Simple Harmonic Motion

Size: px
Start display at page:

Download "Simple Harmonic Motion"

Transcription

1 Please get your personal iclicker from its pigeonhole on North wall. Simple Harmonic Motion 0 t Position: x = A cos(ω t + φ) Velocity: x t = (ω A) sin(ω t + φ) { max Acceleration: t = (ω2 A) cos(ω t + φ) { a max A block of mass M oscillates on the end of a massless spring with spring constant k. Its amplitude of oscillation is A. Therefore, its maximum speed is A) A k/m. B) A 2 k/m. C) A m/k. D) A 2 m/k. E) A m/k. A block is oscillating in simple harmonic motion. Throughout a complete cycle, A) it has constant speed. B) it has arying amplitude. C) it has arying period. D) it has arying acceleration. E) it has arying mass. Simple Harmonic Motion: Energy Simple Harmonic Motion: Energy 0 x = A (maximum stretch) Potential energy of spring: U = 1 2 kx2 Kinetic energy of cart: K = 1 2 m2 K + U = constant The cart oscillates with constant amplitude since no energy is lost! At the instant of maximum stretch, the cart is at rest: U = 1 2 kx2 and K =0 A K + U = constant = 1 2 ka2

2 A 0.25-kilogram block oscillates on the end of a massless spring with spring constant 200 Newtons/meter. If this system has an energy of 6.0 Joules, then the amplitude of its oscillation is Is this a wae? A) 0.06 meters. B) 0.17 meters. C) 0.24 meters. D) 4.9 meters. E) 6.9 meters. Is this a wae? Is this a wae? Is this a wae? Is this a wae?

3 Is this a wae? Soliton wae in water Shallow surface wae in water Shallow surface wae in water Wae = Coupled Oscillators Stadium wae Each object (sphere) is connected to its neighbours (by the springs). Oscillation of one object leads to oscillation of its neighbours. The disturbance propagates along the connected objects a wae! a longitudinal wae

4 Wae = Coupled Oscillators Each object (sphere) is connected to its neighbours (by the springs). Oscillation of one object leads to oscillation of its neighbours. The disturbance propagates along the connected objects a wae! Sound Wae = Coupled Molecules Each molecule is connected to its neighbours (by interatomic forces). Oscillation of one molecule leads to oscillation of its neighbours. The disturbance propagates along the pipe a sound wae! a transerse wae Sound waes do not trael through A) solids. Wae Speed Follow one crest as the disturbance propagates. The crest moes rightward at the wae speed. B) liquids. C) gases. D) plasmas. E) a acuum. a longitudinal wae Wae Properties Amplitude A (same as for indiidual oscillators, each in simple harmonic motion) Angular frequency ω and ordinary frequency f = ω/(2π) (same as for indiidual oscillators, each in simple harmonic motion) Wae speed (not the same as the time-dependent elocity of indiidual oscillators) Waelength λ (no such property for indiidual oscillators) λ Wae Speed Wae speed relates the frequency and waelength = f λ and is the same speed for any frequency (or any waelength). Wae speed on a stretched string is determined by the tension force F and the mass per unit length M/L F = M/L snapshot of traelling wae snapshot of traelling wae

5 A sound wae in air has a frequency ( pitch ) of 600 Hertz. A second sound wae in air has a frequency ( pitch ) of 300 Hertz. The second wae s waelength is A) one-quarter that of the first wae s waelength. B) one-half that of the first wae s waelength. C) the same as the first wae s waelength. D) double that of the first wae s waelength. E) four times that of the first wae s waelength. A transerse wae is propagating along a -e-r-y long stretched string at speed. The period of oscillation of any single point on the string is T. The wae s frequency of oscillation is A) T. B) /T. C) T/. D) 1/T. E) 1/. Wae Interference Two separate waes can interfere (add or subtract) to create a net wae. E.g., one pulse moes rightward; the other moes leftward. Wae Interference Two separate waes can interfere (add or subtract) to create a net wae. The cyan wae traels leftward. The green wae traels rightward. The yellow wae is the superposition. Notice that the yellow wae doesn t seem to trael leftward nor rightward. It is a standing wae. Creating Standing Waes The hand on the left disturbs the stretched spring at four different frequencies in succession. These frequencies were chosen ery carefully to guarantee that there would be an integer multiple of half-waelengths between the two hands: L =(n)( 1 2 λ) λ = 2L ( ) f =(n) n 2L for n =1, 2, 3, 4,... Standing Waes on Stretched String n=1 ( first harmonic or fundamental ) n=2 ( second harmonic or first oertone ) n=3 ( third harmonic or second oertone ) n=4 ( fourth harmonic or third oertone )

6 Standing Waes on Stretched String Stringed Instruments

Physics 207 Lecture 28

Physics 207 Lecture 28 Goals: Lecture 28 Chapter 20 Employ the wae model Visualize wae motion Analyze functions of two ariables Know the properties of sinusoidal waes, including waelength, wae number, phase, and frequency. Work

More information

A wave is a disturbance that propagates energy through a medium without net mass transport.

A wave is a disturbance that propagates energy through a medium without net mass transport. Waes A wae is a disturbance that propagates energy through a medium without net mass transport. Ocean waes proide example of transerse waes in which if we focus on a small olume of water, at a particular

More information

Wave Motion A wave is a self-propagating disturbance in a medium. Waves carry energy, momentum, information, but not matter.

Wave Motion A wave is a self-propagating disturbance in a medium. Waves carry energy, momentum, information, but not matter. wae-1 Wae Motion A wae is a self-propagating disturbance in a medium. Waes carr energ, momentum, information, but not matter. Eamples: Sound waes (pressure waes) in air (or in an gas or solid or liquid)

More information

Chapter 14 Waves and Sound. Copyright 2010 Pearson Education, Inc.

Chapter 14 Waves and Sound. Copyright 2010 Pearson Education, Inc. Chapter 14 Waes and Sound Units of Chapter 14 Types of Waes Waes on a String Harmonic Wae Functions Sound Waes Sound Intensity The Doppler Effect We will leae out Chs. 14.5 and 14.7-14.9. 14-1 Types of

More information

Chapter 16. Waves and Sound

Chapter 16. Waves and Sound Chapter 16 Waes and Sound 16.1 The Nature of Waes 1. A wae is a traeling disturbance. 2. A wae carries energy from place to place. 16.1 The Nature of Waes Transerse Wae 16.1 The Nature of Waes Longitudinal

More information

Lecture #8-6 Waves and Sound 1. Mechanical Waves We have already considered simple harmonic motion, which is an example of periodic motion in time.

Lecture #8-6 Waves and Sound 1. Mechanical Waves We have already considered simple harmonic motion, which is an example of periodic motion in time. Lecture #8-6 Waes and Sound 1. Mechanical Waes We hae already considered simple harmonic motion, which is an example of periodic motion in time. The position of the body is changing with time as a sinusoidal

More information

Physics 4C Spring 2016 Test 3

Physics 4C Spring 2016 Test 3 Physics 4C Spring 016 Test 3 Name: June 1, 016 Please show your work! Answers are not complete without clear reasoning. When asked for an expression, you must gie your answer in terms of the ariables gien

More information

Last Name First Name Date

Last Name First Name Date Last Name irst Name Date 16.1 The Nature of Waes 16.2 Periodic Waes 16.3 The Speed of a Wae in a String Conceptual Questions 1,2,3,7, 8, 11 page 503 Problems 2, 4, 6, 12, 15, 16 page 501-502 Types of Waes

More information

Lecture 18. Sound Waves: Intensity, Interference, Beats and Doppler Effect.

Lecture 18. Sound Waves: Intensity, Interference, Beats and Doppler Effect. Lecture 18 Sound Waes: Intensity, Interference, Beats and Doppler Effect. Speed of sound Speed of soun in air, depends on temperature: = (331 + 0.60 T ) m/s where T in C Sound intensity leel β = 10log

More information

Physics 1501 Lecture 28

Physics 1501 Lecture 28 Phsics 1501 Lecture 28 Phsics 1501: Lecture 28 Toda s Agenda Homework #10 (due Frida No. 11) Midterm 2: No. 16 Topics 1-D traeling waes Waes on a string Superposition Power Phsics 1501: Lecture 28, Pg

More information

10. Yes. Any function of (x - vt) will represent wave motion because it will satisfy the wave equation, Eq

10. Yes. Any function of (x - vt) will represent wave motion because it will satisfy the wave equation, Eq CHAPER 5: Wae Motion Responses to Questions 5. he speed of sound in air obeys the equation B. If the bulk modulus is approximately constant and the density of air decreases with temperature, then the speed

More information

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter Oscillation the vibration of an object Wave a transfer of energy without a transfer of matter Equilibrium Position position of object at rest (mean position) Displacement (x) distance in a particular direction

More information

N10/4/PHYSI/SPM/ENG/TZ0/XX PHYSICS STANDARD LEVEL PAPER 1. Monday 8 November 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

N10/4/PHYSI/SPM/ENG/TZ0/XX PHYSICS STANDARD LEVEL PAPER 1. Monday 8 November 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES N1/4/PHYSI/SPM/ENG/TZ/XX 881654 PHYSICS STANDARD LEVEL PAPER 1 Monday 8 Noember 21 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer

More information

Summary PHY101 ( 2 ) T / Hanadi Al Harbi

Summary PHY101 ( 2 ) T / Hanadi Al Harbi الكمية Physical Quantity القانون Low التعريف Definition الوحدة SI Unit Linear Momentum P = mθ be equal to the mass of an object times its velocity. Kg. m/s vector quantity Stress F \ A the external force

More information

Physics 11 Chapters 15: Traveling Waves and Sound and 16: Superposition and Standing Waves

Physics 11 Chapters 15: Traveling Waves and Sound and 16: Superposition and Standing Waves Physics 11 Chapters 15: Traeling Waes and Sound and 16: Superposition and Standing Waes We are what we beliee we are. Benjamin Cardozo We would accomplish many more things if we did not think of them as

More information

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string)

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) 1 Part 5: Waves 5.1: Harmonic Waves Wave a disturbance in a medium that propagates Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) Longitudinal

More information

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves Raymond A. Serway Chris Vuille Chapter Thirteen Vibrations and Waves Periodic Motion and Waves Periodic motion is one of the most important kinds of physical behavior Will include a closer look at Hooke

More information

Section 1 Simple Harmonic Motion. Chapter 11. Preview. Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum

Section 1 Simple Harmonic Motion. Chapter 11. Preview. Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum Section 1 Simple Harmonic Motion Preview Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum Section 1 Simple Harmonic Motion Objectives Identify the conditions of simple harmonic

More information

Chapter 15. Mechanical Waves

Chapter 15. Mechanical Waves Chapter 15 Mechanical Waves A wave is any disturbance from an equilibrium condition, which travels or propagates with time from one region of space to another. A harmonic wave is a periodic wave in which

More information

Section 1 Simple Harmonic Motion. The student is expected to:

Section 1 Simple Harmonic Motion. The student is expected to: Section 1 Simple Harmonic Motion TEKS The student is expected to: 7A examine and describe oscillatory motion and wave propagation in various types of media Section 1 Simple Harmonic Motion Preview Objectives

More information

WAVES. Wave Equation. Waves Chap 16. So far this quarter. An example of Dynamics Conservation of Energy. Conservation theories. mass energy.

WAVES. Wave Equation. Waves Chap 16. So far this quarter. An example of Dynamics Conservation of Energy. Conservation theories. mass energy. Waes Chap 16 An example of Dynamics Conseration of Energy Conceptual starting point Forces Energy WAVES So far this quarter Conseration theories mass energy momentum angular momentum m E p L All conserations

More information

Physics 11 Chapter 15/16 HW Solutions

Physics 11 Chapter 15/16 HW Solutions Physics Chapter 5/6 HW Solutions Chapter 5 Conceptual Question: 5, 7 Problems:,,, 45, 50 Chapter 6 Conceptual Question:, 6 Problems:, 7,, 0, 59 Q5.5. Reason: Equation 5., string T / s, gies the wae speed

More information

Physics 106 Group Problems Summer 2015 Oscillations and Waves

Physics 106 Group Problems Summer 2015 Oscillations and Waves Physics 106 Group Problems Summer 2015 Oscillations and Waves Name: 1. (5 points) The tension in a string with a linear mass density of 0.0010 kg/m is 0.40 N. What is the frequency of a sinusoidal wave

More information

Oscillations about Equilibrium: Equation: Variables: Units:

Oscillations about Equilibrium: Equation: Variables: Units: Physics 111 Fall 2017 Exam 3 cheat sheet Oscillations about Equilibriu Equation: Variables: Units: ω = 2π T = 2πf F = kx x = Acos(ωt) 4 = ωasin(ωt) a 4 = ω 8 Acos(ωt) ω = k m E = KE + PE E = 1 2 m8 + 1

More information

Oscillations - AP Physics B 1984

Oscillations - AP Physics B 1984 Oscillations - AP Physics B 1984 1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of (A) 1 2 (B) (C) 1 1 2 (D) 2 (E) 2 A block oscillates

More information

(Total 1 mark) IB Questionbank Physics 1

(Total 1 mark) IB Questionbank Physics 1 1. A transverse wave travels from left to right. The diagram below shows how, at a particular instant of time, the displacement of particles in the medium varies with position. Which arrow represents the

More information

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G)

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G) 42 TRAVELING WAVES 1. Wave progagation Source Disturbance Medium (D) Speed (E) Traveling waves (F) Mechanical waves (G) Electromagnetic waves (D) (E) (F) (G) 2. Transverse Waves have the classic sinusoidal

More information

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2)

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) What to study: Quiz 6 Homework problems for Chapters 15 & 16 Material indicated in the following review slides Other Specific things:

More information

Each of the following questions (1-15) is worth 6 points

Each of the following questions (1-15) is worth 6 points Name: ----------------------------------------------- S. I. D.: ------------------------------------ Physics 0 Final Exam (Version A) Summer 06 HIS EXAM CONAINS 36 QUESIONS. ANSWERS ARE ROUNDED. PICK HE

More information

Chapter 16 Waves in One Dimension

Chapter 16 Waves in One Dimension Lecture Outline Chapter 16 Waves in One Dimension Slide 16-1 Chapter 16: Waves in One Dimension Chapter Goal: To study the kinematic and dynamics of wave motion, i.e., the transport of energy through a

More information

Charged objects in Conducting Fluids

Charged objects in Conducting Fluids Charged objects in Conducting Fluids Net charge in a sphere of radius λ D is approximately zero. λ D 2 = ε 0κ k B T c 0 e 2 Z 2 k B T k c = 1 / 4πε 0 c 0 Z e κ Thermal energy (Joules) Coulomb constant

More information

Outline. Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves

Outline. Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves Outline Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves Hooke s Law Force is directly proportional to the displacement of the object from the equilibrium

More information

Physics 231 Lecture 28

Physics 231 Lecture 28 Physics 231 Lecture 28 Main points of today s lecture: Reflection of waes. rigid end inerted wae free end non-inerted wae Standing waes on string: n 2L f n λn n 1, 2, 3,,, 2L n Standing wae in air columns:

More information

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Physics 1 Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Date 1. Define work. 2. Define energy. 3. Determine the work done by a constant force. Period 4. Determine the work done by a

More information

AP Physics 1 Waves and Simple Harmonic Motion Practice Test

AP Physics 1 Waves and Simple Harmonic Motion Practice Test AP Physics 1 Waves and Simple Harmonic Motion Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) An object is attached to a vertical

More information

Oscillatory Motion and Wave Motion

Oscillatory Motion and Wave Motion Oscillatory Motion and Wave Motion Oscillatory Motion Simple Harmonic Motion Wave Motion Waves Motion of an Object Attached to a Spring The Pendulum Transverse and Longitudinal Waves Sinusoidal Wave Function

More information

2016 AP Physics Unit 6 Oscillations and Waves.notebook December 09, 2016

2016 AP Physics Unit 6 Oscillations and Waves.notebook December 09, 2016 AP Physics Unit Six Oscillations and Waves 1 2 A. Dynamics of SHM 1. Force a. since the block is accelerating, there must be a force acting on it b. Hooke's Law F = kx F = force k = spring constant x =

More information

Honors Classical Physics I

Honors Classical Physics I Honors Classical Physics I PHY141 ecture 32 ound Waes Please set your clicker to channel 21 ecture 32 1 Bosch 36W column loudspeaker polar pattern Monsoon Flat Panel speaker: (5 db grid) 400 Hz: Real oudspeakers

More information

Prashant Patil ( ) PRASHANT PATIL PHYSICS CLASSES NEET/JEE(Main) Date : 19/07/2017 TEST ID: 11 Time : 00:45:00 PHYSICS

Prashant Patil ( ) PRASHANT PATIL PHYSICS CLASSES NEET/JEE(Main) Date : 19/07/2017 TEST ID: 11 Time : 00:45:00 PHYSICS Prashant Patil (99709774) PRASHANT PATIL PHYSICS CLASSES NEET/JEE(Main) Date : 9/07/07 TEST ID: Time : 00:45:00 PHYSICS Marks : 80 5. STATIONARY WAVES Single Correct Answer Type. Stationary waes are set

More information

Lecture 4 Notes: 06 / 30. Energy carried by a wave

Lecture 4 Notes: 06 / 30. Energy carried by a wave Lecture 4 Notes: 06 / 30 Energy carried by a wave We want to find the total energy (kinetic and potential) in a sine wave on a string. A small segment of a string at a fixed point x 0 behaves as a harmonic

More information

Chapter 16: Oscillatory Motion and Waves. Simple Harmonic Motion (SHM)

Chapter 16: Oscillatory Motion and Waves. Simple Harmonic Motion (SHM) Chapter 6: Oscillatory Motion and Waves Hooke s Law (revisited) F = - k x Tthe elastic potential energy of a stretched or compressed spring is PE elastic = kx / Spring-block Note: To consider the potential

More information

Work. Work and Energy Examples. Energy. To move an object we must do work Work is calculated as the force applied to the object through a distance or:

Work. Work and Energy Examples. Energy. To move an object we must do work Work is calculated as the force applied to the object through a distance or: Work To move an object we must do work Work is calculated as the force applied to the object through a distance or: W F( d) Work has the units Newton meters (N m) or Joules 1 Joule = 1 N m Energy Work

More information

Lecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves.

Lecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves. Lecture 17 Mechanical waves. Transverse waves. Sound waves. Standing Waves. What is a wave? A wave is a traveling disturbance that transports energy but not matter. Examples: Sound waves (air moves back

More information

Wave Motion Wave and Wave motion Wave is a carrier of energy Wave is a form of disturbance which travels through a material medium due to the repeated periodic motion of the particles of the medium about

More information

1. Types of Waves. There are three main types of waves:

1. Types of Waves. There are three main types of waves: Chapter 16 WAVES I 1. Types of Waves There are three main types of waves: https://youtu.be/kvc7obkzq9u?t=3m49s 1. Mechanical waves: These are the most familiar waves. Examples include water waves, sound

More information

Chapter 15 Mechanical Waves

Chapter 15 Mechanical Waves Chapter 15 Mechanical Waves 1 Types of Mechanical Waves This chapter and the next are about mechanical waves waves that travel within some material called a medium. Waves play an important role in how

More information

Chapter 13, Vibrations and Waves. 1. A large spring requires a force of 150 N to compress it only m. What is the spring constant of the spring?

Chapter 13, Vibrations and Waves. 1. A large spring requires a force of 150 N to compress it only m. What is the spring constant of the spring? CHAPTER 13 1. A large spring requires a force of 150 N to compress it only 0.010 m. What is the spring constant of the spring? a. 125 000 N/m b. 15 000 N/m c. 15 N/m d. 1.5 N/m 2. A 0.20-kg object is attached

More information

AP Physics 1 Multiple Choice Questions - Chapter 9

AP Physics 1 Multiple Choice Questions - Chapter 9 1 If an object of mass m attached to a light spring is replaced by one of mass 9m, the frequency of the vibrating system changes by what multiplicative factor? a 1/9 b 1/3 c 3 d 9 e 6 2 A mass of 0.40

More information

AP Physics C: Work, Energy, and Power Practice

AP Physics C: Work, Energy, and Power Practice AP Physics C: Work, Energy, and Power Practice 1981M2. A swing seat of mass M is connected to a fixed point P by a massless cord of length L. A child also of mass M sits on the seat and begins to swing

More information

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves Chapter 16 Waves Types of waves Mechanical waves exist only within a material medium. e.g. water waves, sound waves, etc. Electromagnetic waves require no material medium to exist. e.g. light, radio, microwaves,

More information

Chapter 16 Waves in One Dimension

Chapter 16 Waves in One Dimension Chapter 16 Waves in One Dimension Slide 16-1 Reading Quiz 16.05 f = c Slide 16-2 Reading Quiz 16.06 Slide 16-3 Reading Quiz 16.07 Heavier portion looks like a fixed end, pulse is inverted on reflection.

More information

Chapter 11. Vibrations and Waves

Chapter 11. Vibrations and Waves Chapter 11 Vibrations and Waves Driven Harmonic Motion and Resonance RESONANCE Resonance is the condition in which a time-dependent force can transmit large amounts of energy to an oscillating object,

More information

General Physics I. Lecture 14: Sinusoidal Waves. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 14: Sinusoidal Waves. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 14: Sinusoidal Waves Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Motivation When analyzing a linear medium that is, one in which the restoring force

More information

S 1 S 2 A B C. 7/25/2006 Superposition ( F.Robilliard) 1

S 1 S 2 A B C. 7/25/2006 Superposition ( F.Robilliard) 1 P S S S 0 x S A B C 7/5/006 Superposition ( F.Robilliard) Superposition of Waes: As we hae seen preiously, the defining property of a wae is that it can be described by a wae function of the form - y F(x

More information

08/26/09 PHYSICS 223 Exam-2 NAME Please write down your name also on the back side of this exam

08/26/09 PHYSICS 223 Exam-2 NAME Please write down your name also on the back side of this exam 08/6/09 PHYSICS 3 Exam- NAME Please write down your name also on the back side of this exam 1. The figure shows a container-a holding an ideal gas at pressure 3.0 x 10 5 N/m and a temperature of 300K.

More information

Physics P201 D. Baxter/R. Heinz. FINAL EXAM December 10, :00 10:00 AM INSTRUCTIONS

Physics P201 D. Baxter/R. Heinz. FINAL EXAM December 10, :00 10:00 AM INSTRUCTIONS Seat # Physics P201 D. Baxter/R. Heinz FINAL EXAM December 10, 2001 8:00 10:00 AM INSTRUCTIONS 1. Sit in SEAT # given above. 2. DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO. 3. Print your name (last

More information

CLASS 2 CLASS 2. Section 13.5

CLASS 2 CLASS 2. Section 13.5 CLASS 2 CLASS 2 Section 13.5 Simple Pendulum The simple pendulum is another example of a system that exhibits simple harmonic motion The force is the component of the weight tangent to the path of motion

More information

Physics 111. Lecture 31 (Walker: ) Wave Superposition Wave Interference Standing Waves Physics of Musical Instruments Temperature

Physics 111. Lecture 31 (Walker: ) Wave Superposition Wave Interference Standing Waves Physics of Musical Instruments Temperature Physics 111 Lecture 31 (Walker: 14.7-8) Wave Superposition Wave Interference Physics of Musical Instruments Temperature Superposition and Interference Waves of small amplitude traveling through the same

More information

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week!

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week! Chapter 13 Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition Next Week! Review Physics 2A: Springs, Pendula & Circular Motion Elastic Systems F = kx Small Vibrations

More information

Harmonic Oscillator. Mass-Spring Oscillator Resonance The Pendulum. Physics 109 Experiment Number 12

Harmonic Oscillator. Mass-Spring Oscillator Resonance The Pendulum. Physics 109 Experiment Number 12 Harmonic Oscillator Mass-Spring Oscillator Resonance The Pendulum Physics 109 Experiment Number 12 Outline Simple harmonic motion The vertical mass-spring system Driven oscillations and resonance The pendulum

More information

Schedule for the remainder of class

Schedule for the remainder of class Schedule for the remainder of class 04/25 (today): Regular class - Sound and the Doppler Effect 04/27: Cover any remaining new material, then Problem Solving/Review (ALL chapters) 04/29: Problem Solving/Review

More information

PHYSICS. Chapter 16 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 16 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 16 Lecture RANDALL D. KNIGHT 2017 Pearson Education, Inc. Chapter 16 Traveling Waves IN THIS CHAPTER, you will learn the basic properties

More information

CHAPTER 11 VIBRATIONS AND WAVES

CHAPTER 11 VIBRATIONS AND WAVES CHAPTER 11 VIBRATIONS AND WAVES http://www.physicsclassroom.com/class/waves/u10l1a.html UNITS Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Period and Sinusoidal Nature of SHM The

More information

y (m)

y (m) 4 Spring 99 Problem Set Optional Problems Physics February, 999 Handout Sinusoidal Waes. sinusoidal waes traeling on a string are described by wae Two Waelength is waelength of wae?ofwae? In terms of amplitude

More information

Transverse waves. Waves. Wave motion. Electromagnetic Spectrum EM waves are transverse.

Transverse waves. Waves. Wave motion. Electromagnetic Spectrum EM waves are transverse. Transerse waes Physics Enhanceent Prograe for Gifted Students The Hong Kong Acadey for Gifted Education and, HKBU Waes. Mechanical waes e.g. water waes, sound waes, seisic waes, strings in usical instruents.

More information

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by amplitude (how far do the bits move from their equilibrium positions? Amplitude of MEDIUM)

More information

AP physics B - Webreview ch 13 Waves

AP physics B - Webreview ch 13 Waves Name: Class: _ Date: _ AP physics B - Webreview ch 13 Waves Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A large spring requires a force of 150 N to

More information

Standing waves [49 marks]

Standing waves [49 marks] Standing waves [49 marks] 1. The graph shows the variation with time t of the velocity v of an object undergoing simple harmonic motion (SHM). At which velocity does the displacement from the mean position

More information

CHAPTER 11 TEST REVIEW

CHAPTER 11 TEST REVIEW AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM CHAPTER TEST

More information

Producing a Sound Wave. Chapter 14. Using a Tuning Fork to Produce a Sound Wave. Using a Tuning Fork, cont.

Producing a Sound Wave. Chapter 14. Using a Tuning Fork to Produce a Sound Wave. Using a Tuning Fork, cont. Producing a Sound Wave Chapter 14 Sound Sound waves are longitudinal waves traveling through a medium A tuning fork can be used as an example of producing a sound wave Using a Tuning Fork to Produce a

More information

Get Solution of These Packages & Learn by Video Tutorials on WAVES ON A STRING

Get Solution of These Packages & Learn by Video Tutorials on  WAVES ON A STRING WVES ON STRING WVES Wae motion is the phenomenon that can be obsered almost eerywhere around us, as well it appears in almost eery branch o physics. Surace waes on bodies o mater are commonly obsered.

More information

PreClass Notes: Chapter 13, Sections

PreClass Notes: Chapter 13, Sections PreClass Notes: Chapter 13, Sections 13.3-13.7 From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. Narration and extra little notes by

More information

16 SUPERPOSITION & STANDING WAVES

16 SUPERPOSITION & STANDING WAVES Chapter 6 SUPERPOSITION & STANDING WAVES 6. Superposition of waves Principle of superposition: When two or more waves overlap, the resultant wave is the algebraic sum of the individual waves. Illustration:

More information

Class Average = 71. Counts Scores

Class Average = 71. Counts Scores 30 Class Average = 71 25 20 Counts 15 10 5 0 0 20 10 30 40 50 60 70 80 90 100 Scores Chapter 12 Mechanical Waves and Sound To describe mechanical waves. To study superposition, standing waves, and interference.

More information

What is a Wave. Why are Waves Important? Power PHYSICS 220. Lecture 19. Waves

What is a Wave. Why are Waves Important? Power PHYSICS 220. Lecture 19. Waves PHYSICS 220 Lecture 19 Waves What is a Wave A wave is a disturbance that travels away from its source and carries energy. A wave can transmit energy from one point to another without transporting any matter

More information

Simple Harmonic Oscillator Challenge Problems

Simple Harmonic Oscillator Challenge Problems Simple Harmonic Oscillator Challenge Problems Problem 1: Dimensional Analysis, Estimation and Concepts Imagine that one drilled a hole with smooth sides straight through the center of the earth, of radius

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 11 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Chapter 14: Wave Motion Tuesday April 7 th

Chapter 14: Wave Motion Tuesday April 7 th Chapter 14: Wave Motion Tuesday April 7 th Wave superposition Spatial interference Temporal interference (beating) Standing waves and resonance Sources of musical sound Doppler effect Sonic boom Examples,

More information

Old Exams - Questions Ch-16

Old Exams - Questions Ch-16 Old Exams - Questions Ch-16 T081 : Q1. The displacement of a string carrying a traveling sinusoidal wave is given by: y( x, t) = y sin( kx ω t + ϕ). At time t = 0 the point at x = 0 m has a displacement

More information

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides.

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides. II. Generalizing the 1-dimensional wave equation First generalize the notation. i) "q" has meant transverse deflection of the string. Replace q Ψ, where Ψ may indicate other properties of the medium that

More information

Exam 3 Review. F P av A. m V

Exam 3 Review. F P av A. m V Chapter 9: luids Learn the physics o liquids and gases. States o Matter Solids, liquids, and gases. Exam 3 Reiew ressure a ascal s rinciple change in pressure at any point in a conined luid is transmitted

More information

Physics 101 Lecture 18 Vibrations, SHM, Waves (II)

Physics 101 Lecture 18 Vibrations, SHM, Waves (II) Physics 101 Lecture 18 Vibrations, SHM, Waves (II) Reminder: simple harmonic motion is the result if we have a restoring force that is linear with the displacement: F = -k x What would happen if you could

More information

WAVES( SUB) 2. What is the property of the medium that is essential for the propagation of mechanical wave? Ans: Elasticity and inertia

WAVES( SUB) 2. What is the property of the medium that is essential for the propagation of mechanical wave? Ans: Elasticity and inertia WAES( SUB). What is meant by a wave? Ans: The disturbance set up in a medium is known as a wave. What is the property of the medium that is essential for the propagation of mechanical wave? Ans: Elasticity

More information

Physics 6b Winter 2015 Midterm Test Form D

Physics 6b Winter 2015 Midterm Test Form D Physics 6b Winter 2015 Midterm Test Form D Fill out name and perm number on the scantron. Do not forget to bubble in the Test Form (A, B, C, or, D). At the end, only turn in the scantron. Keep questions/cheat

More information

Physics 6b Winter 2015 Midterm Test Form B

Physics 6b Winter 2015 Midterm Test Form B Physics 6b Winter 2015 Midterm Test Form B Fill out name and perm number on the scantron. Do not forget to bubble in the Test Form (A, B, C, or, D). At the end, only turn in the scantron. Keep questions/cheat

More information

Physics 6b Winter 2015 Midterm Test Form A

Physics 6b Winter 2015 Midterm Test Form A Physics 6b Winter 2015 Midterm Test Form A Fill out name and perm number on the scantron. Do not forget to bubble in the Test Form (A, B, C, or, D). At the end, only turn in the scantron. Keep questions/cheat

More information

Physics 6b Winter 2015 Midterm Test Form C

Physics 6b Winter 2015 Midterm Test Form C Physics 6b Winter 2015 Midterm Test Form C Fill out name and perm number on the scantron. Do not forget to bubble in the Test Form (A, B, C, or, D). At the end, only turn in the scantron. Keep questions/cheat

More information

Alternate Midterm Examination Physics 100 Feb. 20, 2014

Alternate Midterm Examination Physics 100 Feb. 20, 2014 Alternate Midterm Examination Physics 100 Feb. 20, 2014 Name/Student #: Instructions: Formulas at the back (you can rip that sheet o ). Questions are on both sides. Calculator permitted. Put your name

More information

A. Incorrect! Frequency and wavelength are not directly proportional to each other.

A. Incorrect! Frequency and wavelength are not directly proportional to each other. MCAT Physics Problem Solving Drill 1: Waves and Periodic Motion Question No. 1 of 10 Question 1. Two waves on identical strings have frequencies in a ratio of 3 to. If their wave speeds are the same, then

More information

WAVES & SIMPLE HARMONIC MOTION

WAVES & SIMPLE HARMONIC MOTION PROJECT WAVES & SIMPLE HARMONIC MOTION EVERY WAVE, REGARDLESS OF HOW HIGH AND FORCEFUL IT CRESTS, MUST EVENTUALLY COLLAPSE WITHIN ITSELF. - STEFAN ZWEIG What s a Wave? A wave is a wiggle in time and space

More information

Waves Part 1: Travelling Waves

Waves Part 1: Travelling Waves Waves Part 1: Travelling Waves Last modified: 15/05/2018 Links Contents Travelling Waves Harmonic Waves Wavelength Period & Frequency Summary Example 1 Example 2 Example 3 Example 4 Transverse & Longitudinal

More information

No Lecture on Wed. But, there is a lecture on Thursday, at your normal recitation time, so please be sure to come!

No Lecture on Wed. But, there is a lecture on Thursday, at your normal recitation time, so please be sure to come! Announcements Quiz 6 tomorrow Driscoll Auditorium Covers: Chapter 15 (lecture and homework, look at Questions, Checkpoint, and Summary) Chapter 16 (Lecture material covered, associated Checkpoints and

More information

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one 5.1.1 Oscillating Systems Waves Review Checklist 5.1.2 Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one Four pendulums are built as shown

More information

Top 40 Missed Regents Physics Questions Review

Top 40 Missed Regents Physics Questions Review Top 40 Missed Regents Physics Questions - 2015 Review 1. Earth s mass is approximately 81 times the mass of the Moon. If Earth exerts a gravitational force of magnitude F on the Moon, the magnitude of

More information

CHAPTERS WAVES SOUND STATIONARY WAVES ACOUSTICSOF BUILDINGS

CHAPTERS WAVES SOUND STATIONARY WAVES ACOUSTICSOF BUILDINGS CET -IPUC: PHYSICS Unit VI : WAVES and SOUND CHAPTERS OSCILLATIONS WAVES SOUND STATIONARY WAVES ACOUSTICSOF BUILDINGS Particle acceleration: a = Aω 2 sinωt= ω 2 y Maximum acceleration: a max = A ω 2 The

More information

Physics 142 Mechanical Waves Page 1. Mechanical Waves

Physics 142 Mechanical Waves Page 1. Mechanical Waves Physics 142 Mechanical Waves Page 1 Mechanical Waves This set of notes contains a review of wave motion in mechanics, emphasizing the mathematical formulation that will be used in our discussion of electromagnetic

More information

Homework #4 Reminder Due Wed. 10/6

Homework #4 Reminder Due Wed. 10/6 Homework #4 Reminder Chap. 6 Concept: 36 Problems 14, 18 Chap. 8 Concept: 8, 12, 30, 34 Problems 2, 10 Due Wed. 10/6 Chapter 8: Wave Motion A wave is a sort of motion But unlike motion of particles A propagating

More information

Phys101 Lectures 28, 29. Wave Motion

Phys101 Lectures 28, 29. Wave Motion Phys101 Lectures 8, 9 Wave Motion Key points: Types of Waves: Transverse and Longitudinal Mathematical Representation of a Traveling Wave The Principle of Superposition Standing Waves; Resonance Ref: 11-7,8,9,10,11,16,1,13,16.

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m Work/nergy 1. student throws a ball upward where the initial potential energy is 0. t a height of 15 meters the ball has a potential energy of 60 joules and is moving upward with a kinetic energy of 40

More information