Last Name First Name Date

Size: px
Start display at page:

Download "Last Name First Name Date"

Transcription

1 Last Name irst Name Date 16.1 The Nature of Waes 16.2 Periodic Waes 16.3 The Speed of a Wae in a String Conceptual Questions 1,2,3,7, 8, 11 page 503 Problems 2, 4, 6, 12, 15, 16 page Types of Waes There are two main types of disturbances in waes. The wae created by Hand A is a Wae. The wae created by Hand B is a Wae. There is a third type? Can you guess what is? There also two other classifications of waes: Examples: Waes in a Spring, Sound, Water or Ocean Waes, Example: Radio Waes, Microwaes, Infrared Waes, Visible, Ultraiolet, X Rays, Gamma Rayse The Relationship between Waelength, requency and Velocity Which train has the greatest waelength (λ )? A or B Assuming the speed of the trains are the same, which train will hae more trains pass a stationary point in a gien time? A or B Time for one wae to pass is called a Period (T) How often cars pass is called requency (f) As waelength increases Period will (increase or decrease) Wae Equations: f = 1 T Train speed = waes per period or = λ T What are units of T?? f?

2 Speed of a Wae The material which a wae is moing through is called the MEDIUM. (What is plural of medium?) Example: Sound traels faster in higher density substances. Speed of sound in air (which aries with Temperature and Humidity) is about 340 m/s. The motion of a wae in a string (such as a guitar string) is well understood and accurately quantified with the following Equation: = m/l where is the Tension in the String (N), m is the Mass (kg) and L the unit Length (m). Notice that m/l is a Linear Density for the string. As the orce increases the speed (increases / decreases). As the Linear Density increases the speed (increases / decreases). AT AN INTERACE OR BOUNDARY An interface (or boundary) is when a wae moes from one medium to another. Here are two examples: Moing from low to high density string and moing from high to low density string. What happens to the speed of the wae as it moes from low density to high density? (Increases or Decreases) What happens to the speed of the wae as it moes from low density to high density? (Increases or Decreases) The requency of the wae stays the same when passing from one medium to another. What happens to the waelength when a wae moes from low density to high density? (Increases or Decreases) What happens to the waelength when a wae moes from high density to low density? (Increases or Decreases)

3 Conceptual Questions 1,2,3,7, 8, 11 page Considering that nature of a water wae, describe the motion of a fishing float on the surface of a lake when a wae passes beneath the float. Is it really correct to say that the float bobs straight up and down? Explain. As igure 16.4 shows, in a water wae, the wae motion of the water includes both transerse and longitudinal components. The water at the surface moes on nearly circular paths. When the wae passes beneath a fishing float, the float will simultaneously bob up and down, as well as moe back and forth horizontally. Thus, the float will moe in a nearly circular path in the ertical plane. It is not really correct, therefore, to say that the float bobs straight "up and down." 2. Domino Toppling is one entry in the Guinness Book of World Records. The eent consists of lining up an incredible number of dominoes and then letting them topple, one after another. Is the disturbance that propagates along the line of the dominoes transerse, longitudinal, or partly both? Explain. REASONING AND SOLUTION "Domino Toppling" is an eent that consists of lining up an incredible number of dominoes and then letting them topple, one after another. As the dominoes topple, their displacements contain both ertical and horizontal components. Therefore, the disturbance that propagates along the line of dominoes has both longitudinal (horizontal) and transerse (ertical) components. 3. Suppose that a longitudinal wae moes along a Slinky at a speed of 5 m/s. Does one coil of the Slinky moe through a distance of 5 m in one second? Justify your answer. REASONING AND SOLUTION A longitudinal wae moes along a Slinky at a speed of 5 m/s. We cannot conclude that one coil of the Slinky moes through a distance of 5 m in one second. The quantity 5 m/s is the longitudinal wae speed, speed ; it specifies how fast the disturbance traels along the spring. The wae speed depends on the properties of the spring. Like the transerse wae speed, the longitudinal wae speed depends upon the tension in the spring and its linear mass density m/l. As long as the tension and the linear mass density remain the same, the disturbance will trael along the spring at constant speed. The particles in the Slinky oscillate longitudinally in simple harmonic motion with the same amplitude and frequency as the source. As with all particles in simple harmonic motion, the particle speed is not constant. The particle speed is a maximum as the particle passes through its equilibrium position and reaches zero when the particle has reached its maximum displacement from the equilibrium position. The particle speed depends upon the amplitude and frequency of the particle's motion. Thus, the particle speed, and therefore the longitudinal speed of a single coil, depends upon the properties of the source that causes the disturbance.

4 7. One end of each of two identical strings is attached to a wall. Each string is being pulled tight by someone at the other end. A transerse pulse is sent traeling along one of the strings. A bit later an identical pulse is sent traeling along the other string. What, if anything, can be done to make the second pulse catch up with and pass the first pulse? Account for your answer. (A pulse is a single piece of a wae. What you do in a football stadium is actually a pulse rather than a wae) REASONING AND SOLUTION One end of each of two identical strings is attached to a wall. Each string is being pulled tightly by someone at the other end. A transerse pulse is sent traeling along one of the strings. A bit later, an identical pulse is sent traeling along the other string. In order for the second pulse to catch up with the first pulse, the speed of the pulse in the second string must be increased. The speed of the transerse pulse on the second string is gien by Equation 16.2: wae /( m / L). This equation indicates that we can increase the speed of the second pulse by increasing the tension in the string. Thus, the second string must be pulled more tightly. 8. Would it take any time for a transerse wae to trael the length of the mass less rope? Justify your answer. REASONING AND SOLUTION In Section 4.10 the concept of a "massless" rope is discussed. or a truly massless rope, the linear density of the rope, m/l, is zero. rom Equation 16.2, wae /( m / L), the wae speed would be infinite if m/l were zero. Therefore, if the rope were really massless, the speed of transerse waes on the rope would be infinite, and a transerse wae would be instantaneously transmitted from one end of the rope to the other. It would not take any time for a transerse wae to trael the length of a massless rope. 11. A loudspeaker produces a sound wae. Does the waelength of the sound increase, decrease, or remain the same, when the wae traels from air into water? Justify your answer. A loudspeaker produces a sound wae. The sound wae traels from air into water. As indicated in Table 16.1, the speed of sound in water is approximately four times greater than it is in air. We are told in the hint that the frequency of the sound wae does not change as the sound enters the water. The relationship between the frequency f, the waelength, and the speed of a wae is gien by Equation 16.1: f. Since the wae speed increases and the frequency remains the same as the sound enters the water, the waelength of the sound must increase.

5 Problems 2,4,6,12,15,16 page A woman is standing in the ocean, and she notices that after a wae crest passes, fie more crests pass in a time of 50.0 s. The distance between two successie crests is 32 m. Determine the, if possible, the wae s (a) period, (b) frequency, (c) waelength, (d) speed, and (e) amplitude. If it is not possible to determine any of these quantities, then so state. a. The period is the time required for one complete cycle of the wae to pass. The period is also the time for two successie crests to pass the person. b. The frequency is the reciprocal of the period, according to Equation c. The waelength is the horizontal length of one cycle of the wae, or the horizontal distance between two successie crests. d. The speed of the wae is equal to its frequency times its waelength (see Equation 16.1). e. The amplitude A of a wae is the maximum excursion of a water particle from the particle s undisturbed position. SOLUTION a. After the initial crest passes, 5 additional crests pass in a time of 50.0 s. The period T of the wae is 50.0 s T s b. Since the frequency f and period T are related by f = 1/T (Equation 10.5), we hae 1 1 f Hz T 10.0 s

6 4. One tsunami, generated off the Aleutian islands in Alaska, had a waelength of 750 km and traeled a distance of 3700 km in 5.3 hours. (a) What was the speed (in m/s) of the wae? or reference, the speed of the wae a 747 jetliner is about 250 m/s. ind the wae s (b) frequency and (c) period. The speed of a Tsunamis is equal to the distance x it traels diided by the time t it takes for the wae to trael that distance. The frequency f of the wae is equal to its speed diided by the waelength, f = / (Equation 16.1). The period T of the wae is related to its frequency by Equation 10.5, T = 1/f. SOLUTION a. The speed of the wae is (in m/s) x m 1 h t 5.3 h 3600 s m/s b. The frequency of the wae is f 190 m/s Hz m (16.1) c. The period of any wae is the reciprocal of its frequency: T s f Hz (10.5)

7 6. A person lying on an air mattress in the ocean rises and falls through one complete cycle eery fie seconds. The crests of the wae causing motion are 20.0 m apart. Determine (a) the frequency and (b) the speed of the wae. The period of the wae is the same as the period of the person, so T = 5.00 s. a. f = 1/T = Hz (10.5) b. = f = (20.0 m)(0.200 Hz) = 4.00 m/s (16.1) 12. A wire is stretched between two posts. Another wire is stretched between two posts that are twice as far apart. The tension in the wires is the same, and they hae the same mass. A transerse traels on the wire with a speed of 240 m/s. What would be the speed of the wae on the wire? The speed of a transerse wae on a wire is gien by / m/ L (Equation 16.2), where is the tension and m/l is the mass per unit length (or linear density) of the wire. We are gien that and m are the same for the two wires, and that one is twice as long as the other. This information, along with knowledge of the wae speed on the wire, will allow us to determine the speed of the wae on the wire. SOLUTION The speeds on the and wires are: [Longer wire] ml / [Shorter wire] ml / Diiding the expression for by that for gies ml / ml / L L Noting that = 240 m/s and that L = 2L, the speed of the wae on the wire is L 2L 240 m/s 240 m/s m/s L L

8 15. Two wires are parallel, and one is directly aboe the other. Each has a length of 50.0 m and a mass per unit length of kg/m. Howeer, the same tension in a wire A is N, and the tension in wire B is N. Transerse waes pulses are generated simultaneously, one at the left end of the wire A and one at the right end of wire B. The pulses trael towards each other. How much time does it take until the pulses pass each other? Each pulse traels a distance that is gien by t, where is the wae speed and t is the trael time up to the point when they pass each other. The sum of the distances traeled by each pulse must equal the 50.0-m length of the wire, since each pulse starts out from opposite ends of the wires. SOLUTION Using A and B to denote the speeds on either wire, we hae Soling for the time t and using Equation 16.2 A t + B t = 50.0 m m/ L, we find t 50.0 m A B 50.0 m A m / L B m / L 50.0 m N kg/m N kg/m 0.17 s

9 16. The drawing shows two transerse waes traeling on two strings. The linear density of each string is kg/m, and the tension is proided by a 26-N block that is hanging from the string. Determine the speed of the wae in part (a) and part (b) of the drawing. The speed of a transerse wae on a string is gien by / m/ L (Equation 16.2), where is the tension and m/l is the mass per unit length (or linear density) of the string. The strings are identical, so they hae the same mass per unit length. Howeer, the tensions are different. In part (a) of the text drawing, the string supports the entire weight of the 26-N block, so the tension in the string is 26 N. In part (b), the block is supported by the part of the string on the left side of the middle pulley and the part of the string on the right side. Each part supports one-half of the block s weight, or 13 N. Thus, the tension in the string is 13 N. SOLUTION a. The speed of the transerse wae in part (a) of the text drawing is 26 N m/s ml / kg/m b. The speed of the transerse wae in part (b) of the drawing is 13 N m/s ml / kg/m

Chapter 14 Waves and Sound. Copyright 2010 Pearson Education, Inc.

Chapter 14 Waves and Sound. Copyright 2010 Pearson Education, Inc. Chapter 14 Waes and Sound Units of Chapter 14 Types of Waes Waes on a String Harmonic Wae Functions Sound Waes Sound Intensity The Doppler Effect We will leae out Chs. 14.5 and 14.7-14.9. 14-1 Types of

More information

Chapter 16. Waves and Sound

Chapter 16. Waves and Sound Chapter 16 Waes and Sound 16.1 The Nature of Waes 1. A wae is a traeling disturbance. 2. A wae carries energy from place to place. 16.1 The Nature of Waes Transerse Wae 16.1 The Nature of Waes Longitudinal

More information

Physics 11 Chapters 15: Traveling Waves and Sound and 16: Superposition and Standing Waves

Physics 11 Chapters 15: Traveling Waves and Sound and 16: Superposition and Standing Waves Physics 11 Chapters 15: Traeling Waes and Sound and 16: Superposition and Standing Waes We are what we beliee we are. Benjamin Cardozo We would accomplish many more things if we did not think of them as

More information

Physics 11 Chapter 15/16 HW Solutions

Physics 11 Chapter 15/16 HW Solutions Physics Chapter 5/6 HW Solutions Chapter 5 Conceptual Question: 5, 7 Problems:,,, 45, 50 Chapter 6 Conceptual Question:, 6 Problems:, 7,, 0, 59 Q5.5. Reason: Equation 5., string T / s, gies the wae speed

More information

Physics 102 Homework Solutions: Ch 16

Physics 102 Homework Solutions: Ch 16 Physics 0 Hoework Solutions: Ch 6. SSM REASONING Since light behaes as a wae, its speed, requency, and waelength λ are related to according to = λ (Equation 6.). We can sole this equation or the requency

More information

10. Yes. Any function of (x - vt) will represent wave motion because it will satisfy the wave equation, Eq

10. Yes. Any function of (x - vt) will represent wave motion because it will satisfy the wave equation, Eq CHAPER 5: Wae Motion Responses to Questions 5. he speed of sound in air obeys the equation B. If the bulk modulus is approximately constant and the density of air decreases with temperature, then the speed

More information

Chapter 11. Vibrations and Waves

Chapter 11. Vibrations and Waves Chapter 11 Vibrations and Waves Driven Harmonic Motion and Resonance RESONANCE Resonance is the condition in which a time-dependent force can transmit large amounts of energy to an oscillating object,

More information

Simple Harmonic Motion

Simple Harmonic Motion Please get your personal iclicker from its pigeonhole on North wall. Simple Harmonic Motion 0 t Position: x = A cos(ω t + φ) Velocity: x t = (ω A) sin(ω t + φ) { max Acceleration: t = (ω2 A) cos(ω t +

More information

AP Physics 1 Waves and Simple Harmonic Motion Practice Test

AP Physics 1 Waves and Simple Harmonic Motion Practice Test AP Physics 1 Waves and Simple Harmonic Motion Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) An object is attached to a vertical

More information

A wave is a disturbance that propagates energy through a medium without net mass transport.

A wave is a disturbance that propagates energy through a medium without net mass transport. Waes A wae is a disturbance that propagates energy through a medium without net mass transport. Ocean waes proide example of transerse waes in which if we focus on a small olume of water, at a particular

More information

Physics 207 Lecture 28

Physics 207 Lecture 28 Goals: Lecture 28 Chapter 20 Employ the wae model Visualize wae motion Analyze functions of two ariables Know the properties of sinusoidal waes, including waelength, wae number, phase, and frequency. Work

More information

AP physics B - Webreview ch 13 Waves

AP physics B - Webreview ch 13 Waves Name: Class: _ Date: _ AP physics B - Webreview ch 13 Waves Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A large spring requires a force of 150 N to

More information

Chapter 14: Periodic motion

Chapter 14: Periodic motion Chapter 14: Periodic motion Describing oscillations Simple harmonic motion Energy of simple harmonic motion Applications of simple harmonic motion Simple pendulum & physical pendulum Damped oscillations

More information

Chapter 24 & 26. Electromagnetic Waves & Wave Properties. 1. A wave is a traveling disturbance. 2. A wave carries energy from place to place.

Chapter 24 & 26. Electromagnetic Waves & Wave Properties. 1. A wave is a traveling disturbance. 2. A wave carries energy from place to place. Chapter 4 & 6 Electromagnetic Waes & Wae Properties DR JJ UiTM-Cutnell & Johnson 7th ed. 6. The Nature of Waes. A wae is a traeling disturbance.. A wae carries energy from place to place. Waes trael to

More information

Chapter 13, Vibrations and Waves. 1. A large spring requires a force of 150 N to compress it only m. What is the spring constant of the spring?

Chapter 13, Vibrations and Waves. 1. A large spring requires a force of 150 N to compress it only m. What is the spring constant of the spring? CHAPTER 13 1. A large spring requires a force of 150 N to compress it only 0.010 m. What is the spring constant of the spring? a. 125 000 N/m b. 15 000 N/m c. 15 N/m d. 1.5 N/m 2. A 0.20-kg object is attached

More information

WAVES. Wave Equation. Waves Chap 16. So far this quarter. An example of Dynamics Conservation of Energy. Conservation theories. mass energy.

WAVES. Wave Equation. Waves Chap 16. So far this quarter. An example of Dynamics Conservation of Energy. Conservation theories. mass energy. Waes Chap 16 An example of Dynamics Conseration of Energy Conceptual starting point Forces Energy WAVES So far this quarter Conseration theories mass energy momentum angular momentum m E p L All conserations

More information

Lecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves.

Lecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves. Lecture 17 Mechanical waves. Transverse waves. Sound waves. Standing Waves. What is a wave? A wave is a traveling disturbance that transports energy but not matter. Examples: Sound waves (air moves back

More information

Physics 4C Spring 2016 Test 3

Physics 4C Spring 2016 Test 3 Physics 4C Spring 016 Test 3 Name: June 1, 016 Please show your work! Answers are not complete without clear reasoning. When asked for an expression, you must gie your answer in terms of the ariables gien

More information

Oscillatory Motion and Wave Motion

Oscillatory Motion and Wave Motion Oscillatory Motion and Wave Motion Oscillatory Motion Simple Harmonic Motion Wave Motion Waves Motion of an Object Attached to a Spring The Pendulum Transverse and Longitudinal Waves Sinusoidal Wave Function

More information

Physics 1501 Lecture 28

Physics 1501 Lecture 28 Phsics 1501 Lecture 28 Phsics 1501: Lecture 28 Toda s Agenda Homework #10 (due Frida No. 11) Midterm 2: No. 16 Topics 1-D traeling waes Waes on a string Superposition Power Phsics 1501: Lecture 28, Pg

More information

Test 3 Preparation Questions

Test 3 Preparation Questions Test 3 Preparation Questions A1. Which statement is true concerning an object executing simple harmonic motion? (A) Its velocity is never zero. (B) Its acceleration is never zero. (C) Its velocity and

More information

f 1/ T T 1/ f Formulas Fs kx m T s 2 k l T p 2 g v f

f 1/ T T 1/ f Formulas Fs kx m T s 2 k l T p 2 g v f f 1/T Formulas T 1/ f Fs kx Ts 2 m k Tp 2 l g v f What do the following all have in common? Swing, pendulum, vibrating string They all exhibit forms of periodic motion. Periodic Motion: When a vibration

More information

Oscillations - AP Physics B 1984

Oscillations - AP Physics B 1984 Oscillations - AP Physics B 1984 1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of (A) 1 2 (B) (C) 1 1 2 (D) 2 (E) 2 A block oscillates

More information

Lecture #8-6 Waves and Sound 1. Mechanical Waves We have already considered simple harmonic motion, which is an example of periodic motion in time.

Lecture #8-6 Waves and Sound 1. Mechanical Waves We have already considered simple harmonic motion, which is an example of periodic motion in time. Lecture #8-6 Waes and Sound 1. Mechanical Waes We hae already considered simple harmonic motion, which is an example of periodic motion in time. The position of the body is changing with time as a sinusoidal

More information

Topic 4 &11 Review Waves & Oscillations

Topic 4 &11 Review Waves & Oscillations Name: Date: Topic 4 &11 Review Waves & Oscillations 1. A source produces water waves of frequency 10 Hz. The graph shows the variation with horizontal position of the vertical displacement of the surface

More information

Physics 107 TUTORIAL ASSIGNMENT #7

Physics 107 TUTORIAL ASSIGNMENT #7 Physics 07 TUTORIL SSIGNMENT #7 Cutnell & Johnson, 7 th edition Chapter 6: Problems 5, 65, 79, 93 Chapter 7: Problems 7,, 9, 37, 48 Chapter 6 5 Suppose that sound is emitted uniormly in all directions

More information

Standing Waves (stationary waves) interference, nodes, antinodes, wavelength is twice the node-to-node distance

Standing Waves (stationary waves) interference, nodes, antinodes, wavelength is twice the node-to-node distance Standing Waes Doppler Eect Standing Waes (stationary waes) intererence, nodes, antinodes, waelength is twice the node-to-node distance Standing Waes on Strings - string ixed at both end undamental, harmonics,

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 11 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Sound, Decibels, Doppler Effect

Sound, Decibels, Doppler Effect Phys Lectures 3, 33 Sound, Decibels, Doppler Eect Key points: ntensity o Sound: Decibels Doppler Eect Re: -,,7. Page Characteristics o Sound Sound can trael through any kind o matter, but not through a

More information

LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA

LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA CHAPTER 7 THE PRINCIPE OF INEAR SUPERPOSITION AND INTERFERENCE PHENOMENA ANSWERS TO FOCUS ON CONCEPTS QUESTIONS. (d) I we add pulses and 4 as per the principle o linear superposition, the resultant is

More information

AP Physics Free Response Practice Oscillations

AP Physics Free Response Practice Oscillations AP Physics Free Response Practice Oscillations 1975B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is drawn aside through

More information

AP Physics 1 Multiple Choice Questions - Chapter 9

AP Physics 1 Multiple Choice Questions - Chapter 9 1 If an object of mass m attached to a light spring is replaced by one of mass 9m, the frequency of the vibrating system changes by what multiplicative factor? a 1/9 b 1/3 c 3 d 9 e 6 2 A mass of 0.40

More information

Chapter 14 PROBLEM SOLUTIONS Since vlight v sound, the time required for the flash of light to reach the observer is negligible in

Chapter 14 PROBLEM SOLUTIONS Since vlight v sound, the time required for the flash of light to reach the observer is negligible in Chapter 4 PRBLEM LUTN 4. ince light sound, the time required or the lash o light to reach the obserer is negligible in comparison to the time required or the sound to arrie. Thus, we can ignore the time

More information

Oscillations and Waves

Oscillations and Waves Oscillations and Waves Periodic Motion Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring Energy Conservation in Oscillatory

More information

Prashant Patil ( ) PRASHANT PATIL PHYSICS CLASSES NEET/JEE(Main) Date : 19/07/2017 TEST ID: 11 Time : 00:45:00 PHYSICS

Prashant Patil ( ) PRASHANT PATIL PHYSICS CLASSES NEET/JEE(Main) Date : 19/07/2017 TEST ID: 11 Time : 00:45:00 PHYSICS Prashant Patil (99709774) PRASHANT PATIL PHYSICS CLASSES NEET/JEE(Main) Date : 9/07/07 TEST ID: Time : 00:45:00 PHYSICS Marks : 80 5. STATIONARY WAVES Single Correct Answer Type. Stationary waes are set

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

Each of the following questions (1-15) is worth 6 points

Each of the following questions (1-15) is worth 6 points Name: ----------------------------------------------- S. I. D.: ------------------------------------ Physics 0 Final Exam (Version A) Summer 06 HIS EXAM CONAINS 36 QUESIONS. ANSWERS ARE ROUNDED. PICK HE

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 117.3 MIDTERM TEST February 11, 2016 Time: 90 minutes NAME: SOLUTIONS (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION

More information

TRAVELING WAVES. Conceptual Questions v a v b v c. Wave speed is independent of wave amplitude (a)

TRAVELING WAVES. Conceptual Questions v a v b v c. Wave speed is independent of wave amplitude (a) TRAVELING WAVES 0 Conceptual Questions 0.1. a b c. Wae speed is independent o wae amplitude. 0.. (a) T T T 0 cm/s (b) 100 cm/s 4 T 4m (c) cm/s (d) so the speed is unchanged: 00 cm/s. /4 4L 0.3. The constant

More information

Lecture 18. Waves and Sound

Lecture 18. Waves and Sound Lecture 18 Waves and Sound Today s Topics: Nature o Waves Periodic Waves Wave Speed The Nature o Sound Speed o Sound Sound ntensity The Doppler Eect Disturbance Wave Motion DEMO: Rope A wave is a traveling

More information

STANDING WAVES AND RESONANCE

STANDING WAVES AND RESONANCE Name: PHYSICS 119 SPRING 2008 S.N.: SECTION: Experiment 2 PARTNER: DATE: STANDING WAVES AND RESONANCE Objectives Observe standing waves in a stretched string Examine how an external oscillator can cause

More information

Physics 6b Winter 2015 Midterm Test Form D

Physics 6b Winter 2015 Midterm Test Form D Physics 6b Winter 2015 Midterm Test Form D Fill out name and perm number on the scantron. Do not forget to bubble in the Test Form (A, B, C, or, D). At the end, only turn in the scantron. Keep questions/cheat

More information

Physics 6b Winter 2015 Midterm Test Form B

Physics 6b Winter 2015 Midterm Test Form B Physics 6b Winter 2015 Midterm Test Form B Fill out name and perm number on the scantron. Do not forget to bubble in the Test Form (A, B, C, or, D). At the end, only turn in the scantron. Keep questions/cheat

More information

Physics 6b Winter 2015 Midterm Test Form C

Physics 6b Winter 2015 Midterm Test Form C Physics 6b Winter 2015 Midterm Test Form C Fill out name and perm number on the scantron. Do not forget to bubble in the Test Form (A, B, C, or, D). At the end, only turn in the scantron. Keep questions/cheat

More information

Physics 6b Winter 2015 Midterm Test Form A

Physics 6b Winter 2015 Midterm Test Form A Physics 6b Winter 2015 Midterm Test Form A Fill out name and perm number on the scantron. Do not forget to bubble in the Test Form (A, B, C, or, D). At the end, only turn in the scantron. Keep questions/cheat

More information

Chapter 16 Waves in One Dimension

Chapter 16 Waves in One Dimension Chapter 16 Waves in One Dimension Slide 16-1 Reading Quiz 16.05 f = c Slide 16-2 Reading Quiz 16.06 Slide 16-3 Reading Quiz 16.07 Heavier portion looks like a fixed end, pulse is inverted on reflection.

More information

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one 5.1.1 Oscillating Systems Waves Review Checklist 5.1.2 Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one Four pendulums are built as shown

More information

Sound, Decibels, Doppler Effect

Sound, Decibels, Doppler Effect Phys101 Lectures 31, 32 Sound, Decibels, Doppler Effect Key points: Intensity of Sound: Decibels Doppler Effect Ref: 12-1,2,7. Page 1 Characteristics of Sound Sound can trael through any kind of matter,

More information

Physics P201 D. Baxter/R. Heinz. FINAL EXAM December 10, :00 10:00 AM INSTRUCTIONS

Physics P201 D. Baxter/R. Heinz. FINAL EXAM December 10, :00 10:00 AM INSTRUCTIONS Seat # Physics P201 D. Baxter/R. Heinz FINAL EXAM December 10, 2001 8:00 10:00 AM INSTRUCTIONS 1. Sit in SEAT # given above. 2. DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO. 3. Print your name (last

More information

Physics 221: Optical and Thermal Physics Exam 1, Sec. 500, 14 Feb Please fill in your Student ID number (UIN): IMPORTANT

Physics 221: Optical and Thermal Physics Exam 1, Sec. 500, 14 Feb Please fill in your Student ID number (UIN): IMPORTANT Physics 221: Optical and Thermal Physics Exam 1, Sec. 500, 14 Feb. 2005 Instructor: Dr. George R. Welch, 415 Engineering-Physics, 845-7737 Print your name neatly: Last name: First name: Sign your name:

More information

Standing Waves on Strings - string fixed at both end fundamental, harmonics, overtones, modes of vibration (Fig ) Node Antinode N A N A N

Standing Waves on Strings - string fixed at both end fundamental, harmonics, overtones, modes of vibration (Fig ) Node Antinode N A N A N PHYS2 Physics 1 FUNDAMENTALS Module 3 OSCILLATIONS & WAVES Text Physics by Hecht Chapter 11 WAVES Standing Waes Doppler Eect Sections: 11. 11.11 Examples: 11.12 11.13 11.14 11.15 CHECKLIST Standing Waes

More information

SIMPLE HARMONIC MOTION

SIMPLE HARMONIC MOTION WAVES SIMPLE HARMONIC MOTION Simple Harmonic Motion (SHM) Vibration about an equilibrium position in which a restoring force is proportional to the displacement from equilibrium TYPES OF SHM THE PENDULUM

More information

N10/4/PHYSI/SPM/ENG/TZ0/XX PHYSICS STANDARD LEVEL PAPER 1. Monday 8 November 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

N10/4/PHYSI/SPM/ENG/TZ0/XX PHYSICS STANDARD LEVEL PAPER 1. Monday 8 November 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES N1/4/PHYSI/SPM/ENG/TZ/XX 881654 PHYSICS STANDARD LEVEL PAPER 1 Monday 8 Noember 21 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer

More information

Chapter 15 Mechanical Waves

Chapter 15 Mechanical Waves Chapter 15 Mechanical Waves 1 Types of Mechanical Waves This chapter and the next are about mechanical waves waves that travel within some material called a medium. Waves play an important role in how

More information

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by amplitude (how far do the bits move from their equilibrium positions? Amplitude of MEDIUM)

More information

TYPES OF WAVES. 4. Waves and Sound 1

TYPES OF WAVES. 4. Waves and Sound 1 TYPES OF WAVES Consider a set of playground swings attached by a rope from seat to seat If you sit in the first swing and begin oscillating, this disturbs the equilibrium The connecting ropes cause the

More information

EXAM 1. WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark

EXAM 1. WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark EXAM 1 WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark Autumn 2018 Name: Each multiple-choice question is worth 3 marks. 1. A light beam is deflected by two mirrors, as shown. The incident beam

More information

LECTURE 5 WAVES ON STRINGS & HARMONIC WAVES. Instructor: Kazumi Tolich

LECTURE 5 WAVES ON STRINGS & HARMONIC WAVES. Instructor: Kazumi Tolich LECTURE 5 WAVES ON STRINGS & HARMONIC WAVES Instructor: Kazumi Tolich Lecture 5 2 Reading chapter 14.2 14.3 Waves on a string Speed of waves on a string Reflections Harmonic waves Speed of waves 3 The

More information

A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion

A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion 1. Simple harmonic motion and the greenhouse effect (a) A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion. 1. 2. (b) In a simple model

More information

Homework Book. Wave Properties. Huijia Physics Homework Book 1 Semester 2. Name: Homeroom: Physics Class:

Homework Book. Wave Properties. Huijia Physics Homework Book 1 Semester 2. Name: Homeroom: Physics Class: Homework Book Wave Properties Huijia Physics Homework Book 1 Semester 2 Name: Homeroom: Physics Class: Week 1 Reflection, Refraction, wave equations 1. If the wavelength of an incident wave is 1.5cm and

More information

Standing waves [49 marks]

Standing waves [49 marks] Standing waves [49 marks] 1. The graph shows the variation with time t of the velocity v of an object undergoing simple harmonic motion (SHM). At which velocity does the displacement from the mean position

More information

Chapter 11 Collision Theory

Chapter 11 Collision Theory Chapter Collision Theory Introduction. Center o Mass Reerence Frame Consider two particles o masses m and m interacting ia some orce. Figure. Center o Mass o a system o two interacting particles Choose

More information

Family Name: Given Name: Student number:

Family Name: Given Name: Student number: Family Name: Given Name: Student number: Academic Honesty: In accordance with the Academic Honesty Policy (T0.02), academic dishonesty in any form will not be tolerated. Prohibited acts include, but are

More information

SOUND. Representative Sample Physics: Sound. 1. Periodic Motion of Particles PLANCESS CONCEPTS

SOUND. Representative Sample Physics: Sound. 1. Periodic Motion of Particles PLANCESS CONCEPTS Representative Sample Physics: Sound SOUND 1. Periodic Motion of Particles Before we move on to study the nature and transmission of sound, we need to understand the different types of vibratory or oscillatory

More information

Get Solution of These Packages & Learn by Video Tutorials on WAVES ON A STRING

Get Solution of These Packages & Learn by Video Tutorials on  WAVES ON A STRING WVES ON STRING WVES Wae motion is the phenomenon that can be obsered almost eerywhere around us, as well it appears in almost eery branch o physics. Surace waes on bodies o mater are commonly obsered.

More information

(Total 1 mark) IB Questionbank Physics 1

(Total 1 mark) IB Questionbank Physics 1 1. A transverse wave travels from left to right. The diagram below shows how, at a particular instant of time, the displacement of particles in the medium varies with position. Which arrow represents the

More information

9.1 Harmonic Motion. Motion in cycles. linear motion - motion that goes from one place to another without repeating.

9.1 Harmonic Motion. Motion in cycles. linear motion - motion that goes from one place to another without repeating. 9.1 Harmonic Motion A bicyclist pedaling past you on the street moves in linear motion. Linear motion gets us from one place to another (Figure 9.1A). This chapter is about another kind of motion called

More information

Wave Motion A wave is a self-propagating disturbance in a medium. Waves carry energy, momentum, information, but not matter.

Wave Motion A wave is a self-propagating disturbance in a medium. Waves carry energy, momentum, information, but not matter. wae-1 Wae Motion A wae is a self-propagating disturbance in a medium. Waes carr energ, momentum, information, but not matter. Eamples: Sound waes (pressure waes) in air (or in an gas or solid or liquid)

More information

Physics 231 Lecture 27

Physics 231 Lecture 27 Physics 31 Lecture 7 Concepts for today s lecture Wae speed for a string / μ : tension; μ m /L. Sound intensity I β 10log 10 I 0 IP/A, I 0 μ 1x10-1 W/m Spherical waes Here P is the string tension I and

More information

Chapter 16 Traveling Waves

Chapter 16 Traveling Waves Chapter 16 Traveling Waves GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms as it is used in physics,

More information

41. If you dribble a basketball with a frequency of 1.77 Hz, how long does it take for you to complete 12 dribbles?

41. If you dribble a basketball with a frequency of 1.77 Hz, how long does it take for you to complete 12 dribbles? Phys 111 Exam 3 41. If you dribble a basketball with a frequency of 1.77 Hz, how long does it take for you to complete 12 dribbles? A. 6.78 s B. 21.2 s C. 0.32 s D. 42.5 s E. 1.07 s 42. A 0.46-kg mass

More information

1. a) A flag waving in the breeze flaps once each s. What is the period and frequency of the flapping flag?

1. a) A flag waving in the breeze flaps once each s. What is the period and frequency of the flapping flag? PHYSICS 20N UNIT 4 REVIEW NAME: Be sure to show explicit formulas and substitutions for all calculational questions, where appropriate. Round final answers correctly; give correct units. Be sure to show

More information

8. What is the period of a pendulum consisting of a 6-kg object oscillating on a 4-m string?

8. What is the period of a pendulum consisting of a 6-kg object oscillating on a 4-m string? 1. In the produce section of a supermarket, five pears are placed on a spring scale. The placement of the pears stretches the spring and causes the dial to move from zero to a reading of 2.0 kg. If the

More information

Virbations and Waves

Virbations and Waves Virbations and Waves 1.1 Observe and find a pattern Try the following simple experiments and describe common patterns concerning the behavior of the block. (a) Fill in the table that follows. Experiment

More information

4. What is the speed (in cm s - 1 ) of the tip of the minute hand?

4. What is the speed (in cm s - 1 ) of the tip of the minute hand? Topic 4 Waves PROBLEM SET Formative Assessment NAME: TEAM: THIS IS A PRACTICE ASSESSMENT. Show formulas, substitutions, answers, and units! Topic 4.1 Oscillations A mass is attached to a horizontal spring.

More information

Waves,!Sound! and!light!!module! Studio4style!Class

Waves,!Sound! and!light!!module! Studio4style!Class Next%Generation%Physical%Science% and%everyday%thinking%! Waves,!Sound! and!light!!module! Studio4style!Class! ! Next%Generation%Physical%Science% and%everyday%thinking%! Waves,%Sound%and% Light%Module%

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Consider the wave shown in Figure 13-4

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Consider the wave shown in Figure 13-4 Exam 4 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Consider the wave shown in Figure 13-4 1) Figure 13-4 The amplitude is A) 8 m. B) 2

More information

CHAPTER 11 VIBRATIONS AND WAVES

CHAPTER 11 VIBRATIONS AND WAVES CHAPTER 11 VIBRATIONS AND WAVES http://www.physicsclassroom.com/class/waves/u10l1a.html UNITS Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Period and Sinusoidal Nature of SHM The

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics 0 Saskatchewan High School Physics Scholarship Competition May 8, 0 Time: 90 minutes This competition is based on the Saskatchewan

More information

Lecture 4 Notes: 06 / 30. Energy carried by a wave

Lecture 4 Notes: 06 / 30. Energy carried by a wave Lecture 4 Notes: 06 / 30 Energy carried by a wave We want to find the total energy (kinetic and potential) in a sine wave on a string. A small segment of a string at a fixed point x 0 behaves as a harmonic

More information

Wave Motions and Sound

Wave Motions and Sound EA Notes (Scen 101), Tillery Chapter 5 Wave Motions and Sound Introduction Microscopic molecular vibrations determine temperature (last Chapt.). Macroscopic vibrations of objects set up what we call Sound

More information

Question 1. [14 Marks]

Question 1. [14 Marks] 5 Question 1. [14 Marks] R r T θ A string is attached to the drum (radius r) of a spool (radius R) as shown in side and end views here. (A spool is device for storing string, thread etc.) A tension T is

More information

Physics 240: Worksheet 24 Name:

Physics 240: Worksheet 24 Name: () Cowboy Ryan is on the road again! Suppose that he is inside one of the many caerns that are found around the Whitehall area of Montana (which is also, by the way, close to Wheat Montana). He notices

More information

Physics 101 Hour Exam 3 December 2, 2013

Physics 101 Hour Exam 3 December 2, 2013 Physics 101 Hour Exam 3 December 2, 2013 Last Name: First Name ID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. Calculators cannot be share Please keep

More information

Physics General Physics. Lecture 25 Waves. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 25 Waves. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 25 Waves Fall 2016 Semester Prof. Matthew Jones 1 Final Exam 2 3 Mechanical Waves Waves and wave fronts: 4 Wave Motion 5 Two Kinds of Waves 6 Reflection of Waves When

More information

Physics 11 HW #9 Solutions

Physics 11 HW #9 Solutions Phyic HW #9 Solution Chapter 6: ocu On Concept: 3, 8 Problem: 3,, 5, 86, 9 Chapter 7: ocu On Concept: 8, Problem:,, 33, 53, 6 ocu On Concept 6-3 (d) The amplitude peciie the maximum excurion o the pot

More information

Centripetal force. Objectives. Assessment. Assessment. Equations. Physics terms 5/13/14

Centripetal force. Objectives. Assessment. Assessment. Equations. Physics terms 5/13/14 Centripetal force Objecties Describe and analyze the motion of objects moing in circular motion. Apply Newton s second law to circular motion problems. Interpret free-body force diagrams. 1. A race car

More information

2/11/2006 Doppler ( F.Robilliard) 1

2/11/2006 Doppler ( F.Robilliard) 1 2//2006 Doppler ( F.obilliard) Deinition o Terms: The requency o waes can be eected by the motion o either the source,, or the receier,, o the waes. This phenomenon is called the Doppler Eect. We will

More information

Unit 7: Oscillations

Unit 7: Oscillations Text: Chapter 15 Unit 7: Oscillations NAME: Problems (p. 405-412) #1: 1, 7, 13, 17, 24, 26, 28, 32, 35 (simple harmonic motion, springs) #2: 45, 46, 49, 51, 75 (pendulums) Vocabulary: simple harmonic motion,

More information

Worksheet #12 Standing waves. Beats. Doppler effect.

Worksheet #12 Standing waves. Beats. Doppler effect. Worksheet #12 1. The second harmonic sinusoidal standing wave in a pipe with both ends open has a wavelength of 5.00 m. The sound speed is 343 m/s. (a) How many nodes and anti-nodes are there in the displacement

More information

1. Types of Waves. There are three main types of waves:

1. Types of Waves. There are three main types of waves: Chapter 16 WAVES I 1. Types of Waves There are three main types of waves: https://youtu.be/kvc7obkzq9u?t=3m49s 1. Mechanical waves: These are the most familiar waves. Examples include water waves, sound

More information

PHYSICS I1 EXAM 3 FALL 2005

PHYSICS I1 EXAM 3 FALL 2005 PHYSCS 1 EXAM 3 FALL 2005 37. A 0.02 kg mass is attached to a massless spring as shown to the right and vibrates with simple harmonic motion with an amplitude of 5.0 cm. The spring constant is 300 Nlm.

More information

Oscillations and Waves

Oscillations and Waves Oscillations and Waves Oscillation: Wave: Examples of oscillations: 1. mass on spring (eg. bungee jumping) 2. pendulum (eg. swing) 3. object bobbing in water (eg. buoy, boat) 4. vibrating cantilever (eg.

More information

NARAYANA JUNIOR COLLEGE

NARAYANA JUNIOR COLLEGE SR IIT ALL STREAMS ADV MODEL DPT-6 Date: 18/04/2016 One (or) More Than One Answer Type: PHYSICS 31. A particle is executing SHM between points -X m and X m, as shown in figure-i. The velocity V(t) of the

More information

Physics 6B. Practice Midterm #1 Solutions

Physics 6B. Practice Midterm #1 Solutions Physics 6B Practice Midterm #1 Solutions 1. A block of plastic with a density of 90 kg/m 3 floats at the interface between of density 850 kg/m 3 and of density 1000 kg/m 3, as shown. Calculate the percentage

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations 14-1 Oscillations of a Spring If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

Spring 2000 HIGHER STILL. Physics. Student Materials Advanced Higher. Summary Notes Unit 3 Wave Phenomena. Physics (AH): Mechanics - Student Materials

Spring 2000 HIGHER STILL. Physics. Student Materials Advanced Higher. Summary Notes Unit 3 Wave Phenomena. Physics (AH): Mechanics - Student Materials Spring 2000 HIGHER STILL Physics Student Materials Adanced Higher Summary Notes Unit 3 Wae Phenomena Physics (AH): Mechanics - Student Materials WAVE PHENOMENA The Content Statements for this unit are

More information

Chapter 16 Waves in One Dimension

Chapter 16 Waves in One Dimension Lecture Outline Chapter 16 Waves in One Dimension Slide 16-1 Chapter 16: Waves in One Dimension Chapter Goal: To study the kinematic and dynamics of wave motion, i.e., the transport of energy through a

More information