change in position change in time

Size: px
Start display at page:

Download "change in position change in time"

Transcription

1 CHAPTER. THE DERIVATIVE Comments. The problems in this section are at the heart of Calculus and lead directly to the main idea in Calculus, limits. But even more important than the problems themselves is the technique we use to solve them. Generalizing this technique leads directly to limits and derivatives. Example. The height of a thrown ball is given by the following function: p(t).9t +.t + where t is in seconds and p is in meters. (This is the real equation for a moving object thrown from an initial height of meters, with an initial velocity of. m /s. Find an approximation of the velocity at t.. Solution. We start with the definition of velocity: Velocity change in position change in time. To calculate change in position we need to use two values for time. We have to make up the second value for t. In other words, we need something like this Velocity p(.) p(.).. Notice how useful the function notation is here: it makes it clear what number is getting plugged in, and what it s getting plugged into. Velocity p(.) p(.).. 0. (.79) m/s. To make our answer more accurate, we can repeat the calculation, but this time using t., instead of., because. is closer to.. Here are the same calculations done with.. (Note: we will show below how to do these calculation in the calculator, in a table.) Velocity p(.) p(.) (.79) m/s. We ll repeat the above calculations one last time (before using the table) with.: Velocity p(.) p(.)...8 (.79) m/s.

2 CHAPTER. THE DERIVATIVE 7 So, right now we can say that the velocity looks like it s around 7m/s. Now I ll show you a way to repeat these calculations but to do them faster, with more accuracy, and letting the calculator take care of more of the details. First, we enter the original formula in Y: Y.9x +.x + Now, we create a function to do the calculations like p(.) p(.9). The second..9 number can change, so we use x for this number: Y (Y(.) Y(x))/(. x) To enter Y in this formula go to VARS, Y-VARS, :Function, :Y. Now you could use Y directly to repeat some of the above calculations, and that would speed things up a lot. I mean you could enter things like Y(.9), etc. But I ll show you how to make a table that does it more quickly, especially if you want to do it for three or four or five numbers. First, go to TBLSET (that s ND, WINDOW ). Make sure you have Indpnt: Auto Ask selected (this means that the calculator will ask you for the x-value, the independent variable). Then go to TABLE (that s ND, GRAPH ) and enter some of the above x-values, and maybe some other ones too. You should get something like this: x Y Y ERR : Make sure you remember that Y is calculating things like p(.) p(.9). The..9 calculator gives an error in the fourth line because this formula would give division by 0 if x.. Also, if you want more accuracy than what is shown in the table, you can put your cursor on the number and the calculator will show you all the digits. Anyway, from the above table of numbers, the two best approximations are 7.09 and 7.0. We don t know for sure yet what the exacty velocity is, but our approximation gives us bounds, and I suppose our best guess would be something like 7.0. Example. The quantity of some drug in a person s blood is given by Q 00(0.9) t,withq in mg and t in hours. Estimate the rate of change of the quantity of drug at time t., and give a simple interpretation of your answer. Solution. Recall that rate of change means Q 0 (.) and is found by calculating average rates of change using shorter and shorter intervals that contain.. For convenience, we will fix one our t-values at., and change the other t-value As opposed to using two t-values that squeeze in on., such as. and.

3 CHAPTER. THE DERIVATIVE 8 Here s one calculation using. and.: Q 0 (.) rate of change from. to. Q(.) Q(.).9. mg/hr. Now we repeat, to get more accuracy, with a table of numbers. First, we enter the original formula in Y: Y x Now, we create a function to do the calculations like Q(.) Q(.). Y (Y(.) Y(x))/(. x) (Recall that you can enter Y by going to VARS, Y-VARS, :Function, :Y.) We go to TABLE (that s ND, GRAPH ) and enter some of the above x-values, and maybe some other ones too. You should get something like this: x Y Y ERR : Make sure you remember that Y is calculating things like Q(.) Q(.). Based on this calculation our best guess for the answer is.98 mg/hr. Our interperation should be something like the following: At t., the quantity of drug in the blood is decreasing by.98 mg each hour. Comments. There are two really hugely important conclusions we will draw from this example: () Sometimes we can make a sequence of approximations that appear to be getting closer and closer to the correct answer; () A di erence quotient (i.e. a fraction with a subtraction on top and on the bottom) may be an important example of a thing that we can approximate like this. In fact, both of these observations are extremely profound and important. The first one becomes, in its final from, the concept of a mathematical limit. The second one becomes the derivative. Finally, note that even the partial solution we have of this problem is a monumental step forward in the history of science. The very idea that you could quantify physical processes, and do mathematics with these quantities, was incomprehensible to almost everyone, until Galileo. After Galileo it took another 00 years before people understood that you could start with one quantified process, position in this case, and do something to it to calculate its rate of change.

4 CHAPTER. THE DERIVATIVE 9 Definition. The instantaneous velocity is the limit of average velocities over shorter and shorter time intervals. Comments. This definition merely records what we did in the previous example. However, we now want to extend what we have done, by applying the same idea, but to other functions besides position. Definition. Given a function f, and a number a in the domain of f, wedefinethe number f 0 (a) as follows: f 0 (a) the number that the fraction f(x) f(a) approaches as x x a gets close to a. the di erence quo- We call f 0 (a) thederivative of f at a. We call f(x) x tient (of f(x) at a). f(a) a The derivative, f 0 (a) is interpretd as the instantaneous rate of change of f(x) at a. If f(t) equals position as a function of time, then f 0 (a) is the instantaneous velocity at t a. Fact. The number f 0 (a) equals the slope of the line that is tangent to the graph of f(x) at the point (a, f(a)). More briefly: f 0 (a) is the slope of the tangent line of f at a. Explanation. Recall that the rate of change f(b) f(a) represents the slope through a b two points on the graph of f(x) (i.e. the slope of a secant line). Thus, the derivative represents the slope of a line that we get by moving the two points closer and closer together. If you move b closer and closer to a, in the picture below, the secant line (in red) moves closer and closer to the tangent line (in green): m f 0 (a) m f(b) b f(a) a f(x) a b

5 CHAPTER. THE DERIVATIVE 0 People frequently say the slope of f at a instead of the slope of the tangent line of f at a and there is nothing wrong with this provided one remembers the role of the tangent line. Example. Using the graph of f(x) shown below, estimate f 0 ( ) and f 0 (). (Hint: the best way to do this is to draw a tangent line at the point, extend it either as long as possible, or until it hits a point on the grid that has a clear value. Calculate the slope of the tangent line using either points at/near the end of the line, or points with a clear value on the grid.) Solution. We start by drawing the tangent lines, first for f 0 ( ). This means that we want a line that just barely touches the curve, and does so at one point only, namely the point (, ). The line should have the same slope at as does the curve: in fact, if you zoom in really close, they should look almost identical to each other.

6 CHAPTER. THE DERIVATIVE Now, we should pick a couple of points on the line which are () somewhat easy to estimate values for, and () somewhat far apart. The easiest point is (, ) itself: it s on both the curve and the line. A second point that s pretty good is (, 0) which is on the line. We could also use (.7, 7). Using any two of these points we should get (approximately) the same slope: f 0 ( ) m 7.7 ( ) ( ) Now we repeat the same sort of steps as above, but briefer this time:

7 CHAPTER. THE DERIVATIVE The points that are marked are (, ), (0., ), (, ). Using any two of these points we should get (approximately) the same slope: f 0 () m 0 0. This is where we ended on Wednesday, February.

0 Review: Lines, Fractions, Exponents Lines Fractions Rules of exponents... 4

0 Review: Lines, Fractions, Exponents Lines Fractions Rules of exponents... 4 Contents 0 Review: Lines, Fractions, Exponents 2 0.1 Lines................................... 2 0.2 Fractions................................ 3 0.3 Rules of exponents........................... 4 1 Functions

More information

0 Review: Lines, Fractions, Exponents Lines Fractions Rules of exponents... 4

0 Review: Lines, Fractions, Exponents Lines Fractions Rules of exponents... 4 Contents 0 Review: Lines, Fractions, Exponents 3 0.1 Lines................................... 3 0.2 Fractions................................ 3 0.3 Rules of exponents........................... 4 1 Functions

More information

Section 1.4 Tangents and Velocity

Section 1.4 Tangents and Velocity Math 132 Tangents and Velocity Section 1.4 Section 1.4 Tangents and Velocity Tangent Lines A tangent line to a curve is a line that just touches the curve. In terms of a circle, the definition is very

More information

Chapter 2. Polynomial and Rational Functions. 2.5 Zeros of Polynomial Functions

Chapter 2. Polynomial and Rational Functions. 2.5 Zeros of Polynomial Functions Chapter 2 Polynomial and Rational Functions 2.5 Zeros of Polynomial Functions 1 / 33 23 Chapter 2 Homework 2.5 p335 6, 8, 10, 12, 16, 20, 24, 28, 32, 34, 38, 42, 46, 50, 52 2 / 33 23 3 / 33 23 Objectives:

More information

=.55 = = 5.05

=.55 = = 5.05 MAT1193 4c Definition of derivative With a better understanding of limits we return to idea of the instantaneous velocity or instantaneous rate of change. Remember that in the example of calculating the

More information

Calculus I Homework: The Tangent and Velocity Problems Page 1

Calculus I Homework: The Tangent and Velocity Problems Page 1 Calculus I Homework: The Tangent and Velocity Problems Page 1 Questions Example The point P (1, 1/2) lies on the curve y = x/(1 + x). a) If Q is the point (x, x/(1 + x)), use Mathematica to find the slope

More information

Infinite Limits. Infinite Limits. Infinite Limits. Previously, we discussed the limits of rational functions with the indeterminate form 0/0.

Infinite Limits. Infinite Limits. Infinite Limits. Previously, we discussed the limits of rational functions with the indeterminate form 0/0. Infinite Limits Return to Table of Contents Infinite Limits Infinite Limits Previously, we discussed the limits of rational functions with the indeterminate form 0/0. Now we will consider rational functions

More information

MA 1128: Lecture 08 03/02/2018. Linear Equations from Graphs And Linear Inequalities

MA 1128: Lecture 08 03/02/2018. Linear Equations from Graphs And Linear Inequalities MA 1128: Lecture 08 03/02/2018 Linear Equations from Graphs And Linear Inequalities Linear Equations from Graphs Given a line, we would like to be able to come up with an equation for it. I ll go over

More information

12 Rates of Change Average Rates of Change. Concepts: Average Rates of Change

12 Rates of Change Average Rates of Change. Concepts: Average Rates of Change 12 Rates of Change Concepts: Average Rates of Change Calculating the Average Rate of Change of a Function on an Interval Secant Lines Difference Quotients Approximating Instantaneous Rates of Change (Section

More information

Chapter 1 Functions and Limits

Chapter 1 Functions and Limits Contents Chapter 1 Functions and Limits Motivation to Chapter 1 2 4 Tangent and Velocity Problems 3 4.1 VIDEO - Secant Lines, Average Rate of Change, and Applications......................... 3 4.2 VIDEO

More information

AB Calculus: Rates of Change and Tangent Lines

AB Calculus: Rates of Change and Tangent Lines AB Calculus: Rates of Change and Tangent Lines Name: The World Record Basketball Shot A group called How Ridiculous became YouTube famous when they successfully made a basket from the top of Tasmania s

More information

2.7: Derivatives and Rates of Change

2.7: Derivatives and Rates of Change 2.7: Derivatives and Rates of Change Recall from section 2.1, that the tangent line to a curve at a point x = a has a slope that can be found by finding the slopes of secant lines through the curve at

More information

Math 1241, Spring 2014 Section 3.3. Rates of Change Average vs. Instantaneous Rates

Math 1241, Spring 2014 Section 3.3. Rates of Change Average vs. Instantaneous Rates Math 1241, Spring 2014 Section 3.3 Rates of Change Average vs. Instantaneous Rates Average Speed The concept of speed (distance traveled divided by time traveled) is a familiar instance of a rate of change.

More information

Tangent Lines and Derivatives

Tangent Lines and Derivatives The Derivative and the Slope of a Graph Tangent Lines and Derivatives Recall that the slope of a line is sometimes referred to as a rate of change. In particular, we are referencing the rate at which the

More information

MATH 114 Calculus Notes on Chapter 2 (Limits) (pages 60-? in Stewart)

MATH 114 Calculus Notes on Chapter 2 (Limits) (pages 60-? in Stewart) Still under construction. MATH 114 Calculus Notes on Chapter 2 (Limits) (pages 60-? in Stewart) As seen in A Preview of Calculus, the concept of it underlies the various branches of calculus. Hence we

More information

MATH 116, LECTURE 13, 14 & 15: Derivatives

MATH 116, LECTURE 13, 14 & 15: Derivatives MATH 116, LECTURE 13, 14 & 15: Derivatives 1 Formal Definition of the Derivative We have seen plenty of limits so far, but very few applications. In particular, we have seen very few functions for which

More information

Sections 2.1, 2.2 and 2.4: Limit of a function Motivation:

Sections 2.1, 2.2 and 2.4: Limit of a function Motivation: Sections 2.1, 2.2 and 2.4: Limit of a function Motivation: There are expressions which can be computed only using Algebra, meaning only using the operations +,, and. Examples which can be computed using

More information

Conceptual Explanations: Simultaneous Equations Distance, rate, and time

Conceptual Explanations: Simultaneous Equations Distance, rate, and time Conceptual Explanations: Simultaneous Equations Distance, rate, and time If you travel 30 miles per hour for 4 hours, how far do you go? A little common sense will tell you that the answer is 120 miles.

More information

Introduction. Math Calculus 1 section 2.1 and 2.2. Julian Chan. Department of Mathematics Weber State University

Introduction. Math Calculus 1 section 2.1 and 2.2. Julian Chan. Department of Mathematics Weber State University Math 1210 Calculus 1 section 2.1 and 2.2 Julian Chan Department of Mathematics Weber State University 2013 Objectives Objectives: to tangent lines to limits What is velocity and how to obtain it from the

More information

2.4 Rates of Change and Tangent Lines Pages 87-93

2.4 Rates of Change and Tangent Lines Pages 87-93 2.4 Rates of Change and Tangent Lines Pages 87-93 Average rate of change the amount of change divided by the time it takes. EXAMPLE 1 Finding Average Rate of Change Page 87 Find the average rate of change

More information

Lesson 31 - Average and Instantaneous Rates of Change

Lesson 31 - Average and Instantaneous Rates of Change Lesson 31 - Average and Instantaneous Rates of Change IBHL Math & Calculus - Santowski 1 Lesson Objectives! 1. Calculate an average rate of change! 2. Estimate instantaneous rates of change using a variety

More information

Calculus I. 1. Limits and Continuity

Calculus I. 1. Limits and Continuity 2301107 Calculus I 1. Limits and Continuity Outline 1.1. Limits 1.1.1 Motivation:Tangent 1.1.2 Limit of a function 1.1.3 Limit laws 1.1.4 Mathematical definition of a it 1.1.5 Infinite it 1.1. Continuity

More information

2.1 The Tangent and Velocity Problems

2.1 The Tangent and Velocity Problems 2.1 The Tangent and Velocity Problems Ex: When you jump off a swing, where do you go? Ex: Can you approximate this line with another nearby? How would you get a better approximation? Ex: A cardiac monitor

More information

Slope Fields: Graphing Solutions Without the Solutions

Slope Fields: Graphing Solutions Without the Solutions 8 Slope Fields: Graphing Solutions Without the Solutions Up to now, our efforts have been directed mainly towards finding formulas or equations describing solutions to given differential equations. Then,

More information

STEP Support Programme. Hints and Partial Solutions for Assignment 17

STEP Support Programme. Hints and Partial Solutions for Assignment 17 STEP Support Programme Hints and Partial Solutions for Assignment 7 Warm-up You need to be quite careful with these proofs to ensure that you are not assuming something that should not be assumed. For

More information

Summary of Derivative Tests

Summary of Derivative Tests Summary of Derivative Tests Note that for all the tests given below it is assumed that the function f is continuous. Critical Numbers Definition. A critical number of a function f is a number c in the

More information

Math 131. Rolle s and Mean Value Theorems Larson Section 3.2

Math 131. Rolle s and Mean Value Theorems Larson Section 3.2 Math 3. Rolle s and Mean Value Theorems Larson Section 3. Many mathematicians refer to the Mean Value theorem as one of the if not the most important theorems in mathematics. Rolle s Theorem. Suppose f

More information

1.4. The Tangent and Velocity Problems

1.4. The Tangent and Velocity Problems 1.4. The Tangent and Velocity Problems The Tangent Problems The word tangent is derived from the Latin word tangens, which means touching. Thus a tangent to a curve is a line that touches the curve. In

More information

3.1 Day 1: The Derivative of a Function

3.1 Day 1: The Derivative of a Function A P Calculus 3.1 Day 1: The Derivative of a Function I CAN DEFINE A DERIVATIVE AND UNDERSTAND ITS NOTATION. Last chapter we learned to find the slope of a tangent line to a point on a graph by using a

More information

Lecture 2 (Limits) tangent line secant line

Lecture 2 (Limits) tangent line secant line Lecture 2 (Limits) We shall start with the tangent line problem. Definition: A tangent line (Latin word 'touching') to the function f(x) at the point is a line that touches the graph of the function at

More information

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions For each question, there is a model solution (showing you the level of detail I expect on the exam) and then below

More information

Chapter 1 Review of Equations and Inequalities

Chapter 1 Review of Equations and Inequalities Chapter 1 Review of Equations and Inequalities Part I Review of Basic Equations Recall that an equation is an expression with an equal sign in the middle. Also recall that, if a question asks you to solve

More information

MATH CALCULUS I 4.1: Area and Distance

MATH CALCULUS I 4.1: Area and Distance MATH 12002 - CALCULUS I 4.1: Area and Distance Professor Donald L. White Department of Mathematical Sciences Kent State University D.L. White (Kent State University) 1 / 8 The Area and Distance Problems

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

CLASS NOTES: BUSINESS CALCULUS

CLASS NOTES: BUSINESS CALCULUS CLASS NOTES: BUSINESS CALCULUS These notes can be thought of as the logical skeleton of my lectures, although they will generally contain a fuller exposition of concepts but fewer examples than my lectures.

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Functions

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Functions ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 2017/2018 DR. ANTHONY BROWN 4. Functions 4.1. What is a Function: Domain, Codomain and Rule. In the course so far, we

More information

MATH 408N PRACTICE FINAL

MATH 408N PRACTICE FINAL 2/03/20 Bormashenko MATH 408N PRACTICE FINAL Show your work for all the problems. Good luck! () Let f(x) = ex e x. (a) [5 pts] State the domain and range of f(x). Name: TA session: Since e x is defined

More information

Chapter 2 Analysis of Graphs of Functions

Chapter 2 Analysis of Graphs of Functions Chapter Analysis of Graphs of Functions Chapter Analysis of Graphs of Functions Covered in this Chapter:.1 Graphs of Basic Functions and their Domain and Range. Odd, Even Functions, and their Symmetry..

More information

Chapter 2: Motion a Straight Line

Chapter 2: Motion a Straight Line Formula Memorization: Displacement What is a vector? Average Velocity Average Speed Instanteous Velocity Average Acceleration Instantaneous Acceleration Constant Acceleration Equation (List all five of

More information

ter. on Can we get a still better result? Yes, by making the rectangles still smaller. As we make the rectangles smaller and smaller, the

ter. on Can we get a still better result? Yes, by making the rectangles still smaller. As we make the rectangles smaller and smaller, the Area and Tangent Problem Calculus is motivated by two main problems. The first is the area problem. It is a well known result that the area of a rectangle with length l and width w is given by A = wl.

More information

5. Introduction to limit

5. Introduction to limit 5. 5.1. The main idea in calculus is that of finding a desired quantity by pushing to the limit the process of taking ever better approximations (see 0 Introduction). In the implementation, a real number

More information

1.5 Inverse Trigonometric Functions

1.5 Inverse Trigonometric Functions 1.5 Inverse Trigonometric Functions Remember that only one-to-one functions have inverses. So, in order to find the inverse functions for sine, cosine, and tangent, we must restrict their domains to intervals

More information

STEP Support Programme. Hints and Partial Solutions for Assignment 1

STEP Support Programme. Hints and Partial Solutions for Assignment 1 STEP Support Programme Hints and Partial Solutions for Assignment 1 Warm-up 1 You can check many of your answers to this question by using Wolfram Alpha. Only use this as a check though and if your answer

More information

For a function f(x) and a number a in its domain, the derivative of f at a, denoted f (a), is: D(h) = lim

For a function f(x) and a number a in its domain, the derivative of f at a, denoted f (a), is: D(h) = lim Name: Section: Names of collaborators: Main Points: 1. Definition of derivative as limit of difference quotients 2. Interpretation of derivative as slope of graph 3. Interpretation of derivative as instantaneous

More information

Modeling Rates of Change: Introduction to the Issues

Modeling Rates of Change: Introduction to the Issues Modeling Rates of Change: Introduction to the Issues The Legacy of Galileo, Newton, and Leibniz Galileo Galilei (1564-1642) was interested in falling bodies. He forged a new scientific methodology: observe

More information

Everything Old Is New Again: Connecting Calculus To Algebra Andrew Freda

Everything Old Is New Again: Connecting Calculus To Algebra Andrew Freda Everything Old Is New Again: Connecting Calculus To Algebra Andrew Freda (afreda@deerfield.edu) ) Limits a) Newton s Idea of a Limit Perhaps it may be objected, that there is no ultimate proportion of

More information

Alg2H Ch6: Investigating Exponential and Logarithmic Functions WK#14 Date:

Alg2H Ch6: Investigating Exponential and Logarithmic Functions WK#14 Date: Alg2H Ch6: Investigating Exponential and Logarithmic Functions WK#14 Date: Purpose: To investigate the behavior of exponential and logarithmic functions Investigations For investigations 1 and 2, enter

More information

Algebra & Trig Review

Algebra & Trig Review Algebra & Trig Review 1 Algebra & Trig Review This review was originally written for my Calculus I class, but it should be accessible to anyone needing a review in some basic algebra and trig topics. The

More information

( )( b + c) = ab + ac, but it can also be ( )( a) = ba + ca. Let s use the distributive property on a couple of

( )( b + c) = ab + ac, but it can also be ( )( a) = ba + ca. Let s use the distributive property on a couple of Factoring Review for Algebra II The saddest thing about not doing well in Algebra II is that almost any math teacher can tell you going into it what s going to trip you up. One of the first things they

More information

Learning Packet. Lesson 5b Solving Quadratic Equations THIS BOX FOR INSTRUCTOR GRADING USE ONLY

Learning Packet. Lesson 5b Solving Quadratic Equations THIS BOX FOR INSTRUCTOR GRADING USE ONLY Learning Packet Student Name Due Date Class Time/Day Submission Date THIS BOX FOR INSTRUCTOR GRADING USE ONLY Mini-Lesson is complete and information presented is as found on media links (0 5 pts) Comments:

More information

Fractions. Warm up galleryitem. If I eat the two pizza slices shown, how much of the pizza did I eat?

Fractions. Warm up galleryitem. If I eat the two pizza slices shown, how much of the pizza did I eat? Fractions Warm up 2017-01-09 20.04.33.galleryitem If I eat the two pizza slices shown, how much of the pizza did I eat? When my family gets a Papa Murphy s pizza, I cut it like this for people who like

More information

Chapter 2 Overview: Introduction to Limits and Derivatives

Chapter 2 Overview: Introduction to Limits and Derivatives Chapter 2 Overview: Introduction to Limits and Derivatives In a later chapter, maximum and minimum points of a curve will be found both by calculator and algebraically. While the algebra of this process

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Concepts Paul Dawkins Table of Contents Preface... Basic Concepts... 1 Introduction... 1 Definitions... Direction Fields... 8 Final Thoughts...19 007 Paul Dawkins i http://tutorial.math.lamar.edu/terms.aspx

More information

Math 5a Reading Assignments for Sections

Math 5a Reading Assignments for Sections Math 5a Reading Assignments for Sections 4.1 4.5 Due Dates for Reading Assignments Note: There will be a very short online reading quiz (WebWork) on each reading assignment due one hour before class on

More information

Graphical Analysis; and Vectors

Graphical Analysis; and Vectors Graphical Analysis; and Vectors Graphs Drawing good pictures can be the secret to solving physics problems. It's amazing how much information you can get from a diagram. We also usually need equations

More information

Finding Limits Graphically and Numerically

Finding Limits Graphically and Numerically Finding Limits Graphically and Numerically 1. Welcome to finding limits graphically and numerically. My name is Tuesday Johnson and I m a lecturer at the University of Texas El Paso. 2. With each lecture

More information

. Compute the following limits.

. Compute the following limits. Today: Tangent Lines and te Derivative at a Point Warmup:. Let f(x) =x. Compute te following limits. f( + ) f() (a) lim f( +) f( ) (b) lim. Let g(x) = x. Compute te following limits. g(3 + ) g(3) (a) lim

More information

2. FUNCTIONS AND ALGEBRA

2. FUNCTIONS AND ALGEBRA 2. FUNCTIONS AND ALGEBRA You might think of this chapter as an icebreaker. Functions are the primary participants in the game of calculus, so before we play the game we ought to get to know a few functions.

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 017/018 DR. ANTHONY BROWN. Lines and Their Equations.1. Slope of a Line and its y-intercept. In Euclidean geometry (where

More information

LAB 2 - ONE DIMENSIONAL MOTION

LAB 2 - ONE DIMENSIONAL MOTION Name Date Partners L02-1 LAB 2 - ONE DIMENSIONAL MOTION OBJECTIVES Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise To learn how to use a motion detector and gain more familiarity

More information

Algebra Review. Finding Zeros (Roots) of Quadratics, Cubics, and Quartics. Kasten, Algebra 2. Algebra Review

Algebra Review. Finding Zeros (Roots) of Quadratics, Cubics, and Quartics. Kasten, Algebra 2. Algebra Review Kasten, Algebra 2 Finding Zeros (Roots) of Quadratics, Cubics, and Quartics A zero of a polynomial equation is the value of the independent variable (typically x) that, when plugged-in to the equation,

More information

MINI LESSON. Lesson 2a Linear Functions and Applications

MINI LESSON. Lesson 2a Linear Functions and Applications MINI LESSON Lesson 2a Linear Functions and Applications Lesson Objectives: 1. Compute AVERAGE RATE OF CHANGE 2. Explain the meaning of AVERAGE RATE OF CHANGE as it relates to a given situation 3. Interpret

More information

Evaluating Piecewise-defined Functions Sketching the Graph of a Piecewise-defined Functions

Evaluating Piecewise-defined Functions Sketching the Graph of a Piecewise-defined Functions 7 Functions Concepts: The Definition of A Function Function Notation Piecewise-defined Functions Evaluating Piecewise-defined Functions Sketching the Graph of a Piecewise-defined Functions The Domain of

More information

Math 112 Group Activity: The Vertical Speed of a Shell

Math 112 Group Activity: The Vertical Speed of a Shell Name: Section: Math 112 Group Activity: The Vertical Speed of a Shell A shell is fired straight up by a mortar. The graph below shows its altitude as a function of time. 400 300 altitude (in feet) 200

More information

Math 1310 Section 4.1: Polynomial Functions and Their Graphs. A polynomial function is a function of the form ...

Math 1310 Section 4.1: Polynomial Functions and Their Graphs. A polynomial function is a function of the form ... Math 1310 Section 4.1: Polynomial Functions and Their Graphs A polynomial function is a function of the form... where 0,,,, are real numbers and n is a whole number. The degree of the polynomial function

More information

Section 2.9 The Mean Value Theorem

Section 2.9 The Mean Value Theorem 1 Section 2.9 The Mean Value Theorem Rolle s Theorem:( What goes up must come down theorem ) Suppose that f is continuous on the closed interval [a, b] f is differentiable on the open interval (a, b) f(a)

More information

The Basics of Physics with Calculus Part II. AP Physics C

The Basics of Physics with Calculus Part II. AP Physics C The Basics of Physics with Calculus Part II AP Physics C The AREA We have learned that the rate of change of displacement is defined as the VELOCITY of an object. Consider the graph below v v t lim 0 dx

More information

Chapter 2 Derivatives

Chapter 2 Derivatives Contents Chapter 2 Derivatives Motivation to Chapter 2 2 1 Derivatives and Rates of Change 3 1.1 VIDEO - Definitions................................................... 3 1.2 VIDEO - Examples and Applications

More information

Solutions to Math 41 First Exam October 18, 2012

Solutions to Math 41 First Exam October 18, 2012 Solutions to Math 4 First Exam October 8, 202. (2 points) Find each of the following its, with justification. If the it does not exist, explain why. If there is an infinite it, then explain whether it

More information

Pre-Calculus Mathematics Limit Process Calculus

Pre-Calculus Mathematics Limit Process Calculus NOTES : LIMITS AND DERIVATIVES Name: Date: Period: Mrs. Nguyen s Initial: LESSON.1 THE TANGENT AND VELOCITY PROBLEMS Pre-Calculus Mathematics Limit Process Calculus The type of it that is used to find

More information

Lesson 6-1: Relations and Functions

Lesson 6-1: Relations and Functions I ll bet you think numbers are pretty boring, don t you? I ll bet you think numbers have no life. For instance, numbers don t have relationships do they? And if you had no relationships, life would be

More information

Student Instruction Sheet: Unit 3, Lesson 3. Solving Quadratic Relations

Student Instruction Sheet: Unit 3, Lesson 3. Solving Quadratic Relations Student Instruction Sheet: Unit 3, Lesson 3 Solving Quadratic Relations Suggested Time: 75 minutes What s important in this lesson: In this lesson, you will learn how to solve a variety of quadratic relations.

More information

Take the Anxiety Out of Word Problems

Take the Anxiety Out of Word Problems Take the Anxiety Out of Word Problems I find that students fear any problem that has words in it. This does not have to be the case. In this chapter, we will practice a strategy for approaching word problems

More information

If you have completed your extra credit opportunity, please place it on your inbox.

If you have completed your extra credit opportunity, please place it on your inbox. Warm-Up If you have completed your extra credit opportunity, please place it on your inbox. On everyone s desk should be paper and a pencil for notes. We are covering all of Quarter 1 in one day, so we

More information

of 8 28/11/ :25

of 8 28/11/ :25 Paul's Online Math Notes Home Content Chapter/Section Downloads Misc Links Site Help Contact Me Differential Equations (Notes) / First Order DE`s / Modeling with First Order DE's [Notes] Differential Equations

More information

Parabolas and lines

Parabolas and lines Parabolas and lines Study the diagram at the right. I have drawn the graph y = x. The vertical line x = 1 is drawn and a number of secants to the parabola are drawn, all centred at x=1. By this I mean

More information

Implicit Differentiation Applying Implicit Differentiation Applying Implicit Differentiation Page [1 of 5]

Implicit Differentiation Applying Implicit Differentiation Applying Implicit Differentiation Page [1 of 5] Page [1 of 5] The final frontier. This is it. This is our last chance to work together on doing some of these implicit differentiation questions. So, really this is the opportunity to really try these

More information

Average rates of change to instantaneous rates of change Math 102 Section 106

Average rates of change to instantaneous rates of change Math 102 Section 106 Average rates of change to instantaneous rates of change Math 102 Section 106 Cole Zmurchok September 14, 2016 Math 102: Announcements Office Hours today: 3-4 pm Math Annex 1118 and Thursday: 3-4 pm in

More information

Increasing/Decreasing Test. Extreme Values and The First Derivative Test.

Increasing/Decreasing Test. Extreme Values and The First Derivative Test. Calculus 1 Lia Vas Increasing/Decreasing Test. Extreme Values and The First Derivative Test. Recall that a function f(x) is increasing on an interval if the increase in x-values implies an increase in

More information

Chapter 5: Limits and Derivatives

Chapter 5: Limits and Derivatives Chapter 5: Limits and Derivatives Chapter 5 Overview: Introduction to Limits and Derivatives In a later chapter, maximum and minimum points of a curve will be found both by calculator and algebraically.

More information

Lesson 1.2 Position Time Graphs

Lesson 1.2 Position Time Graphs Lesson 1.2 Position Time Graphs Be able to explain the motion represented in a position time graph Be able to calculate the avg. vel, x, and t for portions of a position time graph. Be able to draw a position

More information

Review for Final Exam, MATH , Fall 2010

Review for Final Exam, MATH , Fall 2010 Review for Final Exam, MATH 170-002, Fall 2010 The test will be on Wednesday December 15 in ILC 404 (usual class room), 8:00 a.m - 10:00 a.m. Please bring a non-graphing calculator for the test. No other

More information

Rolle s Theorem. The theorem states that if f (a) = f (b), then there is at least one number c between a and b at which f ' (c) = 0.

Rolle s Theorem. The theorem states that if f (a) = f (b), then there is at least one number c between a and b at which f ' (c) = 0. Rolle s Theorem Rolle's Theorem guarantees that there will be at least one extreme value in the interior of a closed interval, given that certain conditions are satisfied. As with most of the theorems

More information

MATH 115, SUMMER 2012 LECTURE 4 THURSDAY, JUNE 21ST

MATH 115, SUMMER 2012 LECTURE 4 THURSDAY, JUNE 21ST MATH 115, SUMMER 2012 LECTURE 4 THURSDAY, JUNE 21ST JAMES MCIVOR Today we enter Chapter 2, which is the heart of this subject. Before starting, recall that last time we saw the integers have unique factorization

More information

Calculus with Analytic Geometry I Exam 8 Take Home Part.

Calculus with Analytic Geometry I Exam 8 Take Home Part. Calculus with Analytic Geometry I Exam 8 Take Home Part. INSTRUCTIONS: SHOW ALL WORK. Write clearly, using full sentences. Use equal signs appropriately; don t use them between quantities that are not

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, it is my epectation that you will have this packet completed. You will be way behind at the beginning of the year if you haven t attempted

More information

05 the development of a kinematics problem. February 07, Area under the curve

05 the development of a kinematics problem. February 07, Area under the curve Area under the curve Area under the curve refers from the region the line (curve) to the x axis 1 2 3 From Graphs to equations Case 1 scatter plot reveals no apparent relationship Types of equations Case

More information

Lecture 11: Extrema. Nathan Pflueger. 2 October 2013

Lecture 11: Extrema. Nathan Pflueger. 2 October 2013 Lecture 11: Extrema Nathan Pflueger 2 October 201 1 Introduction In this lecture we begin to consider the notion of extrema of functions on chosen intervals. This discussion will continue in the lectures

More information

Approximation, Taylor Polynomials, and Derivatives

Approximation, Taylor Polynomials, and Derivatives Approximation, Taylor Polynomials, and Derivatives Derivatives for functions f : R n R will be central to much of Econ 501A, 501B, and 520 and also to most of what you ll do as professional economists.

More information

AP Calculus. Applications of Derivatives. Table of Contents

AP Calculus. Applications of Derivatives.   Table of Contents AP Calculus 2015 11 03 www.njctl.org Table of Contents click on the topic to go to that section Related Rates Linear Motion Linear Approximation & Differentials L'Hopital's Rule Horizontal Tangents 1 Related

More information

AP Calculus AB. Limits & Continuity.

AP Calculus AB. Limits & Continuity. 1 AP Calculus AB Limits & Continuity 2015 10 20 www.njctl.org 2 Table of Contents click on the topic to go to that section Introduction The Tangent Line Problem Definition of a Limit and Graphical Approach

More information

Limits, Rates of Change, and Tangent Lines

Limits, Rates of Change, and Tangent Lines Limits, Rates of Change, and Tangent Lines jensenrj July 2, 2018 Contents 1 What is Calculus? 1 2 Velocity 2 2.1 Average Velocity......................... 3 2.2 Instantaneous Velocity......................

More information

MA 1128: Lecture 19 4/20/2018. Quadratic Formula Solving Equations with Graphs

MA 1128: Lecture 19 4/20/2018. Quadratic Formula Solving Equations with Graphs MA 1128: Lecture 19 4/20/2018 Quadratic Formula Solving Equations with Graphs 1 Completing-the-Square Formula One thing you may have noticed when you were completing the square was that you followed the

More information

farads or 10 µf. The letter indicates the part tolerance (how close should the actual value be to the marking).

farads or 10 µf. The letter indicates the part tolerance (how close should the actual value be to the marking). p1 EE1050/60 Capacitors Lab University of Utah Electrical Engineering Department EE1050/1060 Capacitors A. Stolp, 10/4/99 rev 3/17/01 Objectives 1.) Observe charging and discharging of a capacitor. 2.)

More information

1.2 Functions & Function Notation

1.2 Functions & Function Notation 1.2 Functions & Function Notation A relation is any set of ordered pairs. A function is a relation for which every value of the independent variable (the values that can be inputted; the t s; used to call

More information

CP Algebra 2. Unit 3B: Polynomials. Name: Period:

CP Algebra 2. Unit 3B: Polynomials. Name: Period: CP Algebra 2 Unit 3B: Polynomials Name: Period: Learning Targets 10. I can use the fundamental theorem of algebra to find the expected number of roots. Solving Polynomials 11. I can solve polynomials by

More information

Introduction to Algebra: The First Week

Introduction to Algebra: The First Week Introduction to Algebra: The First Week Background: According to the thermostat on the wall, the temperature in the classroom right now is 72 degrees Fahrenheit. I want to write to my friend in Europe,

More information

PHY 123 Lab 1 - Error and Uncertainty and the Simple Pendulum

PHY 123 Lab 1 - Error and Uncertainty and the Simple Pendulum To print higher-resolution math symbols, click the Hi-Res Fonts for Printing button on the jsmath control panel. PHY 13 Lab 1 - Error and Uncertainty and the Simple Pendulum Important: You need to print

More information

Section 5.4. Ken Ueda

Section 5.4. Ken Ueda Section 5.4 Ken Ueda Students seem to think that being graded on a curve is a positive thing. I took lasers 101 at Cornell and got a 92 on the exam. The average was a 93. I ended up with a C on the test.

More information

Physics 8 Monday, September 9, 2013

Physics 8 Monday, September 9, 2013 Physics 8 Monday, September 9, 2013 HW2 (due Friday) printed copies. Read Chapter 4 (momentum) for Wednesday. I m reading through the book with you. It s my 3rd time now. One purpose of the reading responses

More information