Oscillations about Equilibrium: Equation: Variables: Units:

Size: px
Start display at page:

Download "Oscillations about Equilibrium: Equation: Variables: Units:"

Transcription

1 Physics 111 Fall 2017 Exam 3 cheat sheet Oscillations about Equilibriu Equation: Variables: Units: ω = 2π T = 2πf F = kx x = Acos(ωt) 4 = ωasin(ωt) a 4 = ω 8 Acos(ωt) ω = k m E = KE + PE E = 1 2 m kx8 E = 1 2 ka8 Angular frequency T: Period f: frequency F: Force exerted on a spring Spring constant x: displacement(distance a spring is stretched or compressed) x: displacement or position of an object in oscillation amplitude angular frequency time elocity of an object in oscillation a: acceleration of an object in oscillation angular frequency of the oscillations of a mass attached to a SPRING spring constant mass Total mechanical energy K kinetic energy P Spring potential energy mass of the oscillator elocity of the oscillator x: displacement of the oscillator amplitude rad/s T: seconds f: Hz (1/seconds) F: N N/m x: m x: m m rad/s seconds m/s a: m/s^2 w For all: Joules(Nm) x:

2 Tips: Practice using the position, elocity, and acceleration equations Don t forget that = 8 m8 + = 8 k = = 8 ka8, this will be useful, and something that i m seeing lots of people forget While it s not on the equation sheet outright, remember that T = 1 f this can be found using the first equation listed by cancelling out the 2p from both sides. This will be ery useful, so try to remember this Waes and Sound: Equation: Variables: Units: = λ T = λf speed of the wae propogation (if it is a sound wae, is the speed of sound, 343 m/s l: waelength (distance between l: meters peaks of the wae) T: period f: frequency T: f: = F F: Tension in the string/wire that F: N μ the wae propagates along µ: linear mass density µ: kg/m μ = m L I = P A = P 4πr 8 β = 10dB log ( I I M ) µ: linear mass density mass of the string/wire L: length of the string/wire I: Intensity of the sound P: power produced by the sound source The surface area of the wae propagation at the distance the obserer is listening to the sound b: Sound intensity in decibels I: Sound intensity in W/m^2 I M : Base sound intensity (constant) 2 Doppler effect equations: f M : frequency heard by the obserer f P : frequency produced by the source M : elocity of the obserer P : elocity of the source µ: kg/m L: I: Watts/m^2 P: Watts (J/s) m^2 b: decibles I: Watts/m^2 I M = 10 N=8 w m 8 f M : f P : M : P :

3 2 Interference equations (Constructie and Destructie) λ = 8R : On a string, open column λ = SR : column closed at one end d = : distance between the obserer and the first source d 8 : distance between the obserer and the second source l: waelength of the waes n: just a multiplier, meaning the difference between the two distances should be a multiple of the waelength, or a multiple of half the waelength λ : waelength L: length of pipe or string n: just a multiplier, meaning the waelength should be a multiple of the length. d = : d 8 : l: n: unitless λ : L: n: unitless f = λ f = n T : On a string, open 8R column f = n T : column closed at SR one end f UVWX = f = f 8 f : frequency of the nth harmonic speed of sound L: length of column or string n: just a multiplier, meaning the frequency should be a multiple of the length. f UVWX : Beat frequency f = : frequency of the first sound wae f 8 : frequency of the second sound wae f : L: n: f: Tips: For problems inoling linear mass density, you can find it using the total mass of the string/wire and its total length, or you can find it by using the known mass of the string/wire per unit length of it such as 1 meter. (for example, you can find µ from knowing a 20 meter rope has mass 10kg, or that eery meter of the rope weighs 0.5 kg). The second line of the equation sheet is just some properties of the log function, look them oer and make sure you re familiar with them. Remember that the log function is actually log base 10 The fundamental frequency is when n = 0 for the waelength and frequency of a standing wae on a string, or in an open or closed column You should always get a positie number for the beat frequency. The ertical bars mean absolute alue, so if you get a negatie number, just take the negatie sign off and you ll still get the right answer.

4 Fluids: ρ = m V P = F A P \W]\V = P P WX^ P 8 = P = + ρgh F a]bcwx = ρ de]fg Vg Conseration of mass: Bernoulli s Equation ρ: density mass V: olume P: pressure F: force area The gauge pressure is the pressure inside the body that you re measuring (like a tire) minus the atmospheric pressure P 8 : Pressure at the bottom of a reseroir containing a fluid P = : Pressure at the top of a reseroir containing a fluid (atmospheric pressure) r: density of the fluid g: acceleration due to graity h: height/depth of the reseroir F: the buoyant force of an object in a fluid ρ de]fg : density of the fluid V: olume of the object submerged in the fluid change in mass change in time r: density cross sectional area of the pipe or essel through which the fluid is flowing elocity of the fluid flowing P: Pressure r: density elocity of the fluid flowing g: acceleration due to graity y: the height of the fluid(for example, if the pipe water flows through turns upwards) ρ: kg/m^3 V: P: N/m^2 F: P: P: r: g: h: F: ρ: V: r: P: r: g: y:

5 Tips: In the equation P 8 = P = + ρgh, it is not necessarily a reseroir of water. It could be a gas, like Carbon Dioxide, or it could be a liquid, like oil. If there are multiple layers of fluid (like oil on top of water), You would find the pressure at the bottom if the oil, and that would become the new P =, before you find the pressure at the bottom of the water. In the buoyant force equation, the olume is the olume of the object that is under the surface of the fluid. So if the object is only partially submerged, only the olume that is under the fluid should be considered in this equation. In the conseration of mass equation, A is the cross sectional area of the pipe or other essel through which the fluid is flowing. Remember the area of a circle is A = πr 8. This is worth memorizing for the exam. If you use the radius of the pipe instead of the area, you will get the wrong answer. Temperature and Hea T i = (T j 32) 5 9 T n = T i L = αl M T V = βl M T = mc T d]pfb = ml d T i : Temperature in Celsius T j : Temperature in Fahrenheit T n : Temperature in Kelin T i : L: change in length α: coefficient of linear expansion L M : Original length Change in temperature V: change in olume β: coefficient of olumetric expansion (= 3α) L M : Original length Change in temperature : heat mass c: specific heat capacity (the heat required to change the temperature of the unit mass of a gien substance by one degree) change in teperature d]pfb : Heat of fusion: the heat required to melt/freeze a substance mass of substance T i : degrees Celsius T j : degrees Fahrenheit T n : Kelin T i : L: α: 1/degree (of temperature) L M : L: β: 1/degree (of temperature) L M : : Joules grams c: Joule/gram*degree celsius d]pfb : Joules grams

6 TWsbtfuWXfb = ml T t = ka T L t = eσats L d : specific heat of fusion (different constants for different substances) TWsbtfuWXfb : Heat of fusion: the heat required to aporize/condense a substance mass of substance L T : specific heat of aporization (different constants for different substances) X : The rate of heat transfer by conduction thermal conductiity of the material per unit thickness area of the material change in temperature L: thickness of the material X : The rate of heat transfer by radiation e: emissiity σ: Stefan-Boltzmann constant L d : J/g TWsbtfuWXfb : L T : X : J/m/s/degree celsius L: meters X : The rate of heat transfer by radiation e: unitless σ = Nz W(m 8 K S ) Tips: ALWAYS conert temperatures to Kelin. Some calculations will work if you leae temperatures as Fahrenheit or Celsius, but they ALL will work in Kelin, so it s easiest to always conert to kelin to begin with to aoid mistakes. Don t forget to account for the heat of aporization/fusion when you use a change in heat calculation that causes the substance to change state (melt, freeze, aporize, condense). GOOD LUCK!!

Each of the following questions (1-15) is worth 6 points

Each of the following questions (1-15) is worth 6 points Name: ----------------------------------------------- S. I. D.: ------------------------------------ Physics 0 Final Exam (Version A) Summer 06 HIS EXAM CONAINS 36 QUESIONS. ANSWERS ARE ROUNDED. PICK HE

More information

A wave is a disturbance that propagates energy through a medium without net mass transport.

A wave is a disturbance that propagates energy through a medium without net mass transport. Waes A wae is a disturbance that propagates energy through a medium without net mass transport. Ocean waes proide example of transerse waes in which if we focus on a small olume of water, at a particular

More information

The exam is closed book and closed notes. Choose the answer that is closest to the given answer. F = kx period: T spring = 2π ; T pend = 2π.

The exam is closed book and closed notes. Choose the answer that is closest to the given answer. F = kx period: T spring = 2π ; T pend = 2π. EXAM 1 PHYS 103 VERSION A FALL 2004 NAME: As a student at NJIT I, will conduct myself in a professional manner and will comply with the provisions of the NJIT Academic Honor Code. I also understand that

More information

Class Average = 71. Counts Scores

Class Average = 71. Counts Scores 30 Class Average = 71 25 20 Counts 15 10 5 0 0 20 10 30 40 50 60 70 80 90 100 Scores Chapter 12 Mechanical Waves and Sound To describe mechanical waves. To study superposition, standing waves, and interference.

More information

Lecture 18. Sound Waves: Intensity, Interference, Beats and Doppler Effect.

Lecture 18. Sound Waves: Intensity, Interference, Beats and Doppler Effect. Lecture 18 Sound Waes: Intensity, Interference, Beats and Doppler Effect. Speed of sound Speed of soun in air, depends on temperature: = (331 + 0.60 T ) m/s where T in C Sound intensity leel β = 10log

More information

Important because SHM is a good model to describe vibrations of a guitar string, vibrations of atoms in molecules, etc.

Important because SHM is a good model to describe vibrations of a guitar string, vibrations of atoms in molecules, etc. Simple Harmonic Motion Oscillatory motion under a restoring force proportional to the amount of displacement from equilibrium A restoring force is a force that tries to move the system back to equilibrium

More information

Chapter 14 Waves and Sound. Copyright 2010 Pearson Education, Inc.

Chapter 14 Waves and Sound. Copyright 2010 Pearson Education, Inc. Chapter 14 Waes and Sound Units of Chapter 14 Types of Waes Waes on a String Harmonic Wae Functions Sound Waes Sound Intensity The Doppler Effect We will leae out Chs. 14.5 and 14.7-14.9. 14-1 Types of

More information

Question Mark Max

Question Mark Max PHYS 1021: FINAL EXAM Page 1 of 11 PHYS 1021: FINAL EXAM 12 December, 2013 Instructor: Ania Harlick Student Name: Total: / 100 ID Number: INSTRUCTIONS 1. There are nine questions each worth 12.5 marks.

More information

Lecture #8-6 Waves and Sound 1. Mechanical Waves We have already considered simple harmonic motion, which is an example of periodic motion in time.

Lecture #8-6 Waves and Sound 1. Mechanical Waves We have already considered simple harmonic motion, which is an example of periodic motion in time. Lecture #8-6 Waes and Sound 1. Mechanical Waes We hae already considered simple harmonic motion, which is an example of periodic motion in time. The position of the body is changing with time as a sinusoidal

More information

Simple Harmonic Motion

Simple Harmonic Motion Please get your personal iclicker from its pigeonhole on North wall. Simple Harmonic Motion 0 t Position: x = A cos(ω t + φ) Velocity: x t = (ω A) sin(ω t + φ) { max Acceleration: t = (ω2 A) cos(ω t +

More information

N10/4/PHYSI/SPM/ENG/TZ0/XX PHYSICS STANDARD LEVEL PAPER 1. Monday 8 November 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

N10/4/PHYSI/SPM/ENG/TZ0/XX PHYSICS STANDARD LEVEL PAPER 1. Monday 8 November 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES N1/4/PHYSI/SPM/ENG/TZ/XX 881654 PHYSICS STANDARD LEVEL PAPER 1 Monday 8 Noember 21 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer

More information

Test, Lesson 7 Waves - Answer Key Page 1

Test, Lesson 7 Waves - Answer Key Page 1 Test, Lesson 7 Waves - Answer Key Page 1 1. Match the proper units with the following: W. wavelength 1. nm F. frequency 2. /sec V. velocity 3. m 4. ms -1 5. Hz 6. m/sec (A) W: 1, 3 F: 2, 4, 5 V: 6 (B)

More information

b) (6) What is the volume of the iron cube, in m 3?

b) (6) What is the volume of the iron cube, in m 3? General Physics I Exam 4 - Chs. 10,11,12 - Fluids, Waves, Sound Nov. 14, 2012 Name Rec. Instr. Rec. Time For full credit, make your work clear to the grader. Show formulas used, essential steps, and results

More information

Physics 207 Lecture 28

Physics 207 Lecture 28 Goals: Lecture 28 Chapter 20 Employ the wae model Visualize wae motion Analyze functions of two ariables Know the properties of sinusoidal waes, including waelength, wae number, phase, and frequency. Work

More information

Physics 106 Group Problems Summer 2015 Oscillations and Waves

Physics 106 Group Problems Summer 2015 Oscillations and Waves Physics 106 Group Problems Summer 2015 Oscillations and Waves Name: 1. (5 points) The tension in a string with a linear mass density of 0.0010 kg/m is 0.40 N. What is the frequency of a sinusoidal wave

More information

Exam 3 Review. F P av A. m V

Exam 3 Review. F P av A. m V Chapter 9: luids Learn the physics o liquids and gases. States o Matter Solids, liquids, and gases. Exam 3 Reiew ressure a ascal s rinciple change in pressure at any point in a conined luid is transmitted

More information

Solution The light plates are at the same heights. In balance, the pressure at both plates has to be the same. m g A A A F A = F B.

Solution The light plates are at the same heights. In balance, the pressure at both plates has to be the same. m g A A A F A = F B. 43. A piece of metal rests in a toy wood boat floating in water in a bathtub. If the metal is removed from the boat, and kept out of the water, what happens to the water level in the tub? A) It does not

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? You can help our team to keep this site up and bring you een more content consider donating ia the link on our site. Still haing trouble understanding the material? Check out

More information

EXAM 1. WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark

EXAM 1. WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark EXAM 1 WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark Autumn 2018 Name: Each multiple-choice question is worth 3 marks. 1. A light beam is deflected by two mirrors, as shown. The incident beam

More information

4. Find the average velocities and average accelerations of a particle moving in 1-D given its position at various times.

4. Find the average velocities and average accelerations of a particle moving in 1-D given its position at various times. PHYSICS 201: TEST 1 STUDY SHEET 1. Convert a quantity from one set of units to another set of units. 2. Convert a 2-D vector from rectangular form (components) to polar form (magnitude and angle), or from

More information

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72.

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72. ADVANCED GCE UNIT 76/ MATHEMATICS (MEI Mechanics MONDAY MAY 7 Additional materials: Answer booklet (8 pages Graph paper MEI Examination Formulae and Tables (MF Morning Time: hour minutes INSTRUCTIONS TO

More information

Physics 17 Exam #3 November 9, 2009

Physics 17 Exam #3 November 9, 2009 Physics 17 Exam #3 November 9, 2009 Atomic Weights hydrogen: 1 carbon: 12 oxygen: 16 nitrogen: 14 Atmospheric pressure at sea level = 101,000 Pa, or 14.7 lbs/in 2 Specific heat capacity of water = 1.0

More information

Physics 6B. Practice Midterm #1 Solutions

Physics 6B. Practice Midterm #1 Solutions Physics 6B Practice Midterm #1 Solutions 1. A block of plastic with a density of 90 kg/m 3 floats at the interface between of density 850 kg/m 3 and of density 1000 kg/m 3, as shown. Calculate the percentage

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Consider the wave shown in Figure 13-4

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Consider the wave shown in Figure 13-4 Exam 4 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Consider the wave shown in Figure 13-4 1) Figure 13-4 The amplitude is A) 8 m. B) 2

More information

Oscillations - AP Physics B 1984

Oscillations - AP Physics B 1984 Oscillations - AP Physics B 1984 1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of (A) 1 2 (B) (C) 1 1 2 (D) 2 (E) 2 A block oscillates

More information

41. If you dribble a basketball with a frequency of 1.77 Hz, how long does it take for you to complete 12 dribbles?

41. If you dribble a basketball with a frequency of 1.77 Hz, how long does it take for you to complete 12 dribbles? Phys 111 Exam 3 41. If you dribble a basketball with a frequency of 1.77 Hz, how long does it take for you to complete 12 dribbles? A. 6.78 s B. 21.2 s C. 0.32 s D. 42.5 s E. 1.07 s 42. A 0.46-kg mass

More information

Phys 111 Exam 3 November 15, Name Section University ID

Phys 111 Exam 3 November 15, Name Section University ID Phys 111 Exam 3 November 15, 016 Name Section University ID Please fill in your computer answer sheet as follows: 1) Use your previous answer sheet and start with 41. Note problem number of the second

More information

SOLUTION According to Equation 11.3, pressure is defined as P= F/ A; therefore, the magnitude of the force on the lid due to the air pressure is

SOLUTION According to Equation 11.3, pressure is defined as P= F/ A; therefore, the magnitude of the force on the lid due to the air pressure is PHYS 3 Fall 07 Week Recitation: Chapter :, 7, 40, 44, 64, 69.. ssm An airtight box has a remoable lid of area.3 0 m and negligible weight. The box is taken up a mountain where the air pressure outside

More information

b) (6) With 10.0 N applied to the smaller piston, what pressure force F 2 (in newtons) is produced on the larger piston?

b) (6) With 10.0 N applied to the smaller piston, what pressure force F 2 (in newtons) is produced on the larger piston? General Physics I Exam 4 - Chs. 10,11,12 - Fluids, Waves, Sound Nov. 17, 2010 Name Rec. Instr. Rec. Time For full credit, make your work clear to the grader. Show formulas used, essential steps, and results

More information

PHYSICS 1307 FALL 2007 EXAM # 3 Thursday, November 15, 2007 SOLUTIONS. P atm = N m 2 v sound =343 m/ s

PHYSICS 1307 FALL 2007 EXAM # 3 Thursday, November 15, 2007 SOLUTIONS. P atm = N m 2 v sound =343 m/ s 1/9 Last Name: First Name: SMU ID: PHYSICS 1307 FALL 2007 EXAM # 3 Thursday, November 15, 2007 SOLUTIONS CQ: NQ: Total: Scientific data air =1.29 kg m 3 steel =12 10 6 0 C 1 P atm =1.013 10 5 N m 2 v sound

More information

kg C 10 C = J J = J kg C 20 C = J J = J J

kg C 10 C = J J = J kg C 20 C = J J = J J Seat: PHYS 1500 (Spring 2007) Exam #3, V1 Name: 5 pts 1. A pendulum is made with a length of string of negligible mass with a 0.25 kg mass at the end. A 2nd pendulum is identical except the mass is 0.50

More information

Physics 111. Lecture 42 (Walker: 18.9) Entropy & Disorder Final Review. May 15, 2009

Physics 111. Lecture 42 (Walker: 18.9) Entropy & Disorder Final Review. May 15, 2009 Physics 111 Lecture 42 (Walker: 18.9) Entropy & Disorder Final Review May 15, 2009 Review Session: Today, 3:10-4:00, TH230. Final exam, Monday May 18, 10:45-1:15. Lecture 42 1/32 The Physics 111 Final

More information

PHYSICS 221, FALL 2010 FINAL EXAM MONDAY, DECEMBER 13, 2010

PHYSICS 221, FALL 2010 FINAL EXAM MONDAY, DECEMBER 13, 2010 PHYSICS 221, FALL 2010 FINAL EXAM MONDAY, DECEMBER 13, 2010 Name (printed): Nine-digit ID Number: Section Number: Recitation Instructor: INSTRUCTIONS: i. Put away all materials except for pens, pencils,

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #3 January 25, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

PHYSICS CONTENT FACTS

PHYSICS CONTENT FACTS PHYSICS CONTENT FACTS The following is a list of facts related to the course of Physics. A deep foundation of factual knowledge is important; howeer, students need to understand facts and ideas in the

More information

Chapter 16. Waves and Sound

Chapter 16. Waves and Sound Chapter 16 Waes and Sound 16.1 The Nature of Waes 1. A wae is a traeling disturbance. 2. A wae carries energy from place to place. 16.1 The Nature of Waes Transerse Wae 16.1 The Nature of Waes Longitudinal

More information

REVIEW AND SYNTHESIS: CHAPTERS 9 12

REVIEW AND SYNTHESIS: CHAPTERS 9 12 REVIEW AND SYNTHESIS: CHAPTERS 9 Reiew Exercises. Strategy The magnitude of the buoyant force on an object in water is equal to the weight of the water displaced by the object. (a) Lead is much denser

More information

Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles

Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles by James Doane, PhD, PE Contents 1.0 Course Oeriew... 4.0 Basic Concepts of Thermodynamics... 4.1 Temperature

More information

43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms,

43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms, 43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms, A) her moment of inertia increases and her rotational kinetic energy remains the same.

More information

SAMPLE FINAL EXAM (Closed Book)

SAMPLE FINAL EXAM (Closed Book) PHYS 111-01 SAMPLE FINAL EXAM (Closed Book) 1. DO NOT OPEN THE EXAM UNTIL TOLD TO DO SO. NAME: (Given) (Family) 2. For the problems, write clearly and neatly and be sure to show your work. Answers without

More information

PHYSICS 149: Lecture 22

PHYSICS 149: Lecture 22 PHYSICS 149: Lecture 22 Chapter 11: Waves 11.1 Waves and Energy Transport 11.2 Transverse and Longitudinal Waves 11.3 Speed of Transverse Waves on a String 11.4 Periodic Waves Lecture 22 Purdue University,

More information

Alternate Midterm Examination Physics 100 Feb. 20, 2014

Alternate Midterm Examination Physics 100 Feb. 20, 2014 Alternate Midterm Examination Physics 100 Feb. 20, 2014 Name/Student #: Instructions: Formulas at the back (you can rip that sheet o ). Questions are on both sides. Calculator permitted. Put your name

More information

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string)

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) 1 Part 5: Waves 5.1: Harmonic Waves Wave a disturbance in a medium that propagates Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) Longitudinal

More information

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter Oscillation the vibration of an object Wave a transfer of energy without a transfer of matter Equilibrium Position position of object at rest (mean position) Displacement (x) distance in a particular direction

More information

Final Review, Day 1. Announcements: Web page:

Final Review, Day 1. Announcements: Web page: Announcements: Final Review, Day 1 Final exam next Wednesday (5/9) at 7:30am in the Coors Event Center. Recitation tomorrow is a review. Please feel free to ask the TA any questions on the course material.

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #3 January 24, 2008 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

Today s lecture. WEST VIRGINIA UNIVERSITY Physics

Today s lecture. WEST VIRGINIA UNIVERSITY Physics Today s lecture Review of chapters 1-14 Note: I m taking for granted that you ll still know SI/cgs units, order-of-magnitude estimates, etc., so I m focusing on problems. Velocity and acceleration (1d)

More information

Mock Exam III PH 201, PH 221

Mock Exam III PH 201, PH 221 Mock Exam III PH 201, PH 221 April 12, 2015 You will have 1 hour to complete this exam, and must answer 7 of the problems correctly to make a perfect score. 1 Chapter Concept Summary Equations: Cutnell

More information

Physics 6b Winter 2015 Midterm Test Form D

Physics 6b Winter 2015 Midterm Test Form D Physics 6b Winter 2015 Midterm Test Form D Fill out name and perm number on the scantron. Do not forget to bubble in the Test Form (A, B, C, or, D). At the end, only turn in the scantron. Keep questions/cheat

More information

Physics 6b Winter 2015 Midterm Test Form B

Physics 6b Winter 2015 Midterm Test Form B Physics 6b Winter 2015 Midterm Test Form B Fill out name and perm number on the scantron. Do not forget to bubble in the Test Form (A, B, C, or, D). At the end, only turn in the scantron. Keep questions/cheat

More information

Physics 6b Winter 2015 Midterm Test Form C

Physics 6b Winter 2015 Midterm Test Form C Physics 6b Winter 2015 Midterm Test Form C Fill out name and perm number on the scantron. Do not forget to bubble in the Test Form (A, B, C, or, D). At the end, only turn in the scantron. Keep questions/cheat

More information

Physics 6b Winter 2015 Midterm Test Form A

Physics 6b Winter 2015 Midterm Test Form A Physics 6b Winter 2015 Midterm Test Form A Fill out name and perm number on the scantron. Do not forget to bubble in the Test Form (A, B, C, or, D). At the end, only turn in the scantron. Keep questions/cheat

More information

WAVES. Wave Equation. Waves Chap 16. So far this quarter. An example of Dynamics Conservation of Energy. Conservation theories. mass energy.

WAVES. Wave Equation. Waves Chap 16. So far this quarter. An example of Dynamics Conservation of Energy. Conservation theories. mass energy. Waes Chap 16 An example of Dynamics Conseration of Energy Conceptual starting point Forces Energy WAVES So far this quarter Conseration theories mass energy momentum angular momentum m E p L All conserations

More information

Physics 6b Winter 2015 Final Campagnari Section Test Form D

Physics 6b Winter 2015 Final Campagnari Section Test Form D Physics 6b Winter 2015 Final Campagnari Section Test Form D Fill out name and perm number on the scantron. Do not forget to bubble in the Test Form (A, B, C, or, D). At the end, only turn in the scantron.

More information

Physics 6b Winter 2015 Final Campagnari Section Test Form A

Physics 6b Winter 2015 Final Campagnari Section Test Form A Physics 6b Winter 2015 Final Campagnari Section Test Form A Fill out name and perm number on the scantron. Do not forget to bubble in the Test Form (A, B, C, or, D). At the end, only turn in the scantron.

More information

10. Yes. Any function of (x - vt) will represent wave motion because it will satisfy the wave equation, Eq

10. Yes. Any function of (x - vt) will represent wave motion because it will satisfy the wave equation, Eq CHAPER 5: Wae Motion Responses to Questions 5. he speed of sound in air obeys the equation B. If the bulk modulus is approximately constant and the density of air decreases with temperature, then the speed

More information

Physics 4C Spring 2016 Test 3

Physics 4C Spring 2016 Test 3 Physics 4C Spring 016 Test 3 Name: June 1, 016 Please show your work! Answers are not complete without clear reasoning. When asked for an expression, you must gie your answer in terms of the ariables gien

More information

A) 120 degrees B) 90 degrees C) 60 degrees D) 45 degrees E) 30 degrees

A) 120 degrees B) 90 degrees C) 60 degrees D) 45 degrees E) 30 degrees Phys10 - First Major 071 Zero Version Q1. Two identical sinusoidal traveling waves are sent along the same string in the same direction. What should be the phase difference between the two waves so that

More information

NARAYANA JUNIOR COLLEGE

NARAYANA JUNIOR COLLEGE SR IIT ALL STREAMS ADV MODEL DPT-6 Date: 18/04/2016 One (or) More Than One Answer Type: PHYSICS 31. A particle is executing SHM between points -X m and X m, as shown in figure-i. The velocity V(t) of the

More information

Review and Remember from Exam 1

Review and Remember from Exam 1 Review and Remember from Exam 1 Units How to convert units (Get the 1 the right way up) Always carry units around in problems! Your answer to a ques-on should always include units! Use dimensional analysis

More information

Get Solution of These Packages & Learn by Video Tutorials on SOUND WAVES

Get Solution of These Packages & Learn by Video Tutorials on  SOUND WAVES Get Solution of These Packages & Learn by Video Tutorials on www.mathsbysuhag.com. PROPAGATION OF SOUND WAVES : Sound is a mechanical three dimensional and longitudinal wae that is created by a ibrating

More information

Phys 111 Exam 2 October 18, Name Section University ID

Phys 111 Exam 2 October 18, Name Section University ID Phys 111 Exam October 18, 016 Name Section University ID Please fill in your computer answer sheet as follows: 1) Use your previous answer sheet and start with 1. Note problem number of the second exam

More information

Chapter 15 Mechanical Waves

Chapter 15 Mechanical Waves Chapter 15 Mechanical Waves 1 Types of Mechanical Waves This chapter and the next are about mechanical waves waves that travel within some material called a medium. Waves play an important role in how

More information

Summary PHY101 ( 2 ) T / Hanadi Al Harbi

Summary PHY101 ( 2 ) T / Hanadi Al Harbi الكمية Physical Quantity القانون Low التعريف Definition الوحدة SI Unit Linear Momentum P = mθ be equal to the mass of an object times its velocity. Kg. m/s vector quantity Stress F \ A the external force

More information

Final: Tuesday, April 29, 7pm, 202 Brooks Makeup Monday April 28, 1pm, 437 White Hall

Final: Tuesday, April 29, 7pm, 202 Brooks Makeup Monday April 28, 1pm, 437 White Hall Final: Tuesday, April 9, 7pm, 0 Brooks Makeup Monday April 8, 1pm, 437 White Hall 67% focused on this last section of the course Chapters 10.1-3, 11.1-, 11.4-5, 13(all), 14.1-5, 5.4 There will also be

More information

to calculate gravitational force. d - Know how changes in mass or distance affect the gravitational force between two objects.

to calculate gravitational force. d - Know how changes in mass or distance affect the gravitational force between two objects. PHYSICS 2 ND SEMESTER REVIEW Semester Test Notes: - You may use a 5 x 8 index card (NO LARGER) with equations, diagrams, and notes. - Your index card will be turned in with your test. - Most constants

More information

Phys 111 Exam 3 November 14, Name Section University ID

Phys 111 Exam 3 November 14, Name Section University ID Phys 111 Exam 3 November 14, 017 Name Section University ID Please fill in your computer answer sheet as follows: 1) In the NAME grid, fill in your last name, leave one blank space, then your first name.

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 117.3 MIDTERM TEST February 11, 2016 Time: 90 minutes NAME: SOLUTIONS (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION

More information

WAVES & SIMPLE HARMONIC MOTION

WAVES & SIMPLE HARMONIC MOTION PROJECT WAVES & SIMPLE HARMONIC MOTION EVERY WAVE, REGARDLESS OF HOW HIGH AND FORCEFUL IT CRESTS, MUST EVENTUALLY COLLAPSE WITHIN ITSELF. - STEFAN ZWEIG What s a Wave? A wave is a wiggle in time and space

More information

Physics 1301, Exam 3 Review

Physics 1301, Exam 3 Review c V Andersen, 2006 1 Physics 1301, Exam 3 Review The following is a list of things you should definitely know for the exam, however, the list is not exhaustive. You are responsible for all the material

More information

Physics 101: Lecture 22 Sound

Physics 101: Lecture 22 Sound EXAM III Physics 101: Lecture 22 Sound Today s lecture will cover Textbook Chapter 12 Physics 101: Lecture 22, Pg 1 Standing Waves Fixed Endpoints Fundamental n=1 (2 nodes) l n = 2L/n f n = n v / (2L)

More information

WAVE MOTION AND SHM SECTON 3 SOLUTIONS. Ans.a

WAVE MOTION AND SHM SECTON 3 SOLUTIONS. Ans.a WAVE MOTION AND SHM SECTON 3 SOLUTIONS πf ω π. V = fλ= =, because πf = ω, = k. Ans.a π / λ k λ. While (a) and (b) are traelling waes, (d) is the superposition of two traelling waes, f(x-t) and f(x+t).

More information

LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA

LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA CHAPTER 7 THE PRINCIPE OF INEAR SUPERPOSITION AND INTERFERENCE PHENOMENA ANSWERS TO FOCUS ON CONCEPTS QUESTIONS. (d) I we add pulses and 4 as per the principle o linear superposition, the resultant is

More information

Physics 11 Chapters 15: Traveling Waves and Sound and 16: Superposition and Standing Waves

Physics 11 Chapters 15: Traveling Waves and Sound and 16: Superposition and Standing Waves Physics 11 Chapters 15: Traeling Waes and Sound and 16: Superposition and Standing Waes We are what we beliee we are. Benjamin Cardozo We would accomplish many more things if we did not think of them as

More information

T = 2.34x10 6 s = 27.2days.

T = 2.34x10 6 s = 27.2days. Sole the following probles in the space proided Use the back of the page if needed Each proble is worth 10 points You ust show your work in a logical fashion starting with the correctly applied and clearly

More information

Physics Midterm #2 Two Hours, Closed Book

Physics Midterm #2 Two Hours, Closed Book Physics 102-1 Midterm #2 Two Hours, Closed Book These are the same instructions as given on the first exam. Instructions for taking the exam in the Science Library: Pick up and return the exam from the

More information

Physics 11 Chapter 15/16 HW Solutions

Physics 11 Chapter 15/16 HW Solutions Physics Chapter 5/6 HW Solutions Chapter 5 Conceptual Question: 5, 7 Problems:,,, 45, 50 Chapter 6 Conceptual Question:, 6 Problems:, 7,, 0, 59 Q5.5. Reason: Equation 5., string T / s, gies the wae speed

More information

Physics 231 Lecture 28

Physics 231 Lecture 28 Physics 231 Lecture 28 Main points of today s lecture: Reflection of waes. rigid end inerted wae free end non-inerted wae Standing waes on string: n 2L f n λn n 1, 2, 3,,, 2L n Standing wae in air columns:

More information

PHYSICS 111 SPRING EXAM 3: April 12, 2016; 8:15pm - 9:45pm

PHYSICS 111 SPRING EXAM 3: April 12, 2016; 8:15pm - 9:45pm PHYSICS 111 SPRING 2016 EXAM 3: April 12, 2016; 8:15pm - 9:45pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 20 multiple-choice questions plus 1 extra credit question,

More information

Exam 4--PHYS 101--Fall 2016

Exam 4--PHYS 101--Fall 2016 Name: Exam 4--PHYS 101--Fall 2016 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A bus contains a 2000 kg flywheel (a disk that has a 0.500 m radius)

More information

Miami-Dade Community College PHY 2053 College Physics I

Miami-Dade Community College PHY 2053 College Physics I Miami-Dade Community College PHY 2053 College Physics I PHY 2053 3 credits Course Description PHY 2053, College physics I, is the first semester of a two semester physics-without-calculus sequence. This

More information

NAME: PHYSICS 6B SPRING 2011 FINAL EXAM ( VERSION A )

NAME: PHYSICS 6B SPRING 2011 FINAL EXAM ( VERSION A ) NAME: PHYSCS 6B SPRNG 2011 FNAL EXAM ( VERSON A ) Choose the best answer for each of the following multiple-choice questions. There is only one answer for each. Questions 1-2 are based on the following

More information

EF 152 Exam 2 - Fall, 2016 Page 1 Copy 223

EF 152 Exam 2 - Fall, 2016 Page 1 Copy 223 EF 152 Exam 2 - Fall, 2016 Page 1 Copy 223 Instructions Do not open the exam until instructed to do so. Do not leave if there is less than 5 minutes to go in the exam. When time is called, immediately

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 117.3 MIDTERM TEST Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please check): INSTRUCTIONS:

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 117.3 MIDTERM TEST February 12, 2015 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

PHYSICS I1 EXAM 3 FALL 2005

PHYSICS I1 EXAM 3 FALL 2005 PHYSCS 1 EXAM 3 FALL 2005 37. A 0.02 kg mass is attached to a massless spring as shown to the right and vibrates with simple harmonic motion with an amplitude of 5.0 cm. The spring constant is 300 Nlm.

More information

Physics 240: Worksheet 24 Name:

Physics 240: Worksheet 24 Name: () Cowboy Ryan is on the road again! Suppose that he is inside one of the many caerns that are found around the Whitehall area of Montana (which is also, by the way, close to Wheat Montana). He notices

More information

Physics 7Em Midterm Exam 1

Physics 7Em Midterm Exam 1 Physics 7Em Midterm Exam 1 MULTIPLE CHOICE PROBLEMS. There are 10 multiple choice problems. Each is worth 2 points. There is no penalty for wrong answers. In each, choose the best answer; only one answer

More information

PHYSICS. Chapter 16 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 16 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 16 Lecture RANDALL D. KNIGHT 2017 Pearson Education, Inc. Chapter 16 Traveling Waves IN THIS CHAPTER, you will learn the basic properties

More information

PHYSICS 111 SPRING FINAL EXAM: May 3, 2016; 2:15pm - 4:15pm

PHYSICS 111 SPRING FINAL EXAM: May 3, 2016; 2:15pm - 4:15pm PHYSICS 111 SPRING 2016 FINAL EXAM: May 3, 2016; 2:15pm - 4:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 30 multiple-choice question, each worth 3 points, for

More information

AP Physics. Harmonic Motion. Multiple Choice. Test E

AP Physics. Harmonic Motion. Multiple Choice. Test E AP Physics Harmonic Motion Multiple Choice Test E A 0.10-Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.

More information

Lecture 4 Notes: 06 / 30. Energy carried by a wave

Lecture 4 Notes: 06 / 30. Energy carried by a wave Lecture 4 Notes: 06 / 30 Energy carried by a wave We want to find the total energy (kinetic and potential) in a sine wave on a string. A small segment of a string at a fixed point x 0 behaves as a harmonic

More information

Sample paper 10. Question 1. Which of the following is correct in respect to acceleration?

Sample paper 10. Question 1. Which of the following is correct in respect to acceleration? Sample paper 10 Question 1 Which of the following is correct in respect to acceleration? A. Body does not require any force to accelerate B. Body s velocity should be zero C. Body should be at rest D.

More information

EF 152 Exam 2 - Spring, 2017 Page 1 Copy 223

EF 152 Exam 2 - Spring, 2017 Page 1 Copy 223 EF 152 Exam 2 - Spring, 2017 Page 1 Copy 223 Instructions Do not open the exam until instructed to do so. Do not leave if there is less than 5 minutes to go in the exam. When time is called, immediately

More information

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2)

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) What to study: Quiz 6 Homework problems for Chapters 15 & 16 Material indicated in the following review slides Other Specific things:

More information

Physics 101 Hour Exam 3 December 2, 2013

Physics 101 Hour Exam 3 December 2, 2013 Physics 101 Hour Exam 3 December 2, 2013 Last Name: First Name ID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. Calculators cannot be share Please keep

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics 0 Saskatchewan High School Physics Scholarship Competition May 8, 0 Time: 90 minutes This competition is based on the Saskatchewan

More information

SPRING 2003 Final Exam, Part A

SPRING 2003 Final Exam, Part A Physics 151 SPRING 2003 Final Exam, Part A Roster No.: Score: 17 pts. possible Exam time limit: 2 hours. You may use calculators and both sides of 2 sheets of notes, handwritten only. Closed book; no collaboration.

More information

A amplitude. k stiffness m mass δ phase angle x 0 initial displacement v 0 initial velocity T period f frequency. A amplitude. ω angular frequency

A amplitude. k stiffness m mass δ phase angle x 0 initial displacement v 0 initial velocity T period f frequency. A amplitude. ω angular frequency EF 152 Final Exam, Fall, 2011 Page 1 of 10 EF 152 Final Exam, Fall, 2011 Page 2 of 10 The equation sheets may be removed when the test begins Guidelines: Assume 3 significant figures for all given numbers

More information

Physics in Faculty of

Physics in Faculty of Why we study Physics in Faculty of Engineering? Dimensional analysis Scalars and vector analysis Rotational of a rigid body about a fixed axis Rotational kinematics 1. Dimensional analysis The ward dimension

More information