A repeated root is a root that occurs more than once in a polynomial function.

Size: px
Start display at page:

Download "A repeated root is a root that occurs more than once in a polynomial function."

Transcription

1 Unit 2A, Lesson 3.3 Finding Zeros Synthetic division, along with your knowledge of end behavior and turning points, can be used to identify the x-intercepts of a polynomial function. This information allows for more accurate sketches of functions. Recall that roots are the x-intercepts of a function. In other words, these are the x-values for which a function equals 0. These zeros are another way of referring to the roots of a function. When a polynomial equation with a degree greater than 0 is solved, it may have one or more real solutions, or it may have no real solutions (in which case it would have complex solutions). Recall that both real and imaginary numbers belong to the set of complex numbers; therefore, all polynomial functions with a degree greater than 0 will have at least one root in the set of complex numbers. This is referred to as the Fundamental Theorem of Algebra. Fundamental Theorem of Algebra If p(x) is a polynomial function of degree n 1 with complex coefficients, then the related equation p(x) = 0 has at least one complex solution (root). A repeated root is a root that occurs more than once in a polynomial function. Recall that the solutions to a quadratic equation that contains imaginary numbers come in pairs. These are called complex conjugates, the complex number that when multiplied by another complex number produces a value that is wholly real; the complex conjugate of a + bi is a bi. If an imaginary number is a zero of a function, its conjugate is also a zero of that function. This is true for all polynomial functions, and is known as the Complex Conjugate Theorem. Complex Conjugate Theorem Let p(x) be a polynomial with real coefficients. If a + bi is a root of the equation p(x) = 0, where a and b are real and b 0, then a bi is also a root of the equation. For a polynomial function p(x), the factor of a polynomial is any polynomial that divides evenly into that function. Recall that when a polynomial is divided by one of its factors, there is a remainder of 0 and the result is a depressed polynomial. This is an illustration of the Factor Theorem. Factor Theorem The binomial x a is a factor of the polynomial p(x) if and only if p(a) = 0, where a is a real number. The Factor Theorem can help to find all the factors of a polynomial. To do this, first show that the binomial in question is a factor of the polynomial. If the remainder is 0, then the binomial is a factor. Then, determine if the resulting depressed polynomial can be factored. The identified factors indicate where the function crosses the x-axis. The zeros of a function are related to the factors of the polynomial. The graph of a polynomial function shows the zeros of the function, which are the x-intercepts of the graph. It is often helpful to know which integer values of a to try when determining p(a) = 0. Unit2ALesson /24/2018

2 Use the Integral Zero Theorem to determine the zeros of a polynomial function. Identify the factors of the constant term of a polynomial function and use substitution to determine if each number results in a zero. Use synthetic division to determine the remaining factors. Integral Zero Theorem If the coefficients of a polynomial function are integers such that a n 1 and a 0 0, then any rational zeros of the function must be factors of a 0. For example, consider the equation p(x) = x x a n 1 and a A possible zero of this function is 5 because 5 is a factor of 25. The zeros of any polynomial function correspond to the x-intercepts of the graph and to the roots of the corresponding equation. If a polynomial has a factor x a that is repeated n times, then the root is called a repeated root and x = a is a zero of multiplicity. Multiplicity refers to the number of times a zero of a polynomial function occurs. If the multiplicity is odd, then the graph intersects the x-axis at the point (x, 0). If the multiplicity is even, then the graph just touches the axis at the point (x, 0). If p(x) is a polynomial with real coefficients whose terms are arranged in descending powers of the variable, then the number of positive zeros of y = p(x) is the same as the number of sign changes of the coefficients of the terms, or is less than this by an even number. Recall that when solving a quadratic function, we used the quadratic formula, which generated pairs of roots. Often, these roots were complex and the x-intercepts could not be graphed on the coordinate plane. For this reason, we must count down from our maximum number of zeros by twos to determine the number of real zeros. For example, for a polynomial with 3 sign changes, the number of positive zeros may be 3 or 1, since 3 2 = 1. Also, the number of negative zeros of y = p(x) is the same as the number of sign changes of the coefficients of the terms of p( x), or is less than this number by an even number. Common Errors/Misconceptions not finding all the factors of a polynomial function making sign errors when performing synthetic division misusing the terms roots and factors Unit2ALesson /24/2018

3 Example 1 Given the equation x 3 + 4x 2 3x 18 = 0, state the number and type of roots of the equation if one root is Use synthetic division to find the depressed polynomial. The related polynomial is x 3 + 4x 2 3x 18, with coefficients 1, 4, 3, and 18. One root of the equation is 3 ; therefore, a factor of the related polynomial is [x ( 3)], which simplifies to x + 3. Divide the related polynomial by x + 3 to find the depressed polynomial. Let the value of a be The depressed polynomial is x 2 + x Factor the depressed polynomial to find the remaining factors. Use previously learned strategies to factor the polynomial. x 2 + x 6 Depressed polynomial (x 2)(x + 3) Factor the polynomial The remaining factors are (x 2) and (x + 3). 3. State the number of roots and type of roots of the equation. Example 2 The factors of the related polynomial are (x + 3), (x 2), and (x + 3). Recall that you divided the depressed polynomial by (x + 3) before finding the remaining factors, so you must include (x + 3) as a factor. Therefore, the roots of the equation are 3, 3, and 2. Since 3 appears twice, it is a repeated root. Because of the repeated root, this equation has only 2 real roots: 3 and 2. x 3 is said to be a zero of multiplicity 2. Find all the zeros of the function f(x) = x 3 + x x Verify the zeros by creating a graph. 1. Determine the possible number of zeros. The term with the highest power is x 3, so f(x) has a degree of 3; therefore, it has 3 zeros. 2. Determine the type of zeros. Identify the signs for each term of the function f(x) = x 3 + x x Notice that there are no sign changes between each term; therefore, the function f(x) has no positive real zeros. Find f( x) to determine the number of negative real zeros. f(x) = x 3 + x x + 51 f( x) = ( x) 3 + ( x) ( x) + 51 f( x) = x 3 + x 2 11x + 51 Original Function Substitute x for x Simplify Identify the signs for each term of the function f( x), and count the number of sign changes. f( x) = x 3 + x 2 11x + 51 Unit2ALesson /24/2018

4 Example 2 (continued) There are a total of three sign changes, so the function could have 3 negative real zeros. However, recall that the number of negative zeros is either the number of sign changes of f( x), or the number of sign changes less an even number. In this case, 3 2 = 1, so the function could have 1 negative zero. The function f(x) has either 3 real zeros, or 1 real zero and 2 imaginary zeros. 3. Find the possible zeros of the function. You have already determined that none of the zeros are positive. You can determine from the equation that f(0) = 51, since f(0) = (0) 3 + (0) 2 +11(0) + 51 = 51. Evaluate f(x) for negative integral values from 4 to 1 using synthetic division. Record each value of x, the coefficients of the depressed polynomial, and the remainder in a table x Notice that one zero occurs at x = 3. From the coefficients in the table, you can determine that the depressed polynomial of this zero is x 2 2x The depressed polynomial is already written in standard form, ax 2 + bx + c. Use the quadratic formula to find the zeros of the related equation, x 2 2x + 17=0. Let a = 1, b = 2, and c = b b 4ac x Quadratic formula 2a 2 ( 2) ( 2) 4(1)(17 ) x Substitute 1 for a, 2 for b, and 17 for c 2(1) 2 x x 2 2 8i x 2 x 1 4i The function f(x) = x 3 + x x + 51 has one real zero at x 3 and two imaginary zeros at x 1 4i and x 1 4i. Unit2ALesson /24/2018

5 Example 2 (continued) 4. Graph the function f(x) = x 3 + x x Use a table of values to sketch the graph, or use a graphing calculator to create a graph of the function. To graph a function using a graphing calculator, follow these general steps for your calculator model. On a TI-83/84: Step 1: Press [ Y = ]. Step 2: Type the function into Y 1, or any available equation. Use the [ X, T, ϴ, n ] button for the variable x. Use [ ^ ] to enter powers greater than 2; use the [ x 2 ] button for a square. Step 3: Press [ WINDOW ]. Enter values for Xmin, Xmax, Ymin, and Ymax in relation to the change in the viewing window. The Xscl and Yscl are arbitrary. Leave Xres = 1. Step 4: Press [ GRAPH ]. The following is the graph of f(x) = x 3 + x x y x Notice that the graph of the function crosses the x-axis at only one point ( 3, 0). This verifies there is only one real root. Unit2ALesson /24/2018

6 Example 3 Write the simplest polynomial function with integral coefficients that has the zeros 5 and 3 i. 1. Determine additional zeros of the function. Because 3 i is a zero, then according to the Complex Conjugate Theorem, the conjugate 3 + i is also a zero. 2. Use the zeros to write the polynomial as a product of the factors. The zeros are 5, 3 + i, and 3 i. These can be written as the factors x 5, x (3 + i ), and x (3 i ). The polynomial function written in factored form with zeros 5, 3 + i, and 3 i, is f(x) = (x 5) [ x (3 + i ) ] [ x (3 i ) ]. 3. Multiply the factors to determine the polynomial function. f(x) = (x 5) [ x (3 + i ) ] [ x (3 i ) ] f(x) = (x 5) [ (x 3) i ] [ (x 3) + i ] f(x) = (x 5) [ (x 3) 2 i 2 ] f(x) = (x 5) ( x 2 6x + 9 i 2 ) Polynomial function written in factored form Regroup terms Rewrite as the difference of two squares Simplify f(x) = (x 5) [ x 2 6x + 9 ( 1 ) ] Replace i 2 with 1, since i 2 = 1 f(x) = (x 5) ( x 2 6x + 10 ) f(x) = x 3 6x x 5x x 50 f(x) = x 3 11x x 50 Simplify Distribute Combine like terms The polynomial function of least degree with integral coefficients whose zeros are 5 and 3 i is f(x) = x 3 11x x 50. Unit2ALesson /24/2018

Roots & Zeros of Polynomials. How the roots, solutions, zeros, x-intercepts and factors of a polynomial function are related.

Roots & Zeros of Polynomials. How the roots, solutions, zeros, x-intercepts and factors of a polynomial function are related. Roots & Zeros of Polynomials How the roots, solutions, zeros, x-intercepts and factors of a polynomial function are related. A number a is a zero or root of a function y = f (x) if and only if f (a) =

More information

Chapter 2. Polynomial and Rational Functions. 2.5 Zeros of Polynomial Functions

Chapter 2. Polynomial and Rational Functions. 2.5 Zeros of Polynomial Functions Chapter 2 Polynomial and Rational Functions 2.5 Zeros of Polynomial Functions 1 / 33 23 Chapter 2 Homework 2.5 p335 6, 8, 10, 12, 16, 20, 24, 28, 32, 34, 38, 42, 46, 50, 52 2 / 33 23 3 / 33 23 Objectives:

More information

Lesson 7.1 Polynomial Degree and Finite Differences

Lesson 7.1 Polynomial Degree and Finite Differences Lesson 7.1 Polynomial Degree and Finite Differences 1. Identify the degree of each polynomial. a. 3x 4 2x 3 3x 2 x 7 b. x 1 c. 0.2x 1.x 2 3.2x 3 d. 20 16x 2 20x e. x x 2 x 3 x 4 x f. x 2 6x 2x 6 3x 4 8

More information

Chapter 2 Polynomial and Rational Functions

Chapter 2 Polynomial and Rational Functions Chapter 2 Polynomial and Rational Functions Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Quadratic Functions Polynomial Functions of Higher Degree Real Zeros of Polynomial Functions

More information

Section 4.1: Polynomial Functions and Models

Section 4.1: Polynomial Functions and Models Section 4.1: Polynomial Functions and Models Learning Objectives: 1. Identify Polynomial Functions and Their Degree 2. Graph Polynomial Functions Using Transformations 3. Identify the Real Zeros of a Polynomial

More information

Chapter 2 Formulas and Definitions:

Chapter 2 Formulas and Definitions: Chapter 2 Formulas and Definitions: (from 2.1) Definition of Polynomial Function: Let n be a nonnegative integer and let a n,a n 1,...,a 2,a 1,a 0 be real numbers with a n 0. The function given by f (x)

More information

H-Pre-Calculus Targets Chapter I can write quadratic functions in standard form and use the results to sketch graphs of the function.

H-Pre-Calculus Targets Chapter I can write quadratic functions in standard form and use the results to sketch graphs of the function. H-Pre-Calculus Targets Chapter Section. Sketch and analyze graphs of quadratic functions.. I can write quadratic functions in standard form and use the results to sketch graphs of the function. Identify

More information

Solving Quadratic Equations Review

Solving Quadratic Equations Review Math III Unit 2: Polynomials Notes 2-1 Quadratic Equations Solving Quadratic Equations Review Name: Date: Period: Some quadratic equations can be solved by. Others can be solved just by using. ANY quadratic

More information

Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i

Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i 2 = 1 Sometimes we like to think of i = 1 We can treat

More information

A. Incorrect! Apply the rational root test to determine if any rational roots exist.

A. Incorrect! Apply the rational root test to determine if any rational roots exist. College Algebra - Problem Drill 13: Zeros of Polynomial Functions No. 1 of 10 1. Determine which statement is true given f() = 3 + 4. A. f() is irreducible. B. f() has no real roots. C. There is a root

More information

ZEROS OF POLYNOMIAL FUNCTIONS ALL I HAVE TO KNOW ABOUT POLYNOMIAL FUNCTIONS

ZEROS OF POLYNOMIAL FUNCTIONS ALL I HAVE TO KNOW ABOUT POLYNOMIAL FUNCTIONS ZEROS OF POLYNOMIAL FUNCTIONS ALL I HAVE TO KNOW ABOUT POLYNOMIAL FUNCTIONS TOOLS IN FINDING ZEROS OF POLYNOMIAL FUNCTIONS Synthetic Division and Remainder Theorem (Compressed Synthetic Division) Fundamental

More information

Day 6: 6.4 Solving Polynomial Equations Warm Up: Factor. 1. x 2-2x x 2-9x x 2 + 6x + 5

Day 6: 6.4 Solving Polynomial Equations Warm Up: Factor. 1. x 2-2x x 2-9x x 2 + 6x + 5 Day 6: 6.4 Solving Polynomial Equations Warm Up: Factor. 1. x 2-2x - 15 2. x 2-9x + 14 3. x 2 + 6x + 5 Solving Equations by Factoring Recall the factoring pattern: Difference of Squares:...... Note: There

More information

Algebra III Chapter 2 Note Packet. Section 2.1: Polynomial Functions

Algebra III Chapter 2 Note Packet. Section 2.1: Polynomial Functions Algebra III Chapter 2 Note Packet Name Essential Question: Section 2.1: Polynomial Functions Polynomials -Have nonnegative exponents -Variables ONLY in -General Form n ax + a x +... + ax + ax+ a n n 1

More information

Algebra 2 Notes AII.7 Polynomials Part 2

Algebra 2 Notes AII.7 Polynomials Part 2 Algebra 2 Notes AII.7 Polynomials Part 2 Mrs. Grieser Name: Date: Block: Zeros of a Polynomial Function So far: o If we are given a zero (or factor or solution) of a polynomial function, we can use division

More information

Zeros and Roots of a Polynomial Function. Return to Table of Contents

Zeros and Roots of a Polynomial Function. Return to Table of Contents Zeros and Roots of a Polynomial Function Return to Table of Contents 182 Real Zeros of Polynomial Functions For a function f(x) and a real number a, if f (a) = 0, the following statements are equivalent:

More information

Polynomial Functions

Polynomial Functions Polynomial Functions Polynomials A Polynomial in one variable, x, is an expression of the form a n x 0 a 1 x n 1... a n 2 x 2 a n 1 x a n The coefficients represent complex numbers (real or imaginary),

More information

Chapter 2 Polynomial and Rational Functions

Chapter 2 Polynomial and Rational Functions Chapter 2 Polynomial and Rational Functions Overview: 2.2 Polynomial Functions of Higher Degree 2.3 Real Zeros of Polynomial Functions 2.4 Complex Numbers 2.5 The Fundamental Theorem of Algebra 2.6 Rational

More information

6x 3 12x 2 7x 2 +16x 7x 2 +14x 2x 4

6x 3 12x 2 7x 2 +16x 7x 2 +14x 2x 4 2.3 Real Zeros of Polynomial Functions Name: Pre-calculus. Date: Block: 1. Long Division of Polynomials. We have factored polynomials of degree 2 and some specific types of polynomials of degree 3 using

More information

3.4. ZEROS OF POLYNOMIAL FUNCTIONS

3.4. ZEROS OF POLYNOMIAL FUNCTIONS 3.4. ZEROS OF POLYNOMIAL FUNCTIONS What You Should Learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions. Find rational zeros of polynomial functions. Find

More information

Chapter 3: Polynomial and Rational Functions

Chapter 3: Polynomial and Rational Functions Chapter 3: Polynomial and Rational Functions 3.1 Polynomial Functions A polynomial on degree n is a function of the form P(x) = a n x n + a n 1 x n 1 + + a 1 x 1 + a 0, where n is a nonnegative integer

More information

!!! 1.! 4x 5 8x 4 32x 3 = 0. Algebra II 3-6. Fundamental Theorem of Algebra Attendance Problems. Identify all the real roots of each equation.

!!! 1.! 4x 5 8x 4 32x 3 = 0. Algebra II 3-6. Fundamental Theorem of Algebra Attendance Problems. Identify all the real roots of each equation. Page 1 of 15 Fundamental Theorem of Algebra Attendance Problems. Identify all the real roots of each equation. 1. 4x 5 8x 4 32x 3 = 0 2. x 3 x 2 + 9 = 9x 3. x 4 +16 = 17x 2 Page 2 of 15 4. 3x 3 + 75x =

More information

Solving Quadratic Equations

Solving Quadratic Equations Solving Quadratic Equations MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to: solve quadratic equations by factoring, solve quadratic

More information

Unit 4 Polynomial/Rational Functions Zeros of Polynomial Functions (Unit 4.3)

Unit 4 Polynomial/Rational Functions Zeros of Polynomial Functions (Unit 4.3) Unit 4 Polynomial/Rational Functions Zeros of Polynomial Functions (Unit 4.3) William (Bill) Finch Mathematics Department Denton High School Lesson Goals When you have completed this lesson you will: Find

More information

Chapter 7 Polynomial Functions. Factoring Review. We will talk about 3 Types: ALWAYS FACTOR OUT FIRST! Ex 2: Factor x x + 64

Chapter 7 Polynomial Functions. Factoring Review. We will talk about 3 Types: ALWAYS FACTOR OUT FIRST! Ex 2: Factor x x + 64 Chapter 7 Polynomial Functions Factoring Review We will talk about 3 Types: 1. 2. 3. ALWAYS FACTOR OUT FIRST! Ex 1: Factor x 2 + 5x + 6 Ex 2: Factor x 2 + 16x + 64 Ex 3: Factor 4x 2 + 6x 18 Ex 4: Factor

More information

Lesson 7.1 Polynomial Degree and Finite Differences

Lesson 7.1 Polynomial Degree and Finite Differences Lesson 7.1 Polynomial Degree and Finite Differences 1. Identify the degree of each polynomial. a. 1 b. 0.2 1. 2 3.2 3 c. 20 16 2 20 2. Determine which of the epressions are polynomials. For each polynomial,

More information

Warm Up Lesson Presentation Lesson Quiz. Holt McDougal Algebra 2

Warm Up Lesson Presentation Lesson Quiz. Holt McDougal Algebra 2 Warm Up Lesson Presentation Lesson Quiz Algebra 2 Warm Up Factor each expression. 1. 3x 6y 2. a 2 b 2 3(x 2y) (a + b)(a b) Find each product. 3. (x 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x 3 a 3 + a 2 +

More information

Dividing Polynomials: Remainder and Factor Theorems

Dividing Polynomials: Remainder and Factor Theorems Dividing Polynomials: Remainder and Factor Theorems When we divide one polynomial by another, we obtain a quotient and a remainder. If the remainder is zero, then the divisor is a factor of the dividend.

More information

Chapter 2 notes from powerpoints

Chapter 2 notes from powerpoints Chapter 2 notes from powerpoints Synthetic division and basic definitions Sections 1 and 2 Definition of a Polynomial Function: Let n be a nonnegative integer and let a n, a n-1,, a 2, a 1, a 0 be real

More information

MAT116 Final Review Session Chapter 3: Polynomial and Rational Functions

MAT116 Final Review Session Chapter 3: Polynomial and Rational Functions MAT116 Final Review Session Chapter 3: Polynomial and Rational Functions Quadratic Function A quadratic function is defined by a quadratic or second-degree polynomial. Standard Form f x = ax 2 + bx + c,

More information

Learning Objectives. Zeroes. The Real Zeros of a Polynomial Function

Learning Objectives. Zeroes. The Real Zeros of a Polynomial Function The Real Zeros of a Polynomial Function 1 Learning Objectives 1. Use the Remainder and Factor Theorems 2. Use the Rational Zeros Theorem to list the potential rational zeros of a polynomial function 3.

More information

Section 4.2 Polynomial Functions of Higher Degree

Section 4.2 Polynomial Functions of Higher Degree Section 4.2 Polynomial Functions of Higher Degree Polynomial Function P(x) P(x) = a degree 0 P(x) = ax +b (degree 1) Graph Horizontal line through (0,a) line with y intercept (0,b) and slope a P(x) = ax

More information

Name: 6.4 Polynomial Functions. Polynomial in One Variable

Name: 6.4 Polynomial Functions. Polynomial in One Variable Name: 6.4 Polynomial Functions Polynomial Functions: The expression 3r 2 3r + 1 is a in one variable since it only contains variable, r. KEY CONCEPT Polynomial in One Variable Words A polynomial of degree

More information

A2 HW Imaginary Numbers

A2 HW Imaginary Numbers Name: A2 HW Imaginary Numbers Rewrite the following in terms of i and in simplest form: 1) 100 2) 289 3) 15 4) 4 81 5) 5 12 6) -8 72 Rewrite the following as a radical: 7) 12i 8) 20i Solve for x in simplest

More information

CP Algebra 2. Unit 3B: Polynomials. Name: Period:

CP Algebra 2. Unit 3B: Polynomials. Name: Period: CP Algebra 2 Unit 3B: Polynomials Name: Period: Learning Targets 10. I can use the fundamental theorem of algebra to find the expected number of roots. Solving Polynomials 11. I can solve polynomials by

More information

Warm-Up. Simplify the following terms:

Warm-Up. Simplify the following terms: Warm-Up Simplify the following terms: 81 40 20 i 3 i 16 i 82 TEST Our Ch. 9 Test will be on 5/29/14 Complex Number Operations Learning Targets Adding Complex Numbers Multiplying Complex Numbers Rules for

More information

Chapter 8. Exploring Polynomial Functions. Jennifer Huss

Chapter 8. Exploring Polynomial Functions. Jennifer Huss Chapter 8 Exploring Polynomial Functions Jennifer Huss 8-1 Polynomial Functions The degree of a polynomial is determined by the greatest exponent when there is only one variable (x) in the polynomial Polynomial

More information

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Chapter Maintaining Mathematical Proficiency Simplify the expression. 1. 8x 9x 2. 25r 5 7r r + 3. 3 ( 3x 5) + + x. 3y ( 2y 5) + 11 5. 3( h 7) 7( 10 h) 2 2 +. 5 8x + 5x + 8x Find the volume or surface area

More information

Power and Polynomial Functions. College Algebra

Power and Polynomial Functions. College Algebra Power and Polynomial Functions College Algebra Power Function A power function is a function that can be represented in the form f x = kx % where k and p are real numbers, and k is known as the coefficient.

More information

Lesson 5b Solving Quadratic Equations

Lesson 5b Solving Quadratic Equations Lesson 5b Solving Quadratic Equations In this lesson, we will continue our work with Quadratics in this lesson and will learn several methods for solving quadratic equations. The first section will introduce

More information

Lesson 2.1: Quadratic Functions

Lesson 2.1: Quadratic Functions Quadratic Functions: Lesson 2.1: Quadratic Functions Standard form (vertex form) of a quadratic function: Vertex: (h, k) Algebraically: *Use completing the square to convert a quadratic equation into standard

More information

Warm Up Lesson Presentation Lesson Quiz. Holt Algebra 2 2

Warm Up Lesson Presentation Lesson Quiz. Holt Algebra 2 2 6-5 Warm Up Lesson Presentation Lesson Quiz 2 Warm Up Factor completely. 1. 2y 3 + 4y 2 30y 2y(y 3)(y + 5) 2. 3x 4 6x 2 24 Solve each equation. 3(x 2)(x + 2)(x 2 + 2) 3. x 2 9 = 0 x = 3, 3 4. x 3 + 3x

More information

3 What is the degree of the polynomial function that generates the data shown below?

3 What is the degree of the polynomial function that generates the data shown below? hapter 04 Test Name: ate: 1 For the polynomial function, describe the end behavior of its graph. The leading term is down. The leading term is and down.. Since n is 1 and a is positive, the end behavior

More information

Solving Quadratic Equations by Formula

Solving Quadratic Equations by Formula Algebra Unit: 05 Lesson: 0 Complex Numbers All the quadratic equations solved to this point have had two real solutions or roots. In some cases, solutions involved a double root, but there were always

More information

S56 (5.1) Polynomials.notebook August 25, 2016

S56 (5.1) Polynomials.notebook August 25, 2016 Q1. Simplify Daily Practice 28.6.2016 Q2. Evaluate Today we will be learning about Polynomials. Q3. Write in completed square form x 2 + 4x + 7 Q4. State the equation of the line joining (0, 3) and (4,

More information

Common Core Algebra 2 Review Session 1

Common Core Algebra 2 Review Session 1 Common Core Algebra 2 Review Session 1 NAME Date 1. Which of the following is algebraically equivalent to the sum of 4x 2 8x + 7 and 3x 2 2x 5? (1) 7x 2 10x + 2 (2) 7x 2 6x 12 (3) 7x 4 10x 2 + 2 (4) 12x

More information

Secondary Math 3 Honors - Polynomial and Polynomial Functions Test Review

Secondary Math 3 Honors - Polynomial and Polynomial Functions Test Review Name: Class: Date: Secondary Math 3 Honors - Polynomial and Polynomial Functions Test Review 1 Write 3x 2 ( 2x 2 5x 3 ) in standard form State whether the function is even, odd, or neither Show your work

More information

Chapter P. Prerequisites. Slide P- 1. Copyright 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter P. Prerequisites. Slide P- 1. Copyright 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide P- 1 Chapter P Prerequisites 1 P.1 Real Numbers Quick Review 1. List the positive integers between -4 and 4.. List all negative integers greater than -4. 3. Use a calculator to evaluate the expression

More information

Factors of Polynomials Factoring For Experts

Factors of Polynomials Factoring For Experts Factors of Polynomials SUGGESTED LEARNING STRATEGIES: Shared Reading, Activating Prior Knowledge, Discussion Group, Note-taking When you factor a polynomial, you rewrite the original polynomial as a product

More information

Chapter 6 Complex Numbers

Chapter 6 Complex Numbers Chapter 6 Complex Numbers Lesson 1: Imaginary Numbers Lesson 2: Complex Numbers Lesson 3: Quadratic Formula Lesson 4: Discriminant This assignment is a teacher-modified version of Algebra 2 Common Core

More information

The standard form for a general polynomial of degree n is written. Examples of a polynomial in standard form

The standard form for a general polynomial of degree n is written. Examples of a polynomial in standard form Section 4 1A: The Rational Zeros (Roots) of a Polynomial The standard form for a general polynomial of degree n is written f (x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0 where the highest degree term

More information

Chapter 3-1 Polynomials

Chapter 3-1 Polynomials Chapter 3 notes: Chapter 3-1 Polynomials Obj: SWBAT identify, evaluate, add, and subtract polynomials A monomial is a number, a variable, or a product of numbers and variables with whole number exponents

More information

More Polynomial Equations Section 6.4

More Polynomial Equations Section 6.4 MATH 11009: More Polynomial Equations Section 6.4 Dividend: The number or expression you are dividing into. Divisor: The number or expression you are dividing by. Synthetic division: Synthetic division

More information

CHAPTER 3: Quadratic Functions and Equations; Inequalities

CHAPTER 3: Quadratic Functions and Equations; Inequalities MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 3: Quadratic Functions and Equations; Inequalities 3.1 The Complex Numbers 3.2 Quadratic Equations, Functions, Zeros, and

More information

Polynomials. Exponents. End Behavior. Writing. Solving Factoring. Graphing. End Behavior. Polynomial Notes. Synthetic Division.

Polynomials. Exponents. End Behavior. Writing. Solving Factoring. Graphing. End Behavior. Polynomial Notes. Synthetic Division. Polynomials Polynomials 1. P 1: Exponents 2. P 2: Factoring Polynomials 3. P 3: End Behavior 4. P 4: Fundamental Theorem of Algebra Writing real root x= 10 or (x+10) local maximum Exponents real root x=10

More information

Section 3.6 Complex Zeros

Section 3.6 Complex Zeros 04 Chapter Section 6 Complex Zeros When finding the zeros of polynomials, at some point you're faced with the problem x = While there are clearly no real numbers that are solutions to this equation, leaving

More information

Operations w/polynomials 4.0 Class:

Operations w/polynomials 4.0 Class: Exponential LAWS Review NO CALCULATORS Name: Operations w/polynomials 4.0 Class: Topic: Operations with Polynomials Date: Main Ideas: Assignment: Given: f(x) = x 2 6x 9 a) Find the y-intercept, the equation

More information

Pre-Calculus Assignment Sheet Unit 8-3rd term January 20 th to February 6 th 2015 Polynomials

Pre-Calculus Assignment Sheet Unit 8-3rd term January 20 th to February 6 th 2015 Polynomials Pre-Calculus Assignment Sheet Unit 8- rd term January 0 th to February 6 th 01 Polynomials Date Topic Assignment Calculator Did it Tuesday Multiplicity of zeroes of 1/0/1 a function TI-nspire activity

More information

Practice Test - Chapter 2

Practice Test - Chapter 2 Graph and analyze each function. Describe the domain, range, intercepts, end behavior, continuity, and where the function is increasing or decreasing. 1. f (x) = 0.25x 3 Evaluate the function for several

More information

Chapter REVIEW ANSWER KEY

Chapter REVIEW ANSWER KEY TEXTBOOK HELP Pg. 313 Chapter 3.2-3.4 REVIEW ANSWER KEY 1. What qualifies a function as a polynomial? Powers = non-negative integers Polynomial functions of degree 2 or higher have graphs that are smooth

More information

Math 3 Variable Manipulation Part 3 Polynomials A

Math 3 Variable Manipulation Part 3 Polynomials A Math 3 Variable Manipulation Part 3 Polynomials A 1 MATH 1 & 2 REVIEW: VOCABULARY Constant: A term that does not have a variable is called a constant. Example: the number 5 is a constant because it does

More information

Math 148. Polynomial Graphs

Math 148. Polynomial Graphs Math 148 Lab 1 Polynomial Graphs Due: Monday Wednesday, April April 10 5 Directions: Work out each problem on a separate sheet of paper, and write your answers on the answer sheet provided. Submit the

More information

PreCalculus Notes. MAT 129 Chapter 5: Polynomial and Rational Functions. David J. Gisch. Department of Mathematics Des Moines Area Community College

PreCalculus Notes. MAT 129 Chapter 5: Polynomial and Rational Functions. David J. Gisch. Department of Mathematics Des Moines Area Community College PreCalculus Notes MAT 129 Chapter 5: Polynomial and Rational Functions David J. Gisch Department of Mathematics Des Moines Area Community College September 2, 2011 1 Chapter 5 Section 5.1: Polynomial Functions

More information

October 28, S4.4 Theorems about Zeros of Polynomial Functions

October 28, S4.4 Theorems about Zeros of Polynomial Functions MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial

More information

Cumulative Review. Name. 13) 2x = -4 13) SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Cumulative Review. Name. 13) 2x = -4 13) SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Cumulative Review Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Evaluate the algebraic expression for the given value or values of the variable(s).

More information

3.2 Quadratic Equations by Graphing

3.2 Quadratic Equations by Graphing www.ck12.org Chapter 3. Quadratic Equations and Quadratic Functions 3.2 Quadratic Equations by Graphing Learning Objectives Identify the number of solutions of quadratic equations. Solve quadratic equations

More information

Modeling Data. 27 will get new packet. 24 Mixed Practice 3 Binomial Theorem. 23 Fundamental Theorem March 2

Modeling Data. 27 will get new packet. 24 Mixed Practice 3 Binomial Theorem. 23 Fundamental Theorem March 2 Name: Period: Pre-Cal AB: Unit 1: Polynomials Monday Tuesday Block Friday 11/1 1 Unit 1 TEST Function Operations and Finding Inverses 16 17 18/19 0 NO SCHOOL Polynomial Division Roots, Factors, Zeros and

More information

SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS

SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS Assume f ( x) is a nonconstant polynomial with real coefficients written in standard form. PART A: TECHNIQUES WE HAVE ALREADY SEEN Refer to: Notes 1.31

More information

IMAGINARY NUMBERS COMMON CORE ALGEBRA II

IMAGINARY NUMBERS COMMON CORE ALGEBRA II Name: Date: IMAGINARY NUMBERS COMMON CORE ALGEBRA II Recall that in the Real Number System, it is not possible to take the square root of a negative quantity because whenever a real number is squared it

More information

3.5. Dividing Polynomials. LEARN ABOUT the Math. Selecting a strategy to divide a polynomial by a binomial

3.5. Dividing Polynomials. LEARN ABOUT the Math. Selecting a strategy to divide a polynomial by a binomial 3.5 Dividing Polynomials GOAL Use a variety of strategies to determine the quotient when one polynomial is divided by another polynomial. LEARN ABOU the Math Recall that long division can be used to determine

More information

Characteristics of Polynomials and their Graphs

Characteristics of Polynomials and their Graphs Odd Degree Even Unit 5 Higher Order Polynomials Name: Polynomial Vocabulary: Polynomial Characteristics of Polynomials and their Graphs of the polynomial - highest power, determines the total number of

More information

Unit 1: Polynomial Functions SuggestedTime:14 hours

Unit 1: Polynomial Functions SuggestedTime:14 hours Unit 1: Polynomial Functions SuggestedTime:14 hours (Chapter 3 of the text) Prerequisite Skills Do the following: #1,3,4,5, 6a)c)d)f), 7a)b)c),8a)b), 9 Polynomial Functions A polynomial function is an

More information

Using Properties of Exponents

Using Properties of Exponents 6.1 Using Properties of Exponents Goals p Use properties of exponents to evaluate and simplify expressions involving powers. p Use exponents and scientific notation to solve real-life problems. VOCABULARY

More information

Section 6.6 Evaluating Polynomial Functions

Section 6.6 Evaluating Polynomial Functions Name: Period: Section 6.6 Evaluating Polynomial Functions Objective(s): Use synthetic substitution to evaluate polynomials. Essential Question: Homework: Assignment 6.6. #1 5 in the homework packet. Notes:

More information

Equations in Quadratic Form

Equations in Quadratic Form Equations in Quadratic Form MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to: make substitutions that allow equations to be written

More information

Just DOS Difference of Perfect Squares. Now the directions say solve or find the real number solutions :

Just DOS Difference of Perfect Squares. Now the directions say solve or find the real number solutions : 5.4 FACTORING AND SOLVING POLYNOMIAL EQUATIONS To help you with #1-1 THESE BINOMIALS ARE EITHER GCF, DOS, OR BOTH!!!! Just GCF Just DOS Difference of Perfect Squares Both 1. Break each piece down.. Pull

More information

Pre-Algebra 2. Unit 9. Polynomials Name Period

Pre-Algebra 2. Unit 9. Polynomials Name Period Pre-Algebra Unit 9 Polynomials Name Period 9.1A Add, Subtract, and Multiplying Polynomials (non-complex) Explain Add the following polynomials: 1) ( ) ( ) ) ( ) ( ) Subtract the following polynomials:

More information

3.4 The Fundamental Theorem of Algebra

3.4 The Fundamental Theorem of Algebra 333371_0304.qxp 12/27/06 1:28 PM Page 291 3.4 The Fundamental Theorem of Algebra Section 3.4 The Fundamental Theorem of Algebra 291 The Fundamental Theorem of Algebra You know that an nth-degree polynomial

More information

At right: Closeups of the graphs of. with WINDOW settings Xmin=-1, Xmax=1, Xscl=0.1, Ymin=-1, Ymax=1, Yscl=0.1

At right: Closeups of the graphs of. with WINDOW settings Xmin=-1, Xmax=1, Xscl=0.1, Ymin=-1, Ymax=1, Yscl=0.1 Know the graphs of f(x) = x n for n = odd, positive: 1, 3, 5, The Domain is All Real Numbers, (, ), or R. The Range is All Real Numbers, (, ), or R. It is an Odd function because f( x) = f(x). It is symmetric

More information

171S4.4 Theorems about Zeros of Polynomial Functions. March 27, 2012

171S4.4 Theorems about Zeros of Polynomial Functions. March 27, 2012 MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial

More information

Multiplication of Polynomials

Multiplication of Polynomials Summary 391 Chapter 5 SUMMARY Section 5.1 A polynomial in x is defined by a finite sum of terms of the form ax n, where a is a real number and n is a whole number. a is the coefficient of the term. n is

More information

Honours Advanced Algebra Unit 2: Polynomial Functions Factors, Zeros, and Roots: Oh My! Learning Task (Task 5) Date: Period:

Honours Advanced Algebra Unit 2: Polynomial Functions Factors, Zeros, and Roots: Oh My! Learning Task (Task 5) Date: Period: Honours Advanced Algebra Name: Unit : Polynomial Functions Factors, Zeros, and Roots: Oh My! Learning Task (Task 5) Date: Period: Mathematical Goals Know and apply the Remainder Theorem Know and apply

More information

How many solutions are real? How many solutions are imaginary? What are the solutions? (List below):

How many solutions are real? How many solutions are imaginary? What are the solutions? (List below): 1 Algebra II Chapter 5 Test Review Standards/Goals: F.IF.7.c: I can identify the degree of a polynomial function. F.1.a./A.APR.1.: I can evaluate and simplify polynomial expressions and equations. F.1.b./

More information

a real number, a variable, or a product of a real number and one or more variables with whole number exponents a monomial or the sum of monomials

a real number, a variable, or a product of a real number and one or more variables with whole number exponents a monomial or the sum of monomials 5-1 Polynomial Functions Objectives A2.A.APR.A.2 (formerly A-APR.A.3) Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function

More information

Unit 1 Vocabulary. A function that contains 1 or more or terms. The variables may be to any non-negative power.

Unit 1 Vocabulary. A function that contains 1 or more or terms. The variables may be to any non-negative power. MODULE 1 1 Polynomial A function that contains 1 or more or terms. The variables may be to any non-negative power. 1 Modeling Mathematical modeling is the process of using, and to represent real world

More information

( ) ( ) SECTION 1.1, Page ( x 3) 5 = 4( x 5) = 7. x = = = x x+ 0.12(4000 x) = 432

( ) ( ) SECTION 1.1, Page ( x 3) 5 = 4( x 5) = 7. x = = = x x+ 0.12(4000 x) = 432 CHAPTER Functions and Graphs SECTION., Page. x + x + x x x. x + x x x x x. ( x ) ( x ) x 6 x x x x x + x x 7. x + x + x + 6 8 x 8 6 x x. x x 6 x 6 x x x 8 x x 8 + x..x +..6.x. x 6 ( n + ) ( n ) n + n.

More information

QUADRATIC FUNCTIONS AND MODELS

QUADRATIC FUNCTIONS AND MODELS QUADRATIC FUNCTIONS AND MODELS What You Should Learn Analyze graphs of quadratic functions. Write quadratic functions in standard form and use the results to sketch graphs of functions. Find minimum and

More information

Chapter Five Notes N P U2C5

Chapter Five Notes N P U2C5 Chapter Five Notes N P UC5 Name Period Section 5.: Linear and Quadratic Functions with Modeling In every math class you have had since algebra you have worked with equations. Most of those equations have

More information

x 2 + 6x 18 x + 2 Name: Class: Date: 1. Find the coordinates of the local extreme of the function y = x 2 4 x.

x 2 + 6x 18 x + 2 Name: Class: Date: 1. Find the coordinates of the local extreme of the function y = x 2 4 x. 1. Find the coordinates of the local extreme of the function y = x 2 4 x. 2. How many local maxima and minima does the polynomial y = 8 x 2 + 7 x + 7 have? 3. How many local maxima and minima does the

More information

Theorems About Roots of Polynomial Equations. Theorem Rational Root Theorem

Theorems About Roots of Polynomial Equations. Theorem Rational Root Theorem - Theorems About Roots of Polynomial Equations Content Standards N.CN.7 Solve quadratic equations with real coefficients that have complex solutions. Also N.CN.8 Objectives To solve equations using the

More information

Section 3.1 Quadratic Functions

Section 3.1 Quadratic Functions Chapter 3 Lecture Notes Page 1 of 72 Section 3.1 Quadratic Functions Objectives: Compare two different forms of writing a quadratic function Find the equation of a quadratic function (given points) Application

More information

Math 1314 Lesson 12 Curve Sketching

Math 1314 Lesson 12 Curve Sketching Math 1314 Lesson 12 Curve Sketching One of our objectives in this part of the course is to be able to graph functions. In this lesson, we ll add to some tools we already have to be able to sketch an accurate

More information

The Graph of a Quadratic Function. Quadratic Functions & Models. The Graph of a Quadratic Function. The Graph of a Quadratic Function

The Graph of a Quadratic Function. Quadratic Functions & Models. The Graph of a Quadratic Function. The Graph of a Quadratic Function 8/1/015 The Graph of a Quadratic Function Quadratic Functions & Models Precalculus.1 The Graph of a Quadratic Function The Graph of a Quadratic Function All parabolas are symmetric with respect to a line

More information

Algebra II Chapter 5: Polynomials and Polynomial Functions Part 1

Algebra II Chapter 5: Polynomials and Polynomial Functions Part 1 Algebra II Chapter 5: Polynomials and Polynomial Functions Part 1 Chapter 5 Lesson 1 Use Properties of Exponents Vocabulary Learn these! Love these! Know these! 1 Example 1: Evaluate Numerical Expressions

More information

Procedure for Graphing Polynomial Functions

Procedure for Graphing Polynomial Functions Procedure for Graphing Polynomial Functions P(x) = a nx n + a n-1x n-1 + + a 1x + a 0 To graph P(x): As an example, we will examine the following polynomial function: P(x) = 2x 3 3x 2 23x + 12 1. Determine

More information

Honors Algebra II Final Exam Order - Fall 2018

Honors Algebra II Final Exam Order - Fall 2018 Honors Algebra II Final Exam Order - Fall 2018 For the Final Exam for Algebra II, students will be given the opportunity to re-take any of their Fall 2018 Assessments. To do so they will need to place

More information

The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts.

The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts. Math 141 Review for Final The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts. Part 1 (no calculator) graphing (polynomial, rational, linear, exponential, and logarithmic

More information

Topic 25: Quadratic Functions (Part 1) A quadratic function is a function which can be written as 2. Properties of Quadratic Functions

Topic 25: Quadratic Functions (Part 1) A quadratic function is a function which can be written as 2. Properties of Quadratic Functions Hartfield College Algebra (Version 015b - Thomas Hartfield) Unit FOUR Page 1 of 3 Topic 5: Quadratic Functions (Part 1) Definition: A quadratic function is a function which can be written as f x ax bx

More information

30 Wyner Math Academy I Fall 2015

30 Wyner Math Academy I Fall 2015 30 Wyner Math Academy I Fall 2015 CHAPTER FOUR: QUADRATICS AND FACTORING Review November 9 Test November 16 The most common functions in math at this level are quadratic functions, whose graphs are parabolas.

More information

Radicals: To simplify means that 1) no radicand has a perfect square factor and 2) there is no radical in the denominator (rationalize).

Radicals: To simplify means that 1) no radicand has a perfect square factor and 2) there is no radical in the denominator (rationalize). Summer Review Packet for Students Entering Prealculus Radicals: To simplify means that 1) no radicand has a perfect square factor and ) there is no radical in the denominator (rationalize). Recall the

More information

171S3.2 Quadratic Equations, Functions, Zeros, and Models September 30, Quadratic Equations, Functions, Zeros, and Models

171S3.2 Quadratic Equations, Functions, Zeros, and Models September 30, Quadratic Equations, Functions, Zeros, and Models MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 3: Quadratic Functions and Equations; Inequalities 3.1 The Complex Numbers 3.2 Quadratic Equations, Functions, Zeros, and

More information