) = 2x + 3 and g(x) = 3 x. Find each function. 1) (f + g)(x) 2) (g f)(x) 3) (f/g)(x) 4) ( )( ) 5) ( g/f)(x) 6) ( )( ) 7) ( )( ) 8) (g+f)(x)

More information

Math 111: Final Review

Math 111: Final Review Math 111: Final Review Suggested Directions: Start by reviewing the new material with the first portion of the review sheet. Then take every quiz again as if it were a test. No book. No notes. Limit yourself

More information

The Exponential function f with base b is f (x) = b x where b > 0, b 1, x a real number

The Exponential function f with base b is f (x) = b x where b > 0, b 1, x a real number Chapter 4: 4.1: Exponential Functions Definition: Graphs of y = b x Exponential and Logarithmic Functions The Exponential function f with base b is f (x) = b x where b > 0, b 1, x a real number Graph:

More information

Logarithmic Functions

Logarithmic Functions Name Student ID Number Group Name Group Members Logarithmic Functions 1. Solve the equations below. xx = xx = 5. Were you able solve both equations above? If so, was one of the equations easier to solve

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Graduate T.A. Department of Mathematics Dynamical Systems and Chaos San Diego State University April 9, 11 Definition (Exponential Function) An exponential function with base a is a function of the form

More information

Business and Life Calculus

Business and Life Calculus Business and Life Calculus George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 112 George Voutsadakis (LSSU) Calculus For Business and Life Sciences Fall 2013

More information

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents. Math120 - Precalculus. Final Review. Fall, 2011 Prepared by Dr. P. Babaali 1 Algebra 1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

More information

A. Evaluate log Evaluate Logarithms

A. Evaluate log Evaluate Logarithms A. Evaluate log 2 16. Evaluate Logarithms Evaluate Logarithms B. Evaluate. C. Evaluate. Evaluate Logarithms D. Evaluate log 17 17. Evaluate Logarithms Evaluate. A. 4 B. 4 C. 2 D. 2 A. Evaluate log 8 512.

More information

Intermediate Algebra Study Guide

Intermediate Algebra Study Guide Chapter 1 Intermediate Algebra Study Guide 1. Simplify the following. (a) ( 6) + ( 4) ( 9) (b) ( 7) ( 6)( )( ) (c) 8 5 9 (d) 6x(xy x ) x (y 6x ) (e) 7x {6 [8 (x ) (6 x)]} (f) Evaluate x y for x =, y =.

More information

ln(9 4x 5 = ln(75) (4x 5) ln(9) = ln(75) 4x 5 = ln(75) ln(9) ln(75) ln(9) = 1. You don t have to simplify the exact e x + 4e x

ln(9 4x 5 = ln(75) (4x 5) ln(9) = ln(75) 4x 5 = ln(75) ln(9) ln(75) ln(9) = 1. You don t have to simplify the exact e x + 4e x Math 11. Exponential and Logarithmic Equations Fall 016 Instructions. Work in groups of 3 to solve the following problems. Turn them in at the end of class for credit. Names. 1. Find the (a) exact solution

More information

Exponential Functions and Their Graphs (Section 3-1)

Exponential Functions and Their Graphs (Section 3-1) Exponential Functions and Their Graphs (Section 3-1) Essential Question: How do you graph an exponential function? Students will write a summary describing the steps for graphing an exponential function.

More information

Exponential Functions:

Exponential Functions: Exponential Functions: An exponential function has the form f (x) = b x where b is a fixed positive number, called the base. Math 101-Calculus 1 (Sklensky) In-Class Work January 29, 2015 1 / 12 Exponential

More information

Final Exam A Name. 20 i C) Solve the equation by factoring. 4) x2 = x + 30 A) {-5, 6} B) {5, 6} C) {1, 30} D) {-5, -6} -9 ± i 3 14

Final Exam A Name. 20 i C) Solve the equation by factoring. 4) x2 = x + 30 A) {-5, 6} B) {5, 6} C) {1, 30} D) {-5, -6} -9 ± i 3 14 Final Exam A Name First, write the value(s) that make the denominator(s) zero. Then solve the equation. 1 1) x + 3 + 5 x - 3 = 30 (x + 3)(x - 3) 1) A) x -3, 3; B) x -3, 3; {4} C) No restrictions; {3} D)

More information

Name Advanced Math Functions & Statistics. Non- Graphing Calculator Section A. B. C.

Name Advanced Math Functions & Statistics. Non- Graphing Calculator Section A. B. C. 1. Compare and contrast the following graphs. Non- Graphing Calculator Section A. B. C. 2. For R, S, and T as defined below, which of the following products is undefined? A. RT B. TR C. TS D. ST E. RS

More information

Find: sinθ. Name: Date:

Find: sinθ. Name: Date: Name: Date: 1. Find the exact value of the given trigonometric function of the angle θ shown in the figure. (Use the Pythagorean Theorem to find the third side of the triangle.) Find: sinθ c a θ a a =

More information

Practice Test - Chapter 3

Practice Test - Chapter 3 Sketch and analyze the graph of each function. Describe its domain, range, intercepts, asymptotes, end behavior, and where the function is increasing or decreasing. 1. f (x) = e x + 7 Evaluate the function

More information

Preface. The version of the textbook that has been modified specifically for Math 1100 at MU is available at:

Preface. The version of the textbook that has been modified specifically for Math 1100 at MU is available at: Preface This manual of notes and worksheets was developed by Teri E. Christiansen at the University of Missouri- Columbia. The goal was to provide students in Math 1100 (College Algebra) a resource to

More information

Graphing Exponentials 6.0 Topic: Graphing Growth and Decay Functions

Graphing Exponentials 6.0 Topic: Graphing Growth and Decay Functions Graphing Exponentials 6.0 Topic: Graphing Growth and Decay Functions Date: Objectives: SWBAT (Graph Exponential Functions) Main Ideas: Mother Function Exponential Assignment: Parent Function: f(x) = b

More information

MAC Learning Objectives. Logarithmic Functions. Module 8 Logarithmic Functions

MAC Learning Objectives. Logarithmic Functions. Module 8 Logarithmic Functions MAC 1140 Module 8 Logarithmic Functions Learning Objectives Upon completing this module, you should be able to 1. evaluate the common logarithmic function. 2. solve basic exponential and logarithmic equations.

More information

2(x 4 7x 2 18) 2(x 2 9)(x 2 + 2) 2(x 3)(x + 3)(x 2 + 2)

2(x 4 7x 2 18) 2(x 2 9)(x 2 + 2) 2(x 3)(x + 3)(x 2 + 2) Completely factor 2x 4 14x 2 36 2(x 4 7x 2 18) 2(x 2 9)(x 2 + 2) 2(x 3)(x + 3)(x 2 + 2) Add and simplify Simplify as much as possible Subtract and simplify Determine the inverse of Multiply and simplify

More information

Math 137 Exam #3 Review Guide

Math 137 Exam #3 Review Guide Math 7 Exam # Review Guide The third exam will cover Sections.-.6, 4.-4.7. The problems on this review guide are representative of the type of problems worked on homework and during class time. Do not

More information

Homework 3. (33-40) The graph of an exponential function is given. Match each graph to one of the following functions.

Homework 3. (33-40) The graph of an exponential function is given. Match each graph to one of the following functions. Homework Section 4. (-40) The graph of an exponential function is given. Match each graph to one of the following functions. (a)y = x (b)y = x (c)y = x (d)y = x (e)y = x (f)y = x (g)y = x (h)y = x (46,

More information

Princeton High School

Princeton High School Princeton High School Mathematics Department PreCalculus Summer Assignment Summer assignment vision and purpose: The Mathematics Department of Princeton Public Schools looks to build both confidence and

More information

4.4 Graphs of Logarithmic Functions

4.4 Graphs of Logarithmic Functions 590 Chapter 4 Exponential and Logarithmic Functions 4.4 Graphs of Logarithmic Functions In this section, you will: Learning Objectives 4.4.1 Identify the domain of a logarithmic function. 4.4.2 Graph logarithmic

More information

CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises

CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises CHAPTER FIVE 5.1 SOLUTIONS 265 Solutions for Section 5.1 Skill Refresher S1. Since 1,000,000 = 10 6, we have x = 6. S2. Since 0.01 = 10 2, we have t = 2. S3. Since e 3 = ( e 3) 1/2 = e 3/2, we have z =

More information

POD. A) Graph: y = 2e x +2 B) Evaluate: (e 2x e x ) 2 2e -x. e 7x 2

POD. A) Graph: y = 2e x +2 B) Evaluate: (e 2x e x ) 2 2e -x. e 7x 2 POD A) Graph: y = 2e x +2 B) Evaluate: (e 2x e x ) 2 2e -x e 7x 2 4.4 Evaluate Logarithms & Graph Logarithmic Functions What is a logarithm? How do you read it? What relationship exists between logs and

More information

Before we do that, I need to show you another way of writing an exponential. We all know 5² = 25. Another way of writing that is: log

Before we do that, I need to show you another way of writing an exponential. We all know 5² = 25. Another way of writing that is: log Chapter 13 Logarithms Sec. 1 Definition of a Logarithm In the last chapter we solved and graphed exponential equations. The strategy we used to solve those was to make the bases the same, set the exponents

More information

Exp, Log, Poly Functions Quarter 3 Review Name

Exp, Log, Poly Functions Quarter 3 Review Name Exp, Log, Poly Functions Quarter 3 Review Name Textbook problems for practice: p. 285-293; p. 293 #9-14, p. 294-5 #1-34, 49-52, 55,56, 57; p. 297-321 logs; p. 280-1 #11-84 *Blood Alcohol, Bungee-from binder

More information

1. OBJECTIVE: Linear Equations

1. OBJECTIVE: Linear Equations CUNY YORK COLLEGE FINAL EXAM REVIEW MATH 120: Precalculus Use the following questions to review for your final examimation for Math 120. Your ability to answer these questions will reflect what you learned

More information

COLLEGE ALGEBRA FINAL REVIEW 9) 4 = 7. 13) 3log(4x 4) + 8 = ) Write as the sum of difference of logarithms; express powers as factors.

COLLEGE ALGEBRA FINAL REVIEW 9) 4 = 7. 13) 3log(4x 4) + 8 = ) Write as the sum of difference of logarithms; express powers as factors. Solve. 1) x 1 8 ) ( x ) x x 9 ) x 1 x 4) x + x 0 ) x + 9y 6) t t 4 7) y 8 4 x COLLEGE ALGEBRA FINAL REVIEW x 8) 81 x + 9) 4 7.07 x 10) 10 + 1e 10 11) solve for L P R K M + K L T 1) a) log x log( x+ 6)

More information

PRINTABLE VERSION. Practice Final. Question 1. Find the coordinates of the y-intercept for 5x 9y + 6 = 0. 2 (0, ) 3 3 (0, ) 2 2 (0, ) 3 6 (0, ) 5

PRINTABLE VERSION. Practice Final. Question 1. Find the coordinates of the y-intercept for 5x 9y + 6 = 0. 2 (0, ) 3 3 (0, ) 2 2 (0, ) 3 6 (0, ) 5 PRINTABLE VERSION Practice Final Question Find the coordinates of the y-intercept for 5x 9y + 6 = 0. (0, ) (0, ) (0, ) 6 (0, ) 5 6 (0, ) 5 Question Find the slope of the line: 7x 4y = 0 7 4 4 4 7 7 4 4

More information

2. (10 points) Find an equation for the line tangent to the graph of y = e 2x 3 at the point (3/2, 1). Solution: y = 2(e 2x 3 so m = 2e 2 3

2. (10 points) Find an equation for the line tangent to the graph of y = e 2x 3 at the point (3/2, 1). Solution: y = 2(e 2x 3 so m = 2e 2 3 November 24, 2009 Name The total number of points available is 145 work Throughout this test, show your 1 (10 points) Find an equation for the line tangent to the graph of y = ln(x 2 +1) at the point (1,

More information

L Hopital s Rule. We will use our knowledge of derivatives in order to evaluate limits that produce indeterminate forms.

L Hopital s Rule. We will use our knowledge of derivatives in order to evaluate limits that produce indeterminate forms. L Hopital s Rule We will use our knowledge of derivatives in order to evaluate its that produce indeterminate forms. Main Idea x c f x g x If, when taking the it as x c, you get an INDETERMINATE FORM..

More information

Topics from Algebra and Pre-Calculus. (Key contains solved problems)

Topics from Algebra and Pre-Calculus. (Key contains solved problems) Topics from Algebra and Pre-Calculus (Key contains solved problems) Note: The purpose of this packet is to give you a review of basic skills. You are asked not to use the calculator, except on p. (8) and

More information

Exponential and Logarithmic Equations and Models. College Algebra

Exponential and Logarithmic Equations and Models. College Algebra Exponential and Logarithmic Equations and Models College Algebra Product Rule for Logarithms The product rule for logarithms can be used to simplify a logarithm of a product by rewriting it as a sum of

More information

Rational Functions. Elementary Functions. Algebra with mixed fractions. Algebra with mixed fractions

Rational Functions. Elementary Functions. Algebra with mixed fractions. Algebra with mixed fractions Rational Functions A rational function f (x) is a function which is the ratio of two polynomials, that is, Part 2, Polynomials Lecture 26a, Rational Functions f (x) = where and are polynomials Dr Ken W

More information

Limits: An Intuitive Approach

Limits: An Intuitive Approach Limits: An Intuitive Approach SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should reference Chapter. of the recommended textbook (or the equivalent chapter in your alternative

More information

Polynomials and Rational Functions (2.1) The shape of the graph of a polynomial function is related to the degree of the polynomial

Polynomials and Rational Functions (2.1) The shape of the graph of a polynomial function is related to the degree of the polynomial Polynomials and Rational Functions (2.1) The shape of the graph of a polynomial function is related to the degree of the polynomial Shapes of Polynomials Look at the shape of the odd degree polynomials

More information

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16.

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16. MA109 College Algebra Fall 2018 Practice Final Exam 2018-12-12 Name: Sec.: Do not remove this answer page you will turn in the entire exam. You have two hours to do this exam. No books or notes may be

More information

Internet Mat117 Formulas and Concepts. d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. ( x 1 + x 2 2., y 1 + y 2. (x h) 2 + (y k) 2 = r 2. m = y 2 y 1 x 2 x 1

Internet Mat117 Formulas and Concepts. d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. ( x 1 + x 2 2., y 1 + y 2. (x h) 2 + (y k) 2 = r 2. m = y 2 y 1 x 2 x 1 Internet Mat117 Formulas and Concepts 1. The distance between the points A(x 1, y 1 ) and B(x 2, y 2 ) in the plane is d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 2. The midpoint of the line segment from A(x

More information

INTERNET MAT 117. Solution for the Review Problems. (1) Let us consider the circle with equation. x 2 + 2x + y 2 + 3y = 3 4. (x + 1) 2 + (y + 3 2

INTERNET MAT 117. Solution for the Review Problems. (1) Let us consider the circle with equation. x 2 + 2x + y 2 + 3y = 3 4. (x + 1) 2 + (y + 3 2 INTERNET MAT 117 Solution for the Review Problems (1) Let us consider the circle with equation x 2 + y 2 + 2x + 3y + 3 4 = 0. (a) Find the standard form of the equation of the circle given above. (i) Group

More information

Final Exam C Name i D) 2. Solve the equation by factoring. 4) x2 = x + 72 A) {1, 72} B) {-8, 9} C) {-8, -9} D) {8, 9} 9 ± i

Final Exam C Name i D) 2. Solve the equation by factoring. 4) x2 = x + 72 A) {1, 72} B) {-8, 9} C) {-8, -9} D) {8, 9} 9 ± i Final Exam C Name First, write the value(s) that make the denominator(s) zero. Then solve the equation. 7 ) x + + 3 x - = 6 (x + )(x - ) ) A) No restrictions; {} B) x -, ; C) x -; {} D) x -, ; {2} Add

More information

Chapter 7: Exponents

Chapter 7: Exponents Chapter : Exponents Algebra Chapter Notes Name: Notes #: Sections.. Section.: Review Simplify; leave all answers in positive exponents:.) m -.) y -.) m 0.) -.) -.) - -.) (m ) 0.) 0 x y Evaluate if a =

More information

124b End of Semester Practice Problems. Simplify the radical. 1) ) ) ) 4) ) 5) 5 (-3)5 5)

124b End of Semester Practice Problems. Simplify the radical. 1) ) ) ) 4) ) 5) 5 (-3)5 5) 124b End of Semester Practice Problems Name Simplify the radical. 1) 3 1 27 1) 2) 4 256 2) 3) 4-16 3) 4) 3 83 4) 5) 5 (-3)5 5) 1 6) 3 (x + 2)3 6) Evaluate the expression, if possible. 7) 641/2 7) 8) 27

More information

Warm Up Lesson Presentation Lesson Quiz. Holt McDougal Algebra 2

Warm Up Lesson Presentation Lesson Quiz. Holt McDougal Algebra 2 4-5 Warm Up Lesson Presentation Lesson Quiz Algebra 2 Warm Up Solve. 1. log 16 x = 3 2 64 2. log x 1.331 = 3 1.1 3. log10,000 = x 4 Objectives Solve exponential and logarithmic equations and equalities.

More information

Internet Mat117 Formulas and Concepts. d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2., y 1 + y 2. ( x 1 + x 2 2

Internet Mat117 Formulas and Concepts. d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2., y 1 + y 2. ( x 1 + x 2 2 Internet Mat117 Formulas and Concepts 1. The distance between the points A(x 1, y 1 ) and B(x 2, y 2 ) in the plane is d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 2. The midpoint of the line segment from A(x

More information

Exam Review 2 nd Semester 6-1 Operations on Functions

Exam Review 2 nd Semester 6-1 Operations on Functions NAME DATE PERIOD Exam Review 2 nd Semester 6-1 Operations on Functions Find (f + g)(x), (f g)(x), (f g)(x), and (x) for each f(x) and g(x). 1. f(x) = 8x 3; g(x) = 4x + 5 2. f(x) = + x 6; g(x) = x 2 If

More information

A factor times a logarithm can be re-written as the argument of the logarithm raised to the power of that factor

A factor times a logarithm can be re-written as the argument of the logarithm raised to the power of that factor In this section we will be working with Properties of Logarithms in an attempt to take equations with more than one logarithm and condense them down into just a single logarithm. Properties of Logarithms:

More information

Summer Packet for Students Taking Introduction to Calculus in the Fall

Summer Packet for Students Taking Introduction to Calculus in the Fall Summer Packet for Students Taking Introduction to Calculus in the Fall Algebra 2 Topics Needed for Introduction to Calculus Need to know: à Solve Equations Linear Quadratic Absolute Value Polynomial Rational

More information

Mock Final Exam Name. Solve and check the linear equation. 1) (-8x + 8) + 1 = -7(x + 3) A) {- 30} B) {- 6} C) {30} D) {- 28}

Mock Final Exam Name. Solve and check the linear equation. 1) (-8x + 8) + 1 = -7(x + 3) A) {- 30} B) {- 6} C) {30} D) {- 28} Mock Final Exam Name Solve and check the linear equation. 1) (-8x + 8) + 1 = -7(x + 3) 1) A) {- 30} B) {- 6} C) {30} D) {- 28} First, write the value(s) that make the denominator(s) zero. Then solve the

More information

4.1 Exponential Functions

4.1 Exponential Functions Graduate T.A. Department of Mathematics Dynamical Systems and Chaos San Diego State University April 9, 211 Definitions The functions that involve some combinations of basic arithmetic operations, powers,

More information

Chapter 11 Logarithms

Chapter 11 Logarithms Chapter 11 Logarithms Lesson 1: Introduction to Logs Lesson 2: Graphs of Logs Lesson 3: The Natural Log Lesson 4: Log Laws Lesson 5: Equations of Logs using Log Laws Lesson 6: Exponential Equations using

More information

AP Calculus BC Summer Assignment

AP Calculus BC Summer Assignment AP Calculus BC Summer Assignment Attached is an assignment for students entering AP Calculus BC in the fall. Next year we will focus more on concepts and thinking outside of the box. We will not have time

More information

Exponential functions are defined and for all real numbers.

Exponential functions are defined and for all real numbers. 3.1 Exponential and Logistic Functions Objective SWBAT evaluate exponential expression and identify and graph exponential and logistic functions. Exponential Function Let a and b be real number constants..

More information

AP Calculus Summer Homework

AP Calculus Summer Homework Class: Date: AP Calculus Summer Homework Show your work. Place a circle around your final answer. 1. Use the properties of logarithms to find the exact value of the expression. Do not use a calculator.

More information

Assignment 5 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Assignment 5 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Assignment 5 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. For the given functions f and g, find the requested composite function. 1) f(x)

More information

Chapter Product Rule and Quotient Rule for Derivatives

Chapter Product Rule and Quotient Rule for Derivatives Chapter 3.3 - Product Rule and Quotient Rule for Derivatives Theorem 3.6: The Product Rule If f(x) and g(x) are differentiable at any x then Example: The Product Rule. Find the derivatives: Example: The

More information

3. Solve the following inequalities and express your answer in interval notation.

3. Solve the following inequalities and express your answer in interval notation. Youngstown State University College Algebra Final Exam Review (Math 50). Find all Real solutions for the following: a) x 2 + 5x = 6 b) 9 x2 x 8 = 0 c) (x 2) 2 = 6 d) 4x = 8 x 2 e) x 2 + 4x = 5 f) 36x 3

More information

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents. Math120 - Precalculus. Final Review Prepared by Dr. P. Babaali 1 Algebra 1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents. (a) 5

More information