Chapter 16. Waves and Sound

Size: px
Start display at page:

Download "Chapter 16. Waves and Sound"

Transcription

1 Chapter 16 Waes and Sound

2 16.1 The Nature of Waes 1. A wae is a traeling disturbance. 2. A wae carries energy from place to place.

3 16.1 The Nature of Waes Transerse Wae

4 16.1 The Nature of Waes Longitudinal Wae

5 16.1 The Nature of Waes Water waes are partially transerse and partially longitudinal.

6 16.2 Periodic Waes Periodic waes consist of cycles or patterns that are produced oer and oer again by the source. In the figures, eery segment of the slinky ibrates in simple harmonic motion, proided the end of the slinky is moed in simple harmonic motion.

7 16.2 Periodic Waes In the drawing, one cycle is shaded in color. The amplitude A is the maximum excursion of a particle of the medium from the particles undisturbed position. The waelength is the horizontal length of one cycle of the wae. The period is the time required for one complete cycle. The frequency is related to the period and has units of Hz, or s -1. f 1 T

8 16.2 Periodic Waes λ T fλ

9 16.2 Periodic Waes Example 1 The Waelengths of Radio Waes AM and FM radio waes are transerse waes consisting of electric and magnetic field disturbances traeling at a speed of 3.00x10 8 m/s. A station broadcasts AM radio waes whose frequency is 1230x10 3 Hz and an FM radio wae whose frequency is 91.9x10 6 Hz. Find the distance between adjacent crests in each wae. λ T fλ λ f

10 16.2 Periodic Waes AM f λ m s Hz 244 m FM f λ m s Hz 3.26 m

11 16.3 The Speed of a Wae on a String The speed at which the wae moes to the right depends on how quickly one particle of the string is accelerated upward in response to the net pulling force. F m L tension linear density

12 16.3 The Speed of a Wae on a String Example 2 Waes Traeling on Guitar Strings Transerse waes trael on each string of an electric guitar after the string is plucked. The length of each string between its two fixed ends is m, and the mass is g for the highest pitched E string and 3.32 g for the lowest pitched E string. Each string is under a tension of 226 N. Find the speeds of the waes on the two strings.

13 16.3 The Speed of a Wae on a String High E F m L 226 N 3 ( kg) ( m) - 826m s Low E F m L 226 N 3 ( kg) ( m) m s

14 16.3 The Speed of a Wae on a String Conceptual Example 3 Wae Speed Versus Particle Speed Is the speed of a transerse wae on a string the same as the speed at which a particle on the string moes?

15 16.4 The Mathematical Description of a Wae What is the displacement y at time t of a particle located at x?

16 16.5 The Nature of Sound Waes LONGITUDINAL SOUND WAVES

17 16.5 The Nature of Sound Waes The distance between adjacent condensations is equal to the waelength of the sound wae.

18 16.5 The Nature of Sound Waes Indiidual air molecules are not carried along with the wae.

19 16.5 The Nature of Sound Waes THE FREQUENCY OF A SOUND WAVE The frequency is the number of cycles per second. A sound with a single frequency is called a pure tone. The brain interprets the frequency in terms of the subjectie quality called pitch.

20 16.5 The Nature of Sound Waes THE PRESSURE AMPLITUDE OF A SOUND WAVE Loudness is an attribute of a sound that depends primarily on the pressure amplitude of the wae.

21 16.6 The Speed of Sound Sound traels through gases, liquids, and solids at considerably different speeds.

22 16.6 The Speed of Sound In a gas, it is only when molecules collide that the condensations and rarefactions of a sound wae can moe from place to place. 3kT rms m Ideal Gas γ kt m k J K γ 5 3 or 7 5

23 16.6 The Speed of Sound Conceptual Example 5 Lightning, Thunder, and a Rule of Thumb There is a rule of thumb for estimating how far away a thunderstorm is. After you see a flash of lighting, count off the seconds until the thunder is heard. Diide the number of seconds by fie. The result gies the approximate distance (in miles) to the thunderstorm. Why does this rule work?

24 16.6 The Speed of Sound LIQUIDS SOLID BARS B ad ρ Y ρ

25 16.7 Sound Intensity Sound waes carry energy that can be used to do work. The amount of energy transported per second is called the power of the wae. The sound intensity is defined as the power that passes perpendicularly through a surface diided by the area of that surface. I P A

26 16.7 Sound Intensity Example 6 Sound Intensities 12x10-5 W of sound power passed through the surfaces labeled 1 and 2. The areas of these surfaces are 4.0m 2 and 12m 2. Determine the sound intensity at each surface.

27 16.7 Sound Intensity I W W m m A P I W W m m A P

28 16.7 Sound Intensity For a 1000 Hz tone, the smallest sound intensity that the human ear can detect is about 1x10-12 W/m 2. This intensity is called the threshold of hearing. On the other extreme, continuous exposure to intensities greater than 1W/m 2 can be painful. If the source emits sound uniformly in all directions, the intensity depends on the distance from the source in a simple way.

29 16.7 Sound Intensity power of sound source I P 4π r 2 area of sphere

30 16.7 Sound Intensity Conceptual Example 8 Reflected Sound and Sound Intensity Suppose the person singing in the shower produces a sound power P. Sound reflects from the surrounding shower stall. At a distance r in front of the person, does the equation for the intensity of sound emitted uniformly in all directions underestimate, oerestimate, or gie the correct sound intensity? I P 4π r 2

31 16.8 Decibels The decibel (db) is a measurement unit used when comparing two sound intensities. Because of the way in which the human hearing mechanism responds to intensity, it is appropriate to use a logarithmic scale called the intensity leel: β I ( 10 db) log I o I o W m 2 Note that log(1)0, so when the intensity of the sound is equal to the threshold of hearing, the intensity leel is zero.

32 16.8 Decibels β ( 10 db) log I o I I o W m 2

33 16.8 Decibels Example 9 Comparing Sound Intensities Audio system 1 produces a sound intensity leel of 90.0 db, and system 2 produces an intensity leel of 93.0 db. Determine the ratio of intensities. β ( 10 db) log I o I

34 16.8 Decibels β I ( 10 db) log I o I 1 β ( ) 1 10 db log β ( ) I o 2 10 db log I o I 2 I I I I I β2 β1 log o 2 ( 10 db) log ( 10 db) log ( 10 db) log ( 10 db) I o Io I1 Io I1 3.0 db I 2 ( 10 db) log I I log I 2 1 I I

35 16.9 The Doppler Effect The Doppler effect is the change in frequency or pitch of the sound detected by an obserer because the sound source and the obserer hae different elocities with respect to the medium of sound propagation.

36 16.9 The Doppler Effect MOVING SOURCE s T λ λ s s s s o f f T f λ λ f f s s o 1 1

37 16.9 The Doppler Effect f f s s o 1 1 source moing toward a stationary obserer source moing away from a stationary obserer + f f s s o 1 1

38 16.9 The Doppler Effect Example 10 The Sound of a Passing Train A high-speed train is traeling at a speed of 44.7 m/s when the engineer sounds the 415-Hz warning horn. The speed of sound is 343 m/s. What are the frequency and waelength of the sound, as perceied by a person standing at the crossing, when the train is (a) approaching and (b) leaing the crossing? f o f s 1 1 s f o f s 1 1+ s

39 16.9 The Doppler Effect approaching f o 1 1 ( 415 Hz) 477 Hz 44.7m s 343m s leaing f o 1+ 1 ( 415 Hz) 367 Hz 44.7m s 343m s

40 16.9 The Doppler Effect MOVING OBSERVER f o f s + o λ f s 1 + o fsλ f s 1 + o

41 16.9 The Doppler Effect Obserer moing towards stationary source f fs + o 1 o Obserer moing away from stationary source f f s o 1 o

42 16.9 The Doppler Effect GENERAL CASE Numerator: plus sign applies when obserer moes towards the source f o f s 1 ± 1 o s Denominator: minus sign applies when source moes towards the obserer

43 16.10 Applications of Sound in Medicine By scanning ultrasonic waes across the body and detecting the echoes from arious locations, it is possible to obtain an image.

44 16.10 Applications of Sound in Medicine Ultrasonic sound waes cause the tip of the probe to ibrate at 23 khz and shatter sections of the tumor that it touches.

45 16.10 Applications of Sound in Medicine When the sound is reflected from the red blood cells, its frequency is changed in a kind of Doppler effect because the cells are moing.

46 16.11 The Sensitiity of the Human Ear

Thermodynamics continued

Thermodynamics continued Chapter 15 Thermodynamics continued 15 Work The area under a pressure-volume graph is the work for any kind of process. B Pressure A W AB W AB is positive here volume increases Volume Clicker Question

More information

Chapter 11. Vibrations and Waves

Chapter 11. Vibrations and Waves Chapter 11 Vibrations and Waves Driven Harmonic Motion and Resonance RESONANCE Resonance is the condition in which a time-dependent force can transmit large amounts of energy to an oscillating object,

More information

Chapters 11 and 12. Sound and Standing Waves

Chapters 11 and 12. Sound and Standing Waves Chapters 11 and 12 Sound and Standing Waves The Nature of Sound Waves LONGITUDINAL SOUND WAVES Speaker making sound waves in a tube The Nature of Sound Waves The distance between adjacent condensations

More information

Lecture 18. Waves and Sound

Lecture 18. Waves and Sound Lecture 18 Waves and Sound Today s Topics: Nature o Waves Periodic Waves Wave Speed The Nature o Sound Speed o Sound Sound ntensity The Doppler Eect Disturbance Wave Motion DEMO: Rope A wave is a traveling

More information

Chapter 14 Waves and Sound. Copyright 2010 Pearson Education, Inc.

Chapter 14 Waves and Sound. Copyright 2010 Pearson Education, Inc. Chapter 14 Waes and Sound Units of Chapter 14 Types of Waes Waes on a String Harmonic Wae Functions Sound Waes Sound Intensity The Doppler Effect We will leae out Chs. 14.5 and 14.7-14.9. 14-1 Types of

More information

Sound, Decibels, Doppler Effect

Sound, Decibels, Doppler Effect Phys101 Lectures 31, 32 Sound, Decibels, Doppler Effect Key points: Intensity of Sound: Decibels Doppler Effect Ref: 12-1,2,7. Page 1 Characteristics of Sound Sound can trael through any kind of matter,

More information

Physics 11 Chapters 15: Traveling Waves and Sound and 16: Superposition and Standing Waves

Physics 11 Chapters 15: Traveling Waves and Sound and 16: Superposition and Standing Waves Physics 11 Chapters 15: Traeling Waes and Sound and 16: Superposition and Standing Waes We are what we beliee we are. Benjamin Cardozo We would accomplish many more things if we did not think of them as

More information

Physics 207 Lecture 28

Physics 207 Lecture 28 Goals: Lecture 28 Chapter 20 Employ the wae model Visualize wae motion Analyze functions of two ariables Know the properties of sinusoidal waes, including waelength, wae number, phase, and frequency. Work

More information

Physics 231 Lecture 27

Physics 231 Lecture 27 Physics 31 Lecture 7 Concepts for today s lecture Wae speed for a string / μ : tension; μ m /L. Sound intensity I β 10log 10 I 0 IP/A, I 0 μ 1x10-1 W/m Spherical waes Here P is the string tension I and

More information

Last Name First Name Date

Last Name First Name Date Last Name irst Name Date 16.1 The Nature of Waes 16.2 Periodic Waes 16.3 The Speed of a Wae in a String Conceptual Questions 1,2,3,7, 8, 11 page 503 Problems 2, 4, 6, 12, 15, 16 page 501-502 Types of Waes

More information

Sound, Decibels, Doppler Effect

Sound, Decibels, Doppler Effect Phys Lectures 3, 33 Sound, Decibels, Doppler Eect Key points: ntensity o Sound: Decibels Doppler Eect Re: -,,7. Page Characteristics o Sound Sound can trael through any kind o matter, but not through a

More information

Producing a Sound Wave. Chapter 14. Using a Tuning Fork to Produce a Sound Wave. Using a Tuning Fork, cont.

Producing a Sound Wave. Chapter 14. Using a Tuning Fork to Produce a Sound Wave. Using a Tuning Fork, cont. Producing a Sound Wave Chapter 14 Sound Sound waves are longitudinal waves traveling through a medium A tuning fork can be used as an example of producing a sound wave Using a Tuning Fork to Produce a

More information

A wave is a disturbance that propagates energy through a medium without net mass transport.

A wave is a disturbance that propagates energy through a medium without net mass transport. Waes A wae is a disturbance that propagates energy through a medium without net mass transport. Ocean waes proide example of transerse waes in which if we focus on a small olume of water, at a particular

More information

Lecture 18. Sound Waves: Intensity, Interference, Beats and Doppler Effect.

Lecture 18. Sound Waves: Intensity, Interference, Beats and Doppler Effect. Lecture 18 Sound Waes: Intensity, Interference, Beats and Doppler Effect. Speed of sound Speed of soun in air, depends on temperature: = (331 + 0.60 T ) m/s where T in C Sound intensity leel β = 10log

More information

Nicholas J. Giordano. Chapter 13 Sound

Nicholas J. Giordano.  Chapter 13 Sound Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 13 Sound Sound Sounds waves are an important example of wave motion Sound is central to hearing, speech, music and many other daily activities

More information

Sound Intensity. Sound Level. Doppler Effect. Ultrasound. Applications

Sound Intensity. Sound Level. Doppler Effect. Ultrasound. Applications Lecture 20 Sound Hearing Sound Intensity Sound Leel Doppler Eect Ultrasound Applications Sound Waes Sound Waes (Longitudinal waes) When a gas, liquid or solid is mechanically disturbed Sound waes are produced

More information

SIMPLE HARMONIC MOTION AND WAVES

SIMPLE HARMONIC MOTION AND WAVES Simple Harmonic Motion (SHM) SIMPLE HARMONIC MOTION AND WAVES - Periodic motion any type of motion that repeats itself in a regular cycle. Ex: a pendulum swinging, a mass bobbing up and down on a spring.

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XII Sound sound waves Doppler effect Standing waves Light Reflection and refraction Lightning Review Last lecture: 1. Vibration and waves Hooke s law Potential energy

More information

Wave Motion A wave is a self-propagating disturbance in a medium. Waves carry energy, momentum, information, but not matter.

Wave Motion A wave is a self-propagating disturbance in a medium. Waves carry energy, momentum, information, but not matter. wae-1 Wae Motion A wae is a self-propagating disturbance in a medium. Waes carr energ, momentum, information, but not matter. Eamples: Sound waes (pressure waes) in air (or in an gas or solid or liquid)

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XII Sound sound waves Doppler effect Standing waves Light Reflection and refraction http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Vibration

More information

Sound Waves. Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects.

Sound Waves. Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects. Sound Waves Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects Introduction Sound Waves: Molecular View When sound travels through a medium, there

More information

Chapter 24 & 26. Electromagnetic Waves & Wave Properties. 1. A wave is a traveling disturbance. 2. A wave carries energy from place to place.

Chapter 24 & 26. Electromagnetic Waves & Wave Properties. 1. A wave is a traveling disturbance. 2. A wave carries energy from place to place. Chapter 4 & 6 Electromagnetic Waes & Wae Properties DR JJ UiTM-Cutnell & Johnson 7th ed. 6. The Nature of Waes. A wae is a traeling disturbance.. A wae carries energy from place to place. Waes trael to

More information

Page # Physics 103: Lecture 26 Sound. Lecture 26, Preflight 2. Lecture 26, Preflight 1. Producing a Sound Wave. Sound from a Tuning Fork

Page # Physics 103: Lecture 26 Sound. Lecture 26, Preflight 2. Lecture 26, Preflight 1. Producing a Sound Wave. Sound from a Tuning Fork Physics 103: Lecture 6 Sound Producing a Sound Wave Sound waves are longitudinal waves traveling through a medium A tuning fork can be used as an example of producing a sound wave A tuning fork will produce

More information

Simple Harmonic Motion

Simple Harmonic Motion Please get your personal iclicker from its pigeonhole on North wall. Simple Harmonic Motion 0 t Position: x = A cos(ω t + φ) Velocity: x t = (ω A) sin(ω t + φ) { max Acceleration: t = (ω2 A) cos(ω t +

More information

Lecture #8-6 Waves and Sound 1. Mechanical Waves We have already considered simple harmonic motion, which is an example of periodic motion in time.

Lecture #8-6 Waves and Sound 1. Mechanical Waves We have already considered simple harmonic motion, which is an example of periodic motion in time. Lecture #8-6 Waes and Sound 1. Mechanical Waes We hae already considered simple harmonic motion, which is an example of periodic motion in time. The position of the body is changing with time as a sinusoidal

More information

Physics 102 Homework Solutions: Ch 16

Physics 102 Homework Solutions: Ch 16 Physics 0 Hoework Solutions: Ch 6. SSM REASONING Since light behaes as a wae, its speed, requency, and waelength λ are related to according to = λ (Equation 6.). We can sole this equation or the requency

More information

WAVES. Wave Equation. Waves Chap 16. So far this quarter. An example of Dynamics Conservation of Energy. Conservation theories. mass energy.

WAVES. Wave Equation. Waves Chap 16. So far this quarter. An example of Dynamics Conservation of Energy. Conservation theories. mass energy. Waes Chap 16 An example of Dynamics Conseration of Energy Conceptual starting point Forces Energy WAVES So far this quarter Conseration theories mass energy momentum angular momentum m E p L All conserations

More information

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G)

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G) 42 TRAVELING WAVES 1. Wave progagation Source Disturbance Medium (D) Speed (E) Traveling waves (F) Mechanical waves (G) Electromagnetic waves (D) (E) (F) (G) 2. Transverse Waves have the classic sinusoidal

More information

Chapter 14 PROBLEM SOLUTIONS Since vlight v sound, the time required for the flash of light to reach the observer is negligible in

Chapter 14 PROBLEM SOLUTIONS Since vlight v sound, the time required for the flash of light to reach the observer is negligible in Chapter 4 PRBLEM LUTN 4. ince light sound, the time required or the lash o light to reach the obserer is negligible in comparison to the time required or the sound to arrie. Thus, we can ignore the time

More information

TYPES OF WAVES. 4. Waves and Sound 1

TYPES OF WAVES. 4. Waves and Sound 1 TYPES OF WAVES Consider a set of playground swings attached by a rope from seat to seat If you sit in the first swing and begin oscillating, this disturbs the equilibrium The connecting ropes cause the

More information

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string)

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) 1 Part 5: Waves 5.1: Harmonic Waves Wave a disturbance in a medium that propagates Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) Longitudinal

More information

Chapter 20: Mechanical Waves

Chapter 20: Mechanical Waves Chapter 20: Mechanical Waves Section 20.1: Observations: Pulses and Wave Motion Oscillation Plus Propagation Oscillation (or vibration): Periodic motion (back-and-forth, upand-down) The motion repeats

More information

Get Solution of These Packages & Learn by Video Tutorials on SOUND WAVES

Get Solution of These Packages & Learn by Video Tutorials on  SOUND WAVES Get Solution of These Packages & Learn by Video Tutorials on www.mathsbysuhag.com. PROPAGATION OF SOUND WAVES : Sound is a mechanical three dimensional and longitudinal wae that is created by a ibrating

More information

LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA

LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA CHAPTER 7 THE PRINCIPE OF INEAR SUPERPOSITION AND INTERFERENCE PHENOMENA ANSWERS TO FOCUS ON CONCEPTS QUESTIONS. (d) I we add pulses and 4 as per the principle o linear superposition, the resultant is

More information

Physics 4C Spring 2016 Test 3

Physics 4C Spring 2016 Test 3 Physics 4C Spring 016 Test 3 Name: June 1, 016 Please show your work! Answers are not complete without clear reasoning. When asked for an expression, you must gie your answer in terms of the ariables gien

More information

Wave Motions and Sound

Wave Motions and Sound EA Notes (Scen 101), Tillery Chapter 5 Wave Motions and Sound Introduction Microscopic molecular vibrations determine temperature (last Chapt.). Macroscopic vibrations of objects set up what we call Sound

More information

Homework #4 Reminder Due Wed. 10/6

Homework #4 Reminder Due Wed. 10/6 Homework #4 Reminder Chap. 6 Concept: 36 Problems 14, 18 Chap. 8 Concept: 8, 12, 30, 34 Problems 2, 10 Due Wed. 10/6 Chapter 8: Wave Motion A wave is a sort of motion But unlike motion of particles A propagating

More information

Lectures Chapter 16 (Cutnell & Johnson, Physics 7 th edition)

Lectures Chapter 16 (Cutnell & Johnson, Physics 7 th edition) PH 201-4A spring 2007 Waves and Sound Lectures 26-27 Chapter 16 (Cutnell & Johnson, Physics 7 th edition) 1 Waves A wave is a vibrational, trembling motion in an elastic, deformable body. The wave is initiated

More information

Chapter 8: Wave Motion. Homework #4 Reminder. But what moves? Wave properties. Waves can reflect. Waves can pass through each other

Chapter 8: Wave Motion. Homework #4 Reminder. But what moves? Wave properties. Waves can reflect. Waves can pass through each other Homework #4 Reminder Chap. 6 Concept: 36 Problems 14, 18 Chap. 8 Concept: 8, 12, 30, 34 Problems 2, 10 Chapter 8: Wave Motion A wave is a sort of motion But unlike motion of particles A propagating disturbance

More information

10. Yes. Any function of (x - vt) will represent wave motion because it will satisfy the wave equation, Eq

10. Yes. Any function of (x - vt) will represent wave motion because it will satisfy the wave equation, Eq CHAPER 5: Wae Motion Responses to Questions 5. he speed of sound in air obeys the equation B. If the bulk modulus is approximately constant and the density of air decreases with temperature, then the speed

More information

Chapter 2 SOUND WAVES

Chapter 2 SOUND WAVES Chapter SOUND WAVES Introduction: A sound wave (or pressure or compression wave) results when a surface (layer of molecules) moves back and forth in a medium producing a sequence of compressions C and

More information

PHYSICS. Chapter 16 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 16 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 16 Lecture RANDALL D. KNIGHT 2017 Pearson Education, Inc. Chapter 16 Traveling Waves IN THIS CHAPTER, you will learn the basic properties

More information

Quiz on Chapters 13-15

Quiz on Chapters 13-15 Quiz on Chapters 13-15 Final Exam, Thursday May 3, 8:00 10:00PM ANH 1281 (Anthony Hall). Seat assignments TBD RCPD students: Thursday May 3, 5:00 9:00PM, BPS 3239. Email will be sent. Alternate Final Exam,

More information

Lecture 14 1/38 Phys 220. Final Exam. Wednesday, August 6 th 10:30 am 12:30 pm Phys multiple choice problems (15 points each 300 total)

Lecture 14 1/38 Phys 220. Final Exam. Wednesday, August 6 th 10:30 am 12:30 pm Phys multiple choice problems (15 points each 300 total) Lecture 14 1/38 Phys 220 Final Exam Wednesday, August 6 th 10:30 am 12:30 pm Phys 114 20 multiple choice problems (15 points each 300 total) 75% will be from Chapters 10-16 25% from Chapters 1-9 Students

More information

Oscillations and Waves

Oscillations and Waves Oscillations and Waves Periodic Motion Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring Energy Conservation in Oscillatory

More information

Physics 11 Chapter 15/16 HW Solutions

Physics 11 Chapter 15/16 HW Solutions Physics Chapter 5/6 HW Solutions Chapter 5 Conceptual Question: 5, 7 Problems:,,, 45, 50 Chapter 6 Conceptual Question:, 6 Problems:, 7,, 0, 59 Q5.5. Reason: Equation 5., string T / s, gies the wae speed

More information

PHYS-2020: General Physics II Course Lecture Notes Section VIII

PHYS-2020: General Physics II Course Lecture Notes Section VIII PHYS-2020: General Physics II Course Lecture Notes Section VIII Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and

More information

Schedule for the remainder of class

Schedule for the remainder of class Schedule for the remainder of class 04/25 (today): Regular class - Sound and the Doppler Effect 04/27: Cover any remaining new material, then Problem Solving/Review (ALL chapters) 04/29: Problem Solving/Review

More information

S 1 S 2 A B C. 7/25/2006 Superposition ( F.Robilliard) 1

S 1 S 2 A B C. 7/25/2006 Superposition ( F.Robilliard) 1 P S S S 0 x S A B C 7/5/006 Superposition ( F.Robilliard) Superposition of Waes: As we hae seen preiously, the defining property of a wae is that it can be described by a wae function of the form - y F(x

More information

N10/4/PHYSI/SPM/ENG/TZ0/XX PHYSICS STANDARD LEVEL PAPER 1. Monday 8 November 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

N10/4/PHYSI/SPM/ENG/TZ0/XX PHYSICS STANDARD LEVEL PAPER 1. Monday 8 November 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES N1/4/PHYSI/SPM/ENG/TZ/XX 881654 PHYSICS STANDARD LEVEL PAPER 1 Monday 8 Noember 21 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer

More information

Honors Classical Physics I

Honors Classical Physics I Honors Classical Physics I PHY141 ecture 32 ound Waes Please set your clicker to channel 21 ecture 32 1 Bosch 36W column loudspeaker polar pattern Monsoon Flat Panel speaker: (5 db grid) 400 Hz: Real oudspeakers

More information

The Nature of Sound Waves

The Nature of Sound Waves The Nature of Sound Waves Read from Lesson 1 of the Sound and Music chapter at The Physics Classroom: http://www.physicsclassroom.com/class/sound/u11l1a.html http://www.physicsclassroom.com/class/sound/u11l1b.html

More information

What is a wave? Waves

What is a wave? Waves What is a wave? Waves Waves What is a wave? A wave is a disturbance that carries energy from one place to another. Classifying waves 1. Mechanical Waves - e.g., water waves, sound waves, and waves on strings.

More information

SoundWaves. Lecture (2) Special topics Dr.khitam Y, Elwasife

SoundWaves. Lecture (2) Special topics Dr.khitam Y, Elwasife SoundWaves Lecture (2) Special topics Dr.khitam Y, Elwasife VGTU EF ESK stanislovas.staras@el.vgtu.lt 2 Mode Shapes and Boundary Conditions, VGTU EF ESK stanislovas.staras@el.vgtu.lt ELEKTRONIKOS ĮTAISAI

More information

SIMPLE HARMONIC MOTION

SIMPLE HARMONIC MOTION WAVES SIMPLE HARMONIC MOTION Simple Harmonic Motion (SHM) Vibration about an equilibrium position in which a restoring force is proportional to the displacement from equilibrium TYPES OF SHM THE PENDULUM

More information

Work. Work and Energy Examples. Energy. To move an object we must do work Work is calculated as the force applied to the object through a distance or:

Work. Work and Energy Examples. Energy. To move an object we must do work Work is calculated as the force applied to the object through a distance or: Work To move an object we must do work Work is calculated as the force applied to the object through a distance or: W F( d) Work has the units Newton meters (N m) or Joules 1 Joule = 1 N m Energy Work

More information

Question 01. A. Incorrect! The speed of sound is not the same in all medium; it is dependent on the properties of the material.

Question 01. A. Incorrect! The speed of sound is not the same in all medium; it is dependent on the properties of the material. High School Physics - Problem Drill 15: Sound 1. Which of these is not a true statement about sound waves? Question 01 (A) Sound waves are travel at different speeds in different mediums. (B) Sound waves

More information

Physics 107 TUTORIAL ASSIGNMENT #7

Physics 107 TUTORIAL ASSIGNMENT #7 Physics 07 TUTORIL SSIGNMENT #7 Cutnell & Johnson, 7 th edition Chapter 6: Problems 5, 65, 79, 93 Chapter 7: Problems 7,, 9, 37, 48 Chapter 6 5 Suppose that sound is emitted uniormly in all directions

More information

Prashant Patil ( ) PRASHANT PATIL PHYSICS CLASSES NEET/JEE(Main) Date : 19/07/2017 TEST ID: 11 Time : 00:45:00 PHYSICS

Prashant Patil ( ) PRASHANT PATIL PHYSICS CLASSES NEET/JEE(Main) Date : 19/07/2017 TEST ID: 11 Time : 00:45:00 PHYSICS Prashant Patil (99709774) PRASHANT PATIL PHYSICS CLASSES NEET/JEE(Main) Date : 9/07/07 TEST ID: Time : 00:45:00 PHYSICS Marks : 80 5. STATIONARY WAVES Single Correct Answer Type. Stationary waes are set

More information

Sound Waves SOUND VIBRATIONS THAT TRAVEL THROUGH THE AIR OR OTHER MEDIA WHEN THESE VIBRATIONS REACH THE AIR NEAR YOUR EARS YOU HEAR THE SOUND.

Sound Waves SOUND VIBRATIONS THAT TRAVEL THROUGH THE AIR OR OTHER MEDIA WHEN THESE VIBRATIONS REACH THE AIR NEAR YOUR EARS YOU HEAR THE SOUND. SOUND WAVES Objectives: 1. WHAT IS SOUND? 2. HOW DO SOUND WAVES TRAVEL? 3. HOW DO PHYSICAL PROPERTIES OF A MEDIUM AFFECT THE SPEED OF SOUND WAVES? 4. WHAT PROPERTIES OF WAVES AFFECT WHAT WE HEAR? 5. WHAT

More information

Chapter 6. Wave Motion. Longitudinal and Transverse Waves

Chapter 6. Wave Motion. Longitudinal and Transverse Waves Chapter 6 Waves We know that when matter is disturbed, energy emanates from the disturbance. This propagation of energy from the disturbance is know as a wave. We call this transfer of energy wave motion.

More information

Longitudinal Waves. Reading: Chapter 17, Sections 17-7 to Sources of Musical Sound. Pipe. Closed end: node Open end: antinode

Longitudinal Waves. Reading: Chapter 17, Sections 17-7 to Sources of Musical Sound. Pipe. Closed end: node Open end: antinode Longitudinal Waes Reading: Chapter 7, Sections 7-7 to 7-0 Sources o Musical Sound Pipe Closed end: node Open end: antinode Standing wae pattern: Fundamental or irst harmonic: nodes at the ends, antinode

More information

CLASS 2 CLASS 2. Section 13.5

CLASS 2 CLASS 2. Section 13.5 CLASS 2 CLASS 2 Section 13.5 Simple Pendulum The simple pendulum is another example of a system that exhibits simple harmonic motion The force is the component of the weight tangent to the path of motion

More information

is a What you Hear The Pressure Wave sets the Ear Drum into Vibration.

is a What you Hear The Pressure Wave sets the Ear Drum into Vibration. is a Pressure Wae is a What you Hear The ear conerts sound energy to mechanical energy to a nere impulse which is transmitted to the brain. The Pressure Wae sets the Ear Drum into Vibration. Drum to Stirrup:

More information

Marketed and Distributed By FaaDoOEngineers.com

Marketed and Distributed By FaaDoOEngineers.com WAVES GUPTA CLASSES For any help contact: 995368795, 968789880 Nishant Gupta, D-, Prashant vihar, Rohini, Delhi-85 Waves Wave motion A wave motion is a kind of disturbance which is transferred from one

More information

Exam 3 Review. F P av A. m V

Exam 3 Review. F P av A. m V Chapter 9: luids Learn the physics o liquids and gases. States o Matter Solids, liquids, and gases. Exam 3 Reiew ressure a ascal s rinciple change in pressure at any point in a conined luid is transmitted

More information

Standing Waves (stationary waves) interference, nodes, antinodes, wavelength is twice the node-to-node distance

Standing Waves (stationary waves) interference, nodes, antinodes, wavelength is twice the node-to-node distance Standing Waes Doppler Eect Standing Waes (stationary waes) intererence, nodes, antinodes, waelength is twice the node-to-node distance Standing Waes on Strings - string ixed at both end undamental, harmonics,

More information

Class Average = 71. Counts Scores

Class Average = 71. Counts Scores 30 Class Average = 71 25 20 Counts 15 10 5 0 0 20 10 30 40 50 60 70 80 90 100 Scores Chapter 12 Mechanical Waves and Sound To describe mechanical waves. To study superposition, standing waves, and interference.

More information

AP Physics 1 Waves and Simple Harmonic Motion Practice Test

AP Physics 1 Waves and Simple Harmonic Motion Practice Test AP Physics 1 Waves and Simple Harmonic Motion Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) An object is attached to a vertical

More information

Test, Lesson 7 Waves - Answer Key Page 1

Test, Lesson 7 Waves - Answer Key Page 1 Test, Lesson 7 Waves - Answer Key Page 1 1. Match the proper units with the following: W. wavelength 1. nm F. frequency 2. /sec V. velocity 3. m 4. ms -1 5. Hz 6. m/sec (A) W: 1, 3 F: 2, 4, 5 V: 6 (B)

More information

What does the speed of a wave depend on?

What does the speed of a wave depend on? Today s experiment Goal answer the question What does the speed of a wave depend on? Materials: Wave on a String PHeT Simulation (link in schedule) and Wave Machine Write a CER in pairs. Think about the

More information

due to striking, rubbing, Any vibration of matter spinning, plucking, etc. Find frequency first, then calculate period.

due to striking, rubbing, Any vibration of matter spinning, plucking, etc. Find frequency first, then calculate period. Equilibrium Position Disturbance Period (T in sec) # sec T = # cycles Frequency (f in Hz) f = # cycles # sec Amplitude (A in cm, m or degrees [θ]) Other Harmonic Motion Basics Basic Definitions Pendulums

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 14

PHYS Summer Professor Caillault Homework Solutions. Chapter 14 PHYS 1111 - Summer 2007 - Professor Caillault Homework Solutions Chapter 14 5. Picture the Problem: A wave of known amplitude, frequency, and wavelength travels along a string. We wish to calculate the

More information

Origin of Sound. Those vibrations compress and decompress the air (or other medium) around the vibrating object

Origin of Sound. Those vibrations compress and decompress the air (or other medium) around the vibrating object Sound Each celestial body, in fact each and every atom, produces a particular sound on account of its movement, its rhythm or vibration. All these sounds and vibrations form a universal harmony in which

More information

Standing waves. The interference of two sinusoidal waves of the same frequency and amplitude, travel in opposite direction, produce a standing wave.

Standing waves. The interference of two sinusoidal waves of the same frequency and amplitude, travel in opposite direction, produce a standing wave. Standing waves The interference of two sinusoidal waves of the same frequency and amplitude, travel in opposite direction, produce a standing wave. y 1 (x, t) = y m sin(kx ωt), y 2 (x, t) = y m sin(kx

More information

Medical Imaging Physics Spring Quarter Week 3-2

Medical Imaging Physics Spring Quarter Week 3-2 Medical Imaging Physics Spring Quarter Week 3-2 Ultrasound Daor Balzar balzar@du.edu www.du.edu/~balzar Outline Ultrasound Light, Eyes and Vision Reading assignment: CSG 12; D 15 Homework D 12: 5,6 and

More information

PHYS1169: Tutorial 8 Solutions

PHYS1169: Tutorial 8 Solutions PHY69: Tutorial 8 olutions Wae Motion ) Let us consier a point P on the wae with a phase φ, so y cosϕ cos( x ± ωt) At t0, this point has position x0, so ϕ x0 ± ωt0 Now, at some later time t, the position

More information

Standing Waves on Strings - string fixed at both end fundamental, harmonics, overtones, modes of vibration (Fig ) Node Antinode N A N A N

Standing Waves on Strings - string fixed at both end fundamental, harmonics, overtones, modes of vibration (Fig ) Node Antinode N A N A N PHYS2 Physics 1 FUNDAMENTALS Module 3 OSCILLATIONS & WAVES Text Physics by Hecht Chapter 11 WAVES Standing Waes Doppler Eect Sections: 11. 11.11 Examples: 11.12 11.13 11.14 11.15 CHECKLIST Standing Waes

More information

PHYSICS CONTENT FACTS

PHYSICS CONTENT FACTS PHYSICS CONTENT FACTS The following is a list of facts related to the course of Physics. A deep foundation of factual knowledge is important; howeer, students need to understand facts and ideas in the

More information

PHYSICS 220. Lecture 21. Textbook Sections Lecture 21 Purdue University, Physics 220 1

PHYSICS 220. Lecture 21. Textbook Sections Lecture 21 Purdue University, Physics 220 1 PHYSICS 220 Lecture 21 Sound Textbook Sections 13.1 13.7 Lecture 21 Purdue University, Physics 220 1 Overview Last Lecture Interference and Diffraction Constructive, destructive Diffraction: bending of

More information

Chap 12. Sound. Speed of sound is different in different material. Depends on the elasticity and density of the medium. T v sound = v string =

Chap 12. Sound. Speed of sound is different in different material. Depends on the elasticity and density of the medium. T v sound = v string = Chap 12. Sound Sec. 12.1 - Characteristics of Sound Sound is produced due to source(vibrating object and travels in a medium (londitudinal sound waves and can be heard by a ear (vibrations. Sound waves

More information

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter Oscillation the vibration of an object Wave a transfer of energy without a transfer of matter Equilibrium Position position of object at rest (mean position) Displacement (x) distance in a particular direction

More information

1. Intensity of Periodic Sound Waves 2. The Doppler Effect

1. Intensity of Periodic Sound Waves 2. The Doppler Effect 1. Intenity o Periodic Sound Wae. The Doppler Eect 1-4-018 1 Objectie: The tudent will be able to Deine the intenity o the ound wae. Deine the Doppler Eect. Undertand ome application on ound 1-4-018 3.3

More information

2/11/2006 Doppler ( F.Robilliard) 1

2/11/2006 Doppler ( F.Robilliard) 1 2//2006 Doppler ( F.obilliard) Deinition o Terms: The requency o waes can be eected by the motion o either the source,, or the receier,, o the waes. This phenomenon is called the Doppler Eect. We will

More information

Physics 101: Lecture 22 Sound

Physics 101: Lecture 22 Sound EXAM III Physics 101: Lecture 22 Sound Today s lecture will cover Textbook Chapter 12 Physics 101: Lecture 22, Pg 1 Standing Waves Fixed Endpoints Fundamental n=1 (2 nodes) l n = 2L/n f n = n v / (2L)

More information

Oscillations - AP Physics B 1984

Oscillations - AP Physics B 1984 Oscillations - AP Physics B 1984 1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of (A) 1 2 (B) (C) 1 1 2 (D) 2 (E) 2 A block oscillates

More information

Unit 4 Waves and Sound Waves and Their Properties

Unit 4 Waves and Sound Waves and Their Properties Lesson35.notebook May 27, 2013 Unit 4 Waves and Sound Waves and Their Properties Today's goal: I can explain the difference between transverse and longitudinal waves and their properties. Waves are a disturbances

More information

Physics 240: Worksheet 24 Name:

Physics 240: Worksheet 24 Name: () Cowboy Ryan is on the road again! Suppose that he is inside one of the many caerns that are found around the Whitehall area of Montana (which is also, by the way, close to Wheat Montana). He notices

More information

v wave Here F is the tension and µ is the mass/length.

v wave Here F is the tension and µ is the mass/length. Main points of today s lecture: Transverse and longitudinal waves traveling waves v wave = Wave speed for a string fλ v = F µ Here F is the tension Intensity of sound I = and µ is the mass/length. P =

More information

1169T2/2001. Question 1 ( marks)

1169T2/2001. Question 1 ( marks) 1169T2/2001 1 Question 1 ( marks) a) Write the equations of two traelling waes, y 1 (x,t) and y 2 (x,t), which, when they superpose, produce a standing wae. State the amplitude, waelength and frequency

More information

Physics 231 Lecture 25

Physics 231 Lecture 25 Physics 231 Lecture 25 Spherical waves P Main points of today s I = lecture: 2 4πr Wave Dopper speed shift for a string v + v o ƒ' = ƒ F v = v vs µ Interference of sound waves L Here F is the string tension

More information

Physics 231 Lecture 28

Physics 231 Lecture 28 Physics 231 Lecture 28 Main points of today s lecture: Reflection of waes. rigid end inerted wae free end non-inerted wae Standing waes on string: n 2L f n λn n 1, 2, 3,,, 2L n Standing wae in air columns:

More information

NEW HORIZON SCHOOL WORKSHEETS TERM 2 SESSION [CLASS 9] Physics

NEW HORIZON SCHOOL WORKSHEETS TERM 2 SESSION [CLASS 9] Physics Physics GRAVITATION 1. Pascal is a unit of a) pressure b) force c) linear momentum d) energy 2. The buoyant force on a body acts in a a) vertically downward direction b) vertically upward direction c)

More information

Waves. 1. Types of waves. Mechanical Waves

Waves. 1. Types of waves. Mechanical Waves Waves 1. Types of waves 1. Mechanical Waves 2. Waves, a mathematical formulation 1. A basic wave 3. Speed of a traveling wave 1. Wave speed on a real string. 4. Energy 1. The wave equation 5. Sound waves

More information

N12/4/PHYSI/SPM/ENG/TZ0/XX. Physics Standard level Paper 1. Tuesday 13 November 2012 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

N12/4/PHYSI/SPM/ENG/TZ0/XX. Physics Standard level Paper 1. Tuesday 13 November 2012 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES N1/4/PHYSI/SPM/ENG/TZ0/XX 8816504 Physics Standard leel Paper 1 Tuesday 13 Noember 01 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer

More information

Physics 140. Sound. Chapter 12

Physics 140. Sound. Chapter 12 Physics 140 Sound Chapter 12 Sound waves Sound is composed of longitudinal pressure waves. wave propagabon Compression Compression Compression è when parbcles come together RarefacBon RarefacBon RarefacBon

More information

Lecture 5 Notes: 07 / 05. Energy and intensity of sound waves

Lecture 5 Notes: 07 / 05. Energy and intensity of sound waves Lecture 5 Notes: 07 / 05 Energy and intensity of sound waves Sound waves carry energy, just like waves on a string do. This energy comes in several types: potential energy due to the compression of the

More information

1. How does the sound produced by a vibrating object in a medium reach your ear?

1. How does the sound produced by a vibrating object in a medium reach your ear? 1. How does the sound produced by a vibrating object in a medium reach your ear? The vibrating object produces a series of compressions and rarefactions, one after the other in the medium. These pulses

More information

Oscillations about Equilibrium: Equation: Variables: Units:

Oscillations about Equilibrium: Equation: Variables: Units: Physics 111 Fall 2017 Exam 3 cheat sheet Oscillations about Equilibriu Equation: Variables: Units: ω = 2π T = 2πf F = kx x = Acos(ωt) 4 = ωasin(ωt) a 4 = ω 8 Acos(ωt) ω = k m E = KE + PE E = 1 2 m8 + 1

More information

TRAVELING WAVES. Conceptual Questions v a v b v c. Wave speed is independent of wave amplitude (a)

TRAVELING WAVES. Conceptual Questions v a v b v c. Wave speed is independent of wave amplitude (a) TRAVELING WAVES 0 Conceptual Questions 0.1. a b c. Wae speed is independent o wae amplitude. 0.. (a) T T T 0 cm/s (b) 100 cm/s 4 T 4m (c) cm/s (d) so the speed is unchanged: 00 cm/s. /4 4L 0.3. The constant

More information