Sound Intensity. Sound Level. Doppler Effect. Ultrasound. Applications

Size: px
Start display at page:

Download "Sound Intensity. Sound Level. Doppler Effect. Ultrasound. Applications"

Transcription

1 Lecture 20 Sound Hearing Sound Intensity Sound Leel Doppler Eect Ultrasound Applications

2 Sound Waes Sound Waes (Longitudinal waes) When a gas, liquid or solid is mechanically disturbed Sound waes are produced Speed o sound in a material depends on physical properties o material (e.g. density, temperature) When sound encounters a boundary between substances, some energy is relected Relection makes ultrasound imaging possible

3 Sound Waes Speed o sound in materials Depends on Phase o the material Characteristics o the material (such as density, elasticity & temperature) In general V solids > V liquids > V gases Greater in solids because molecules interact more strongly with each other Greater in rigid materials Material Speed (ms -1 ) Air 344 Gases Helium 965 Water 1450 Liquids Blood 1570 Body Tissue 1570 Solids Copper 3750 Glass 5000 Iron 5000 Helium has a lower density than air. Resonant requencies o ocal caity increase. Spectral distribution o sounds shit to higher requencies -timbre o sound changes

4 Sound Waes Speed o sound () Depends on elasticity and density Solid bar E E Young s Modulus density Liquid B B bulk modulus Gas kt m C p speciic heat constant pressure C speciic heat constant olume m molecular mass k Boltzmann s constant T temperature (Kelin) c c p

5 Calculate the speed o sound in air at 20 o C =1.4. Boltzmann s constant =1.38x10-23 J/K Mass o air molecule = 47.97x10-27 kg V kt m ( J / K)[( ) K] kg V 343.6ms 1

6 Waes Speed o sound The speed o sound in water is 4.2 times the speed o sound in air. A whistle on land produces a sound wae with requency. 0 When this sound wae enters water, its requency is: a) b) 0 c) 0 /4.2 d) Not enough inormation gien

7 Sound Waes Hearing Sound wae enters the ear. Forces exerted on eardrum due to air pressure ariations cause it to ibrate. three small bones (hammer, anil, and stirrup) in the middle ear transmit orces to luid illed inner ear (cochlea) through the oal window (small area compared with eardrum) result pressure x 17 The motion o the luid disturbs hair cells within the inner ear, which transmit nere impulses to the brain corresponding to the sound heard. Outer ear Middle Inner ear hammer anil Oal window Cochlea sound Ear canal stirrup ear drum Ear can detect ery low intensity sounds

8 Sound Waes All waes carry energy Audible sound waes carries ery little energy Ear can detect extremely low intensity sounds Power output: Talk 10-5 W Talk 24 hours a day non-stop or 114 years 10 6 hours Total energy output is (10-5 W)(10 6 hrs) =10 Wh Equialent to quantity o energy consumed by a 100W bulb in 6 minutes

9 Intensity Waes (energy) spread out rom source Intensity (I) o a wae is deined as Energy (E) carried per unit time per unit area (A) I E/ t A thereore Sound Waes I P A Power (P) Unit o intensity: Watt per square metre (Wm -2 ) P E t Sunlight intensity at Earth 10 3 Wm -2 Human ear can detect extremely low intensities Wm -2 Maximum intensity without ear damage 1Wm -2 Large range logarithmic units useul

10 Intensity Hearing Human ear can detect extremely low intensities Wm -2 Maximum intensity without ear damage 1 Wm -2 Large range logarithmic units useul Human perception I we listen to two sounds (I 1 and I 2 ) and I 2 seems twice as loud as I 1 Measure intensities I 2 is approximately 6 to 10 times I 1 Conenient scale to measure loudness is the logarithm o the intensity

11 Sound Waes Perceied loudness is roughly Logarithmic Ear response to sound logarithmic not linear Decibel scale or intensity used Sound (Intensity) leel in decibels (b) b I0 10 I 10log10 I Wm where (threshold o hearing at 1000Hz) decibel (b) is a relatie sound leel measurement Threshold o discomort = 1 Wm -2 Aboe this pain is experienced and there is potential or long term damage

12 Hearing Sensitiity o ear Can detect sound intensity o Wm -2 Corresponds to pressure ariation o 3x10-5 Pa (Atm. Pressure 101,325 Pa) Random luctuation due to thermal motion o molecules 5x10-6 Pa Sensitiity: essentially due to mechanical layout Area ratio: ear drum to oal window 17 hammer, anil and stirrup ampliication 2 canal resonance at 3kHz pressure increase 2 Total pressure ampliication 17x2x2 = 68 Intensity ( pressure ) Intensity increases by actor o 68 2 = Brain: discriminatory role Filters unwanted noise Suppression: non-awareness o background noise ear is not equally sensitie at all requencies

13 Sound leels and Intensities Sound leel (db) Intensity (Wm -2 ) Sounds 0 1x10-12 Threshold o hearing 10 1x x x10-9 Quiet home 40 1x10-8 computer 50 1x x10-6 Normal conersation 70 1x10-5 Busy traic 80 1x10-4 Loud radio 90 1x x x10-1 Sound Waes Rock concert 140 1x10 2 Jet airplane at 30m 160 1x10 4 Bursting eardrums b I 10log10 I0 Computer 10 times louder than quiet room Does not seem so because o the logarithmic response o the ear

14 Sound leels and Intensities D a n g e r H e a r i n g l o s s Damage Threshold 5 hours/week at > 89dB damage ater 5 years > 100dB deemed hazardous 10 minutes at 120dB Temporarily changes your threshold o hearing rom 0dB to 30dB

15 Sound Waes (a) Calculate the sound leel in db o a sound intensity 10-8 Wm -2 (b) Calculate the intensity in Wm -2 o a sound leel o 80 db I (a) b 10log10 I Wm b 10log Wm b 4 10log d b (b) log I 10 I0 8 log I 10 I0 I I I Wm 10 Wm I 10 Wm 4 2

16 Sound Waes Hearing ability Loudness is a method o describing the acoustic pressure (or the intensity) o a gien sound Intensity hearing range: Wm -2 1Wm db Ability to hear is not only a unction o intensity but also requency Humans Frequency range: 20 Hz 20 khz Dogs: up to 50 khz Dolphins: up to 250 khz. Bats: up to 120 khz

17 Intensity W/m Intensity Leel db Sound Waes Pain threshold Hearing ability Hearing threshold k 10k 20k Hz requency Hearing ability as a unction o intensity and requency. The blue solid line is the pure tone threshold cure, below which the subject does not hear. Ear most sensitie at 3000 Hz Pain threshold almost requency independent

18 Waes Example A bat can hear sound requencies up to 120,000 Hz. What is the waelength o sound in the air at this requency? 1 344ms , 000Hz 3 metres =.287cms High requency short waelength Wae only disturbed by objects with dimensions similar to or greater than the waelength Smaller objects hae little eect Bats use ultrasound or naigation Can distinguish between insect and alling lea

19 Sound Waes Traeling waes transer energy rom one place to another Sound energy dissipates to thermal energy when sound traels in air. Higher requency sounds dissipate more quickly, so lower requency sounds trael urther. Examples oghorns hae a low requency Elephants communicate oer long distances (up to 4 km), requencies as low as 14 Hz

20 Sound Waes Doppler Eect Change in obsered requency depends on the relatie motion o the source and obserer. Occurs with all types o waes most notable sound waes, light waes. Christian Doppler Austrian Physicist, Mathematician Perceied pitch (or requency) o a moing sound source changes as it goes past Longer Lower stationary Shorter higher moing

21 Waes Obsered requency or a moing source obserer wae wae + sign: source moing away rom obserer - sign: source moing towards obserer source source Stationary source, moing obserer obserer wae wae obserer source +sign: obserer moing towards source - sign: obserer moing away rom source = Frequency = Speed

22 Waes Example: Moing Source A police car with a 1000 Hz siren is moing at 20 ms -1. What requency is heard by a stationary listener when the police car is: a) Moing away rom b) approaching the listener (a) obserer wae wae source source 1 344ms obserer 1000Hz 945Hz ms 20ms (b) obserer wae wae source source 1 344ms obserer 1000Hz 1062Hz ms 20ms

23 Waes Example (moing obserer) A stationary siren has a requency o 1000 Hz. What requency will be heard by driers o cars moing at 15 ms -1? a) away rom the siren? b) toward the siren? (a) w o o w ms 15ms o 1000Hz 956Hz 1 344ms s (b) o w w o s ms 15ms o 1000Hz 1044Hz 1 344ms

24 Waes Doppler eect can be used to measure speed obserer wae wae source source Radar measures Doppler shit to determine speed o car compares requency o relected wae rom car and with that emitted rom source Similarly ultrasound can measure blood speed, etal heart motion.

25 Ultrasound Frequency greater than range o human hearing Sound with requencies aboe 20 khz Normally 1 MHz 20MHz Diagnostics Therapeutic Quality control

26 Ultrasound Medical applications Ultrasound probe passed oer region o interest Relections o ultrasound pulses rom patients occur at interaces between dierent tissues Good contrast: relected rom boundaries between materials o nearly the same density Relection time proides depth inormation Image constructed rom echo and position inormation Medical ultrasound without harmul eects intensity kept low ( 10-2 Wm -2 ) to aoid tissue damage Ultrasound scanning during pregnancy Doppler eect with ultrasound can be used to detect etal heart beats pulsation o artery walls

27 Ultrasound Other uses in medicine Destructie eects Intense ultrasound produces large density and pressure changes Results Large stresses Molecules are orced to moe rapidly Heat is produced in most materials Bubbles o apour are ormed (caitation) Auto-ocusing cameras computes time taken (and hence distance o subject) or the relected ultrasonic sound wae to reach the camera lens position and then sets ocus accordingly.

28 Dental applications Ultrasound Teeth cleaning Plaque, ilm o ood and bacteria, builds up on teeth. Not remoed, it hardens into tartar. ultrasonic scalar It consists o a ultrasound probe with a small tip. The ultrasound in combination with water low eectie in plaque and tartar remoal Measurement o dental erosion Non destructie method or measuring enamel thickness, pulse-echo measurements

29 Ultrasound Why use ultrasound---not audible sound Smallest detail obserable one waelength Example Ultrasound speed =1500m/s in tissue. Using an ultrasound requency o 2MHz, calculate (a) smallest detail isible (b) time or relected wae to return to probe rom a depth o 10cm (a) 1500 m / s Hz = 0.75mm (b) time or relected wae to return to probe t s 20.10m ms sec

Sound, Decibels, Doppler Effect

Sound, Decibels, Doppler Effect Phys Lectures 3, 33 Sound, Decibels, Doppler Eect Key points: ntensity o Sound: Decibels Doppler Eect Re: -,,7. Page Characteristics o Sound Sound can trael through any kind o matter, but not through a

More information

Sound, Decibels, Doppler Effect

Sound, Decibels, Doppler Effect Phys101 Lectures 31, 32 Sound, Decibels, Doppler Effect Key points: Intensity of Sound: Decibels Doppler Effect Ref: 12-1,2,7. Page 1 Characteristics of Sound Sound can trael through any kind of matter,

More information

Chapter 16. Waves and Sound

Chapter 16. Waves and Sound Chapter 16 Waes and Sound 16.1 The Nature of Waes 1. A wae is a traeling disturbance. 2. A wae carries energy from place to place. 16.1 The Nature of Waes Transerse Wae 16.1 The Nature of Waes Longitudinal

More information

Chapter 14 PROBLEM SOLUTIONS Since vlight v sound, the time required for the flash of light to reach the observer is negligible in

Chapter 14 PROBLEM SOLUTIONS Since vlight v sound, the time required for the flash of light to reach the observer is negligible in Chapter 4 PRBLEM LUTN 4. ince light sound, the time required or the lash o light to reach the obserer is negligible in comparison to the time required or the sound to arrie. Thus, we can ignore the time

More information

Physics Mechanics. Lecture 34 Waves and sound II

Physics Mechanics. Lecture 34 Waves and sound II 1 Physics 170 - Mechanics Lecture 34 Waves and sound II 2 Sound Waves Sound waves are pressure waves in solids, liquids, and gases. They are longitudinal in liquids and gases, and may have transverse components

More information

Physics 207 Lecture 28

Physics 207 Lecture 28 Goals: Lecture 28 Chapter 20 Employ the wae model Visualize wae motion Analyze functions of two ariables Know the properties of sinusoidal waes, including waelength, wae number, phase, and frequency. Work

More information

LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA

LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA CHAPTER 7 THE PRINCIPE OF INEAR SUPERPOSITION AND INTERFERENCE PHENOMENA ANSWERS TO FOCUS ON CONCEPTS QUESTIONS. (d) I we add pulses and 4 as per the principle o linear superposition, the resultant is

More information

is a What you Hear The Pressure Wave sets the Ear Drum into Vibration.

is a What you Hear The Pressure Wave sets the Ear Drum into Vibration. is a Pressure Wae is a What you Hear The ear conerts sound energy to mechanical energy to a nere impulse which is transmitted to the brain. The Pressure Wae sets the Ear Drum into Vibration. Drum to Stirrup:

More information

Longitudinal Waves. Reading: Chapter 17, Sections 17-7 to Sources of Musical Sound. Pipe. Closed end: node Open end: antinode

Longitudinal Waves. Reading: Chapter 17, Sections 17-7 to Sources of Musical Sound. Pipe. Closed end: node Open end: antinode Longitudinal Waes Reading: Chapter 7, Sections 7-7 to 7-0 Sources o Musical Sound Pipe Closed end: node Open end: antinode Standing wae pattern: Fundamental or irst harmonic: nodes at the ends, antinode

More information

Exam 3 Review. F P av A. m V

Exam 3 Review. F P av A. m V Chapter 9: luids Learn the physics o liquids and gases. States o Matter Solids, liquids, and gases. Exam 3 Reiew ressure a ascal s rinciple change in pressure at any point in a conined luid is transmitted

More information

Honors Classical Physics I

Honors Classical Physics I Honors Classical Physics I PHY141 ecture 32 ound Waes Please set your clicker to channel 21 ecture 32 1 Bosch 36W column loudspeaker polar pattern Monsoon Flat Panel speaker: (5 db grid) 400 Hz: Real oudspeakers

More information

Lecture 18. Sound Waves: Intensity, Interference, Beats and Doppler Effect.

Lecture 18. Sound Waves: Intensity, Interference, Beats and Doppler Effect. Lecture 18 Sound Waes: Intensity, Interference, Beats and Doppler Effect. Speed of sound Speed of soun in air, depends on temperature: = (331 + 0.60 T ) m/s where T in C Sound intensity leel β = 10log

More information

Lecture 18. Waves and Sound

Lecture 18. Waves and Sound Lecture 18 Waves and Sound Today s Topics: Nature o Waves Periodic Waves Wave Speed The Nature o Sound Speed o Sound Sound ntensity The Doppler Eect Disturbance Wave Motion DEMO: Rope A wave is a traveling

More information

Page # Physics 103: Lecture 26 Sound. Lecture 26, Preflight 2. Lecture 26, Preflight 1. Producing a Sound Wave. Sound from a Tuning Fork

Page # Physics 103: Lecture 26 Sound. Lecture 26, Preflight 2. Lecture 26, Preflight 1. Producing a Sound Wave. Sound from a Tuning Fork Physics 103: Lecture 6 Sound Producing a Sound Wave Sound waves are longitudinal waves traveling through a medium A tuning fork can be used as an example of producing a sound wave A tuning fork will produce

More information

Physics 107 TUTORIAL ASSIGNMENT #7

Physics 107 TUTORIAL ASSIGNMENT #7 Physics 07 TUTORIL SSIGNMENT #7 Cutnell & Johnson, 7 th edition Chapter 6: Problems 5, 65, 79, 93 Chapter 7: Problems 7,, 9, 37, 48 Chapter 6 5 Suppose that sound is emitted uniormly in all directions

More information

Physics 231 Lecture 27

Physics 231 Lecture 27 Physics 31 Lecture 7 Concepts for today s lecture Wae speed for a string / μ : tension; μ m /L. Sound intensity I β 10log 10 I 0 IP/A, I 0 μ 1x10-1 W/m Spherical waes Here P is the string tension I and

More information

SOUND AND HEARING. = BkA and Bk is constant gives pmax1 / A1 = pmax2 / A2 p Pa p. = BkA and solve for A. fba. 10 Pa) (1480 m s) 10 Pa) (1000 Hz)

SOUND AND HEARING. = BkA and Bk is constant gives pmax1 / A1 = pmax2 / A2 p Pa p. = BkA and solve for A. fba. 10 Pa) (1480 m s) 10 Pa) (1000 Hz) OUND AND HEARING 6 6 IDENTIFY and ET UP: Eq() gies the waelength in terms o the requency Use Eq(6) to relate the pressure and displacement amplitudes EXECUTE: (a) λ = / = (44 m/s)/000 Hz = 044 m (b) p

More information

2/11/2006 Doppler ( F.Robilliard) 1

2/11/2006 Doppler ( F.Robilliard) 1 2//2006 Doppler ( F.obilliard) Deinition o Terms: The requency o waes can be eected by the motion o either the source,, or the receier,, o the waes. This phenomenon is called the Doppler Eect. We will

More information

Standing Waves (stationary waves) interference, nodes, antinodes, wavelength is twice the node-to-node distance

Standing Waves (stationary waves) interference, nodes, antinodes, wavelength is twice the node-to-node distance Standing Waes Doppler Eect Standing Waes (stationary waes) intererence, nodes, antinodes, waelength is twice the node-to-node distance Standing Waes on Strings - string ixed at both end undamental, harmonics,

More information

1. Intensity of Periodic Sound Waves 2. The Doppler Effect

1. Intensity of Periodic Sound Waves 2. The Doppler Effect 1. Intenity o Periodic Sound Wae. The Doppler Eect 1-4-018 1 Objectie: The tudent will be able to Deine the intenity o the ound wae. Deine the Doppler Eect. Undertand ome application on ound 1-4-018 3.3

More information

Chapter 14 Waves and Sound. Copyright 2010 Pearson Education, Inc.

Chapter 14 Waves and Sound. Copyright 2010 Pearson Education, Inc. Chapter 14 Waes and Sound Units of Chapter 14 Types of Waes Waes on a String Harmonic Wae Functions Sound Waes Sound Intensity The Doppler Effect We will leae out Chs. 14.5 and 14.7-14.9. 14-1 Types of

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XII Sound sound waves Doppler effect Standing waves Light Reflection and refraction Lightning Review Last lecture: 1. Vibration and waves Hooke s law Potential energy

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XII Sound sound waves Doppler effect Standing waves Light Reflection and refraction http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Vibration

More information

PHYSICS 231 Sound PHY 231

PHYSICS 231 Sound PHY 231 PHYSICS 231 Sound 1 Sound: longitudinal waves A sound wave consist o longitudinal oscillations in the pressure o the medium that carries the sound wave. Thereore, in vacuum: there is no sound. 2 Relation

More information

Sound Waves SOUND VIBRATIONS THAT TRAVEL THROUGH THE AIR OR OTHER MEDIA WHEN THESE VIBRATIONS REACH THE AIR NEAR YOUR EARS YOU HEAR THE SOUND.

Sound Waves SOUND VIBRATIONS THAT TRAVEL THROUGH THE AIR OR OTHER MEDIA WHEN THESE VIBRATIONS REACH THE AIR NEAR YOUR EARS YOU HEAR THE SOUND. SOUND WAVES Objectives: 1. WHAT IS SOUND? 2. HOW DO SOUND WAVES TRAVEL? 3. HOW DO PHYSICAL PROPERTIES OF A MEDIUM AFFECT THE SPEED OF SOUND WAVES? 4. WHAT PROPERTIES OF WAVES AFFECT WHAT WE HEAR? 5. WHAT

More information

Get Solution of These Packages & Learn by Video Tutorials on SOUND WAVES

Get Solution of These Packages & Learn by Video Tutorials on  SOUND WAVES Get Solution of These Packages & Learn by Video Tutorials on www.mathsbysuhag.com. PROPAGATION OF SOUND WAVES : Sound is a mechanical three dimensional and longitudinal wae that is created by a ibrating

More information

LECTURE 8 DOPPLER EFFECT AND SHOCK WAVES

LECTURE 8 DOPPLER EFFECT AND SHOCK WAVES LECTURE 8 DOPPLER EFFECT AND SHOCK WAVES 15.7 The Doppler effect Sound waves from a moving source A stationary source and a moving observer The Doppler effect for light waves Frequency shift on reflection

More information

Medical Imaging Physics Spring Quarter Week 3-2

Medical Imaging Physics Spring Quarter Week 3-2 Medical Imaging Physics Spring Quarter Week 3-2 Ultrasound Daor Balzar balzar@du.edu www.du.edu/~balzar Outline Ultrasound Light, Eyes and Vision Reading assignment: CSG 12; D 15 Homework D 12: 5,6 and

More information

SIMPLE HARMONIC MOTION AND WAVES

SIMPLE HARMONIC MOTION AND WAVES Simple Harmonic Motion (SHM) SIMPLE HARMONIC MOTION AND WAVES - Periodic motion any type of motion that repeats itself in a regular cycle. Ex: a pendulum swinging, a mass bobbing up and down on a spring.

More information

KEY TERMS. compression rarefaction pitch Doppler effect KEY TERMS. intensity decibel resonance KEY TERMS

KEY TERMS. compression rarefaction pitch Doppler effect KEY TERMS. intensity decibel resonance KEY TERMS CHAPTER 12 SECTION 1 Sound Waves Summary The frequency of a sound wave determines its pitch. The speed of sound depends on the medium. The relative motion between the source of waves and an observer creates

More information

Nicholas J. Giordano. Chapter 13 Sound

Nicholas J. Giordano.  Chapter 13 Sound Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 13 Sound Sound Sounds waves are an important example of wave motion Sound is central to hearing, speech, music and many other daily activities

More information

Sound. Speed of Sound

Sound. Speed of Sound Sound TUNING FORK CREATING SOUND WAVES GUITAR STRING CREATING SOUND WAVES Speed of Sound Sound travels at a speed that depends on the medium through which it propagates. The speed of sound depends: - directly

More information

PHYSICS 220. Lecture 21. Textbook Sections Lecture 21 Purdue University, Physics 220 1

PHYSICS 220. Lecture 21. Textbook Sections Lecture 21 Purdue University, Physics 220 1 PHYSICS 220 Lecture 21 Sound Textbook Sections 13.1 13.7 Lecture 21 Purdue University, Physics 220 1 Overview Last Lecture Interference and Diffraction Constructive, destructive Diffraction: bending of

More information

Lecture 23 Sound Beats Sound Solids and Fluids

Lecture 23 Sound Beats Sound Solids and Fluids Lecture 23 Sound Beats Sound Solids and Fluids To round out our discussion of interference and waves, we should talk about beats. When you combine two waves (sound is a good example), if the frequencies

More information

Producing a Sound Wave. Chapter 14. Using a Tuning Fork to Produce a Sound Wave. Using a Tuning Fork, cont.

Producing a Sound Wave. Chapter 14. Using a Tuning Fork to Produce a Sound Wave. Using a Tuning Fork, cont. Producing a Sound Wave Chapter 14 Sound Sound waves are longitudinal waves traveling through a medium A tuning fork can be used as an example of producing a sound wave Using a Tuning Fork to Produce a

More information

Sound Waves. Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects.

Sound Waves. Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects. Sound Waves Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects Introduction Sound Waves: Molecular View When sound travels through a medium, there

More information

TRAVELING WAVES. Conceptual Questions v a v b v c. Wave speed is independent of wave amplitude (a)

TRAVELING WAVES. Conceptual Questions v a v b v c. Wave speed is independent of wave amplitude (a) TRAVELING WAVES 0 Conceptual Questions 0.1. a b c. Wae speed is independent o wae amplitude. 0.. (a) T T T 0 cm/s (b) 100 cm/s 4 T 4m (c) cm/s (d) so the speed is unchanged: 00 cm/s. /4 4L 0.3. The constant

More information

Standing Waves on Strings - string fixed at both end fundamental, harmonics, overtones, modes of vibration (Fig ) Node Antinode N A N A N

Standing Waves on Strings - string fixed at both end fundamental, harmonics, overtones, modes of vibration (Fig ) Node Antinode N A N A N PHYS2 Physics 1 FUNDAMENTALS Module 3 OSCILLATIONS & WAVES Text Physics by Hecht Chapter 11 WAVES Standing Waes Doppler Eect Sections: 11. 11.11 Examples: 11.12 11.13 11.14 11.15 CHECKLIST Standing Waes

More information

due to striking, rubbing, Any vibration of matter spinning, plucking, etc. Find frequency first, then calculate period.

due to striking, rubbing, Any vibration of matter spinning, plucking, etc. Find frequency first, then calculate period. Equilibrium Position Disturbance Period (T in sec) # sec T = # cycles Frequency (f in Hz) f = # cycles # sec Amplitude (A in cm, m or degrees [θ]) Other Harmonic Motion Basics Basic Definitions Pendulums

More information

Chap 12. Sound. Speed of sound is different in different material. Depends on the elasticity and density of the medium. T v sound = v string =

Chap 12. Sound. Speed of sound is different in different material. Depends on the elasticity and density of the medium. T v sound = v string = Chap 12. Sound Sec. 12.1 - Characteristics of Sound Sound is produced due to source(vibrating object and travels in a medium (londitudinal sound waves and can be heard by a ear (vibrations. Sound waves

More information

Lecture 14 1/38 Phys 220. Final Exam. Wednesday, August 6 th 10:30 am 12:30 pm Phys multiple choice problems (15 points each 300 total)

Lecture 14 1/38 Phys 220. Final Exam. Wednesday, August 6 th 10:30 am 12:30 pm Phys multiple choice problems (15 points each 300 total) Lecture 14 1/38 Phys 220 Final Exam Wednesday, August 6 th 10:30 am 12:30 pm Phys 114 20 multiple choice problems (15 points each 300 total) 75% will be from Chapters 10-16 25% from Chapters 1-9 Students

More information

Lecture #8-6 Waves and Sound 1. Mechanical Waves We have already considered simple harmonic motion, which is an example of periodic motion in time.

Lecture #8-6 Waves and Sound 1. Mechanical Waves We have already considered simple harmonic motion, which is an example of periodic motion in time. Lecture #8-6 Waes and Sound 1. Mechanical Waes We hae already considered simple harmonic motion, which is an example of periodic motion in time. The position of the body is changing with time as a sinusoidal

More information

Physics 11 Chapters 15: Traveling Waves and Sound and 16: Superposition and Standing Waves

Physics 11 Chapters 15: Traveling Waves and Sound and 16: Superposition and Standing Waves Physics 11 Chapters 15: Traeling Waes and Sound and 16: Superposition and Standing Waes We are what we beliee we are. Benjamin Cardozo We would accomplish many more things if we did not think of them as

More information

TYPES OF WAVES. 4. Waves and Sound 1

TYPES OF WAVES. 4. Waves and Sound 1 TYPES OF WAVES Consider a set of playground swings attached by a rope from seat to seat If you sit in the first swing and begin oscillating, this disturbs the equilibrium The connecting ropes cause the

More information

Physic 231 Lecture 35

Physic 231 Lecture 35 Physic 31 Lecture 35 Main points o last lecture: Waves transverse longitudinal traveling waves v wave λ Wave speed or a string v F µ Superposition and intererence o waves; wave orms interere. Relection

More information

SoundWaves. Lecture (2) Special topics Dr.khitam Y, Elwasife

SoundWaves. Lecture (2) Special topics Dr.khitam Y, Elwasife SoundWaves Lecture (2) Special topics Dr.khitam Y, Elwasife VGTU EF ESK stanislovas.staras@el.vgtu.lt 2 Mode Shapes and Boundary Conditions, VGTU EF ESK stanislovas.staras@el.vgtu.lt ELEKTRONIKOS ĮTAISAI

More information

1. How does the sound produced by a vibrating object in a medium reach your ear?

1. How does the sound produced by a vibrating object in a medium reach your ear? 1. How does the sound produced by a vibrating object in a medium reach your ear? The vibrating object produces a series of compressions and rarefactions, one after the other in the medium. These pulses

More information

Physics 102 Homework Solutions: Ch 16

Physics 102 Homework Solutions: Ch 16 Physics 0 Hoework Solutions: Ch 6. SSM REASONING Since light behaes as a wae, its speed, requency, and waelength λ are related to according to = λ (Equation 6.). We can sole this equation or the requency

More information

Wave Motion A wave is a self-propagating disturbance in a medium. Waves carry energy, momentum, information, but not matter.

Wave Motion A wave is a self-propagating disturbance in a medium. Waves carry energy, momentum, information, but not matter. wae-1 Wae Motion A wae is a self-propagating disturbance in a medium. Waes carr energ, momentum, information, but not matter. Eamples: Sound waes (pressure waes) in air (or in an gas or solid or liquid)

More information

Chapter 1 Fundamentals of Sound Waves -1

Chapter 1 Fundamentals of Sound Waves -1 Chapter 1 Fundamentals of Sound Waves -1 Sound Sections What is Sound? Producing a Sound Wave Characteristics of Sound Waves The Speed of Sound Intensity of Sound Waves What is Sound? Sound is such a common

More information

S 1 S 2 A B C. 7/25/2006 Superposition ( F.Robilliard) 1

S 1 S 2 A B C. 7/25/2006 Superposition ( F.Robilliard) 1 P S S S 0 x S A B C 7/5/006 Superposition ( F.Robilliard) Superposition of Waes: As we hae seen preiously, the defining property of a wae is that it can be described by a wae function of the form - y F(x

More information

Sound waves. Content. Chapter 21. objectives. objectives. When we use Sound Waves. What are sound waves? How they work.

Sound waves. Content. Chapter 21. objectives. objectives. When we use Sound Waves. What are sound waves? How they work. Chapter 21. Sound wae Content 21.1 Propagation o ound wae 21.2 Source o ound 21.3 Intenity o ound 21.4 Beat 21.5 Doppler eect 1 2 objectie a) explain the propagation o ound wae in air in term o preure

More information

Chapter 6. Wave Motion. Longitudinal and Transverse Waves

Chapter 6. Wave Motion. Longitudinal and Transverse Waves Chapter 6 Waves We know that when matter is disturbed, energy emanates from the disturbance. This propagation of energy from the disturbance is know as a wave. We call this transfer of energy wave motion.

More information

Lectures Chapter 16 (Cutnell & Johnson, Physics 7 th edition)

Lectures Chapter 16 (Cutnell & Johnson, Physics 7 th edition) PH 201-4A spring 2007 Waves and Sound Lectures 26-27 Chapter 16 (Cutnell & Johnson, Physics 7 th edition) 1 Waves A wave is a vibrational, trembling motion in an elastic, deformable body. The wave is initiated

More information

Chapter 2 SOUND WAVES

Chapter 2 SOUND WAVES Chapter SOUND WAVES Introduction: A sound wave (or pressure or compression wave) results when a surface (layer of molecules) moves back and forth in a medium producing a sequence of compressions C and

More information

Sound. Extra Practice: C14.1, 14.1, 14.3, 14.5, 14.9, 14.11, 14.13, 14.15, 14.17, 14.19

Sound. Extra Practice: C14.1, 14.1, 14.3, 14.5, 14.9, 14.11, 14.13, 14.15, 14.17, 14.19 Sound Extra Practice: C14.1, 14.1, 14.3, 14.5, 14.9, 14.11, 14.13, 14.15, 14.17, 14.19 Reminders! WebAssign: Better your grade by requesting manual extensions on old assignments (50% recovery). Last homework:

More information

Sound Intensity and Sound Level *

Sound Intensity and Sound Level * OpenStax-CNX module: m42257 1 Sound Intensity and Sound Level * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Dene intensity, sound

More information

the ability to do work or cause change (work is force exerted on an object causing it to move a distance)

the ability to do work or cause change (work is force exerted on an object causing it to move a distance) Vocabulary Terms - Energy energy the ability to do work or cause change (work is force exerted on an object causing it to move a distance) heat Heat is a form of energy that flows between two substances

More information

Wave Motions and Sound

Wave Motions and Sound EA Notes (Scen 101), Tillery Chapter 5 Wave Motions and Sound Introduction Microscopic molecular vibrations determine temperature (last Chapt.). Macroscopic vibrations of objects set up what we call Sound

More information

Thermodynamics continued

Thermodynamics continued Chapter 15 Thermodynamics continued 15 Work The area under a pressure-volume graph is the work for any kind of process. B Pressure A W AB W AB is positive here volume increases Volume Clicker Question

More information

NEW HORIZON SCHOOL WORKSHEETS TERM 2 SESSION [CLASS 9] Physics

NEW HORIZON SCHOOL WORKSHEETS TERM 2 SESSION [CLASS 9] Physics Physics GRAVITATION 1. Pascal is a unit of a) pressure b) force c) linear momentum d) energy 2. The buoyant force on a body acts in a a) vertically downward direction b) vertically upward direction c)

More information

12.3 The Doppler Effect

12.3 The Doppler Effect 12.3 The Doppler Effect Doppler Effect Fire engine doppler effect video Car doppler effect video Doppler Effect The pitch (frequency) of the horn of a passing car changes from high to low. This is due

More information

LECTURE 7 ENERGY AND INTENSITY. Instructor: Kazumi Tolich

LECTURE 7 ENERGY AND INTENSITY. Instructor: Kazumi Tolich LECTURE 7 ENERGY AND INTENSITY Instructor: Kazumi Tolich Lecture 7 2 15.5 Energy and intensity Circular, spherical, and plane waves Power, energy, and intensity 15.6 Loudness of sound The decibel scale

More information

Origin of Sound. Those vibrations compress and decompress the air (or other medium) around the vibrating object

Origin of Sound. Those vibrations compress and decompress the air (or other medium) around the vibrating object Sound Each celestial body, in fact each and every atom, produces a particular sound on account of its movement, its rhythm or vibration. All these sounds and vibrations form a universal harmony in which

More information

1. A wave is a traveling disturbance. 2. A wave carries energy from place to place.

1. A wave is a traveling disturbance. 2. A wave carries energy from place to place. v = fλ 1. A wave is a traveling disturbance. 2. A wave carries energy from place to place. Transverse Wave Longitudinal Wave How is a guitar made to create different notes/pitches/frequencies? A wave s

More information

Chapter 20: Mechanical waves

Chapter 20: Mechanical waves Chapter 20: Mechanical waes! How do bats see in the dark?! How can you transmit energy without transmitting matter?! Why does the pitch o a train whistle change as it approaches or leaes a station? Make

More information

What is a wave? Waves

What is a wave? Waves What is a wave? Waves Waves What is a wave? A wave is a disturbance that carries energy from one place to another. Classifying waves 1. Mechanical Waves - e.g., water waves, sound waves, and waves on strings.

More information

Marketed and Distributed By FaaDoOEngineers.com

Marketed and Distributed By FaaDoOEngineers.com WAVES GUPTA CLASSES For any help contact: 995368795, 968789880 Nishant Gupta, D-, Prashant vihar, Rohini, Delhi-85 Waves Wave motion A wave motion is a kind of disturbance which is transferred from one

More information

Physics 101: Lecture 22 Sound

Physics 101: Lecture 22 Sound EXAM III Physics 101: Lecture 22 Sound Today s lecture will cover Textbook Chapter 12 Physics 101: Lecture 22, Pg 1 Standing Waves Fixed Endpoints Fundamental n=1 (2 nodes) l n = 2L/n f n = n v / (2L)

More information

Lecture 5 Notes: 07 / 05. Energy and intensity of sound waves

Lecture 5 Notes: 07 / 05. Energy and intensity of sound waves Lecture 5 Notes: 07 / 05 Energy and intensity of sound waves Sound waves carry energy, just like waves on a string do. This energy comes in several types: potential energy due to the compression of the

More information

WAVE MOTION. Synopsis :

WAVE MOTION. Synopsis : WAE MOTION Synopsis : 1 Sound is a form of energy produced by a vibrating body, which requires medium to travel Sound travels in the form of waves 3 The audiable sound has frequency range 0 Hz to 0 khz

More information

CLASS 2 CLASS 2. Section 13.5

CLASS 2 CLASS 2. Section 13.5 CLASS 2 CLASS 2 Section 13.5 Simple Pendulum The simple pendulum is another example of a system that exhibits simple harmonic motion The force is the component of the weight tangent to the path of motion

More information

Tute W3 : SOUND 1. n = 10 log 10 I 2

Tute W3 : SOUND 1. n = 10 log 10 I 2 Tute W3 : SOUND 1 Some phenomena in nature can vary over an extremely large range of intensities and so it is convenient to define a logarithmic scale to describe them. An example is earthquakes, that

More information

PHYSICS 231 Sound PHY 231

PHYSICS 231 Sound PHY 231 PHYSICS 231 Sound 1 Travelling (transverse) waves The wave moves to the right, but each point makes a simple harmonic vertical motion oscillation position y position x wave Since the oscillation is in

More information

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G)

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G) 42 TRAVELING WAVES 1. Wave progagation Source Disturbance Medium (D) Speed (E) Traveling waves (F) Mechanical waves (G) Electromagnetic waves (D) (E) (F) (G) 2. Transverse Waves have the classic sinusoidal

More information

Last Name First Name Date

Last Name First Name Date Last Name irst Name Date 16.1 The Nature of Waes 16.2 Periodic Waes 16.3 The Speed of a Wae in a String Conceptual Questions 1,2,3,7, 8, 11 page 503 Problems 2, 4, 6, 12, 15, 16 page 501-502 Types of Waes

More information

Speed of Sound, Frequency, and. Wavelength

Speed of Sound, Frequency, and. Wavelength OpenStax-CNX module: m42256 1 Speed of Sound, Frequency, and * Wavelength OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Dene pitch.

More information

17 SOUND. Introduction. Chapter Outline

17 SOUND. Introduction. Chapter Outline Chapter 17 Sound 867 17 SOUND Figure 17.1 Hearing is an important human sense that can detect frequencies of sound, ranging between 20 Hz and 20 khz. However, other species have very different ranges of

More information

PHYSICS. Chapter 16 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 16 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 16 Lecture RANDALL D. KNIGHT 2017 Pearson Education, Inc. Chapter 16 Traveling Waves IN THIS CHAPTER, you will learn the basic properties

More information

Introduction to Acoustics. Phil Joseph

Introduction to Acoustics. Phil Joseph Introduction to Acoustics Phil Joseph INTRODUCTION TO ACOUSTICS Sound and Noise Sound waves Frequency, wavelength and wavespeed Point sources Sound power and intensity Wave reflection Standing waves Measures

More information

Reflection & Transmission

Reflection & Transmission Reflection & Transmission when end is fixed, reflected wave in inverted when end is free to move, reflected wave is not inverted General Physics 2 Waves & Sound 1 Reflection & Transmission when a wave

More information

PHY132 Introduction to Physics II Class 2 Outline: i-clicker Discussion Question

PHY132 Introduction to Physics II Class 2 Outline: i-clicker Discussion Question PHY132 Introduction to Physics II Class 2 Outline: Waves in 2-D and 3-D Spherical waves and plane waves Index of Refraction Power, Intensity and Decibels The Doppler Effect QuickCheck 20.6 i-clicker Discussion

More information

Physics 101: Lecture 22 Sound

Physics 101: Lecture 22 Sound EXAM III Physics 101: Lecture 22 Sound Today s lecture will cover Textbook Chapter 12 Physics 101: Lecture 22, Pg 1 Speed of Sound Recall for pulse on string: v = sqrt(t / m) For fluids: v = sqrt(b/r)

More information

Each of the following questions (1-15) is worth 6 points

Each of the following questions (1-15) is worth 6 points Name: ----------------------------------------------- S. I. D.: ------------------------------------ Physics 0 Final Exam (Version A) Summer 06 HIS EXAM CONAINS 36 QUESIONS. ANSWERS ARE ROUNDED. PICK HE

More information

Chapter 8 Review, Understanding pages Knowledge

Chapter 8 Review, Understanding pages Knowledge Chapter 8 Review, pages 408 413 Knowledge 1. (b) 2. (c) 3. (d) 4. (a) 5. (c) 6. (b) 7. (c) 8. (a) 9. (b) 10. (d) 11. (d) 12. (c) 13. (a) 14. (a) (iv) (b) (ii) (c) (v) (d) (iii) (e) (i) 15. Answers may

More information

Superposition and Standing Waves

Superposition and Standing Waves 8 Superposition and Standing Waes CHPTER OUTLINE 8. Superposition and Intererence 8. Standing Waes 8.3 Standing Waes in a String Fixed at Both Ends 8. Resonance 8.5 Standing Waes in ir Columns 8.6 Standing

More information

Chapter 20: Mechanical Waves

Chapter 20: Mechanical Waves Chapter 20: Mechanical Waves Section 20.1: Observations: Pulses and Wave Motion Oscillation Plus Propagation Oscillation (or vibration): Periodic motion (back-and-forth, upand-down) The motion repeats

More information

Chapters 11 and 12. Sound and Standing Waves

Chapters 11 and 12. Sound and Standing Waves Chapters 11 and 12 Sound and Standing Waves The Nature of Sound Waves LONGITUDINAL SOUND WAVES Speaker making sound waves in a tube The Nature of Sound Waves The distance between adjacent condensations

More information

Structure of Biological Materials

Structure of Biological Materials ELEC ENG 3BA3: Structure of Biological Materials Notes for Lecture #19 Monday, November 22, 2010 6.5 Nuclear medicine imaging Nuclear imaging produces images of the distribution of radiopharmaceuticals

More information

During part of the journey the car is driven at a constant speed for five minutes.

During part of the journey the car is driven at a constant speed for five minutes. The figure below shows the horizontal forces acting on a car. (a) Which one of the statements describes the motion of the car? Tick one box. It will be slowing down. It will be stationary. It will have

More information

1 f = Τ. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by

1 f = Τ. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by 1 f = Τ amplitude (how far do the bits move from their equilibrium positions? Amplitude

More information

WAVES. Wave Equation. Waves Chap 16. So far this quarter. An example of Dynamics Conservation of Energy. Conservation theories. mass energy.

WAVES. Wave Equation. Waves Chap 16. So far this quarter. An example of Dynamics Conservation of Energy. Conservation theories. mass energy. Waes Chap 16 An example of Dynamics Conseration of Energy Conceptual starting point Forces Energy WAVES So far this quarter Conseration theories mass energy momentum angular momentum m E p L All conserations

More information

Chapter 8: Wave Motion. Homework #4 Reminder. But what moves? Wave properties. Waves can reflect. Waves can pass through each other

Chapter 8: Wave Motion. Homework #4 Reminder. But what moves? Wave properties. Waves can reflect. Waves can pass through each other Homework #4 Reminder Chap. 6 Concept: 36 Problems 14, 18 Chap. 8 Concept: 8, 12, 30, 34 Problems 2, 10 Chapter 8: Wave Motion A wave is a sort of motion But unlike motion of particles A propagating disturbance

More information

1169T2/2001. Question 1 ( marks)

1169T2/2001. Question 1 ( marks) 1169T2/2001 1 Question 1 ( marks) a) Write the equations of two traelling waes, y 1 (x,t) and y 2 (x,t), which, when they superpose, produce a standing wae. State the amplitude, waelength and frequency

More information

EF 152 Exam 2 - Fall, 2016 Page 1 Copy 223

EF 152 Exam 2 - Fall, 2016 Page 1 Copy 223 EF 152 Exam 2 - Fall, 2016 Page 1 Copy 223 Instructions Do not open the exam until instructed to do so. Do not leave if there is less than 5 minutes to go in the exam. When time is called, immediately

More information

Chapter 17: Waves II. Sound waves are one example of Longitudinal Waves. Sound waves are pressure waves: Oscillations in air pressure and air density

Chapter 17: Waves II. Sound waves are one example of Longitudinal Waves. Sound waves are pressure waves: Oscillations in air pressure and air density Sound waves are one example of Longitudinal Waves Sound waves are pressure waves: Oscillations in air pressure and air density Before we can understand pressure waves in detail, we need to understand what

More information

Unit 4 Waves and Sound Waves and Their Properties

Unit 4 Waves and Sound Waves and Their Properties Lesson35.notebook May 27, 2013 Unit 4 Waves and Sound Waves and Their Properties Today's goal: I can explain the difference between transverse and longitudinal waves and their properties. Waves are a disturbances

More information

Physics 11. Unit 7 (Part 2) The Physics of Sound

Physics 11. Unit 7 (Part 2) The Physics of Sound Physics 11 Unit 7 (Part 2) The Physics of Sound 1. Sound waves As introduced in the previous section, sound is one of the many types of waves we encounter in our daily lives. It possesses the properties

More information

SOUND. Responses to Questions

SOUND. Responses to Questions SOUND Responses to Questions. Sound exhibits several phenomena that give evidence that it is a wave. ntererence is a wave phenomenon, and sound produces intererence (such as beats). Diraction is a wave

More information

Physics 240: Worksheet 24 Name:

Physics 240: Worksheet 24 Name: () Cowboy Ryan is on the road again! Suppose that he is inside one of the many caerns that are found around the Whitehall area of Montana (which is also, by the way, close to Wheat Montana). He notices

More information