Lecture 14 1/38 Phys 220. Final Exam. Wednesday, August 6 th 10:30 am 12:30 pm Phys multiple choice problems (15 points each 300 total)

Size: px
Start display at page:

Download "Lecture 14 1/38 Phys 220. Final Exam. Wednesday, August 6 th 10:30 am 12:30 pm Phys multiple choice problems (15 points each 300 total)"

Transcription

1 Lecture 14 1/38 Phys 220 Final Exam Wednesday, August 6 th 10:30 am 12:30 pm Phys multiple choice problems (15 points each 300 total) 75% will be from Chapters % from Chapters 1-9 Students needing accommodations must contact me by July 30 th Equation Sheet will be provided Practice Exam and Equation Sheet on course website

2 Lecture 14 2/38 Phys 220 Physics Topics Kinematics Forces, Torque, and Work Conservation of Energy Conservation of Momentum (Linear & Angular) Density and Pressure Harmonic Motion Traveling Waves Standing Waves

3 Lecture 14 3/38 Phys 220 Standing Waves Standing waves are formed by interference of two waves traveling in opposite directions Waves travel along the string and are reflected from the ends Points where the string displacement is zero are called nodes largest are called antinodes Many standing waves may fit into n = 1 the length of the string n = 2 n = 3 n 2L n n 1, 2,3,

4 Lecture 14 4/38 Phys 220 Standing Waves Fixed endpoints Fundamental frequency means n=1 v = f n = 1 n = 2 n 2L n n = 3 nv f n 2L f n = n f 1 No energy is transmitted by a standing wave n = 4

5 Lecture 14 5/38 Phys 220 Harmonics Longest wavelength has smallest frequency fundamental frequency (f 1 ) which means n=1 Next longest wavelength second harmonic (f 2 ) n=2 Pattern continues n = 1 n = 2 n 2L n nv f n 2L n = 3 Note that these above equations are only valid for standing waves on a string fixed at both ends n = 4 f n n f 1

6 Musical Tones Lecture 14 6/38 Phys 220 Many musical instruments use strings as a vibrating element Your fingers press down on the string and changes its length The string vibrates with all the possible standing wave pattern frequencies The pitch of note is determined by its fundamental frequency Two notes whose fundamental frequencies differ by a factor of 2 are said to be separated by an octave Combination of harmonics determine sound of instruments Each instrument have different frequencies that are loud and others that are quiet, etc.

7 Lecture 14 7/38 Phys 220 Seismic Waves Seismic waves propagate through the Earth Source can be any large mechanical disturbance such as an earthquake Three types of seismic waves S waves (S for shear) transverse waves P waves (P for pressure) longitudinal sound waves Surface waves similar to water waves Seismic waves can be detected by a seismograph

8 Lecture 14 8/38 Phys 220 Sound Waves Sound waves are an important example of wave motion Differences in pressure can be modeled by a wave Formed by the vibration of the speaker Particles move back and forth to form areas of low and high pressure Overall particles move away from the source Most sounds are a combination of many frequencies

9 Lecture 14 9/38 Phys 220 Speed of Sound Adjacent regions of high pressure are separated by a distance equal to the wavelength Adjacent regions of low pressure are also separated by the wavelength The speed of the sound wave is given by v f The velocity of the wave and the velocity of the particles within the medium are not the same The speed of sound depends on the medium the wave Medium Speed (m/s) is traveling through Air 343 In a gas, the speed of sound Helium 1000 also depends on temperature of the gas: Water 1480 v sound ( T 20 C) m/s Steel 5790

10 Lecture 14 10/38 Phys 220 Intensity and Pitch For Sound Waves I = p 2 0 / (2 r v) (p o is the pressure amplitude) Proportional to p 2 0 Loudness Loudness perception is logarithmic Threshold for hearing I 0 = W/m 2 b = (10 db) log 10 ( I / I 0 ) b 2 b 1 = (10 db) log 10 (I 2 /I 1 ) Pitch Perception of frequency

11 Lecture 14 11/38 Phys 220 Decibels Sound intensity level b b = (10 db) log 10 ( I / I 0 ) Units: Bels (Named after A.G. Bell) I I W/m W/m A ratio of 10 7 indicates a sound intensity of 7 bels or 70 decibels (db) An intensity of 0 db corresponds to the hearing threshold Intensity increase by factor 10 intensity level adds 10 db Adding 3 db to the intensity level doubles the intensity (log 10 2=0.3) Alexander Graham Bell ( ) b (10 db)log 10 I I 0

12 Lecture 14 12/38 Phys 220 Human Perception of Sound The lowest line plots the intensity of the minimum detectable sound as a function of the frequency Doubling the perceived loudness corresponds to moving from one contour line to the next The highest contour curve has a loudness at which the ear is damaged Occurs at β 120 db The loudness contours depend on frequency Frequency range of normal human hearing is 20 Hz to 20 khz Sound waves below 20 Hz are called infrasonic Sound waves above 20 khz are called ultrasonic

13 Lecture 14 13/38 Phys 220 Question If 1 person can shout with loudness 50 db. How loud will it be when 100 people shout? A) 52 db B) 70 db C) 150 db b 100 b 1 = (10 db) log 10 (I 100 /I 1 ) b 100 = b 1 +(10 db) log 10 (I 100 /I 1 ) b 100 = 50 + (10 db) log 10 (100/1) b 100 = 50 + (10 db) log 10 (100) b 100 =

14 Lecture 14 14/38 Phys 220 Standing Sound Waves Pipe open (or closed) at both ends 2 n (n = 1, 2, 3, ) n L f n nv 2L sound

15 Lecture 14 15/38 Phys 220 Standing Sound Waves Pipe open at one end 4L (n = 1, 3, 5, ) n n f n nv 4L sound

16 Lecture 14 16/38 Phys 220 Demo Standing Waves

17 Lecture 14 17/38 Phys 220 Standing Waves in Pipes Open at both ends: Pressure node at end = (2L)/n (n=1,2,3,...) Open at one end: Pressure antinode at closed end = (4L)/n (n=1,3,5,...)

18 Lecture 14 18/38 Phys 220 Demo Standing Waves in a Gas

19 Lecture 14 19/38 Phys 220 Organ Pipe Example A 0.9 m organ pipe (open at both ends) is measured to have it s n=2 harmonic at a frequency of 382 Hz. What is the speed of sound in the pipe? Pressure node at each end. = 2 L / n n=1,2,3.. = L for n=2 harmonic f = v / v = f = (382 s -1 ) (0.9 m) = 343 m/s

20 Lecture 14 20/38 Phys 220 Question What happens to the fundamental frequency of a closed pipe, if the air (v=343 m/s) is replaced by helium (v=972 m/s)? A) Increases B) Same C) Decreases

21 Lecture 14 21/38 Phys 220 Demo Monochord

22 Lecture 14 22/38 Phys 220 Timbre Timbre is the combination of standing waves of different frequencies in an the instrument depends on the mix of frequencies different for different instruments and how the instrument is played Fourier decomposition Fundamental + Overtones

23 Lecture 14 23/38 Phys 220 Superposition & Interference Consider two harmonic waves A and B meeting at x=0. Same amplitudes, but 2 = 1.15 x 1. The displacement versus time for each is shown below: A( 1 t) B( 2 t) What does C(t) = A(t) + B(t) look like?

24 Lecture 14 24/38 Phys 220 Superposition & Interference Consider two harmonic waves A and B meeting at x=0. Same amplitudes, but 2 = 1.15 x 1. The displacement versus time for each is shown below: A( 1 t) B( 2 t) C(t) = A(t) + B(t) DESTRUCTIVE INTERFERENCE CONSTRUCTIVE INTERFERENCE

25 Lecture 14 25/38 Phys 220 Beats Add two cosines and remember the identity: Acos( 1t) Acos( 2t) 2Acos( L t) Acos( H t) 1 1 where L ( 1 2 ) and H ( 1 2) 2 2 cos( L t) Beat Frequency: beat 2 L or f beat f

26 Lecture 14 26/38 Phys 220 Beat Frequency Two different waves with close frequencies Amplitudes must be similar The frequency of the oscillations is the beat frequency, ƒ beat f beat f 1 f 2 Beats can be used to tune musical instruments

27 Lecture 14 27/38 Phys 220 Question What is the beat frequency given these two frequencies? A) 6 Hz B) 7 Hz C) -2 Hz D) 3 Hz Two sound waves are shown at the right. The first frequency is 250 Hz. The second frequency is 253 Hz.

28 Lecture 14 28/38 Phys 220 Doppler Effect Moving Source When source is coming toward you (v s > 0) Distance between waves decreases Frequency increases When source is going away from you (v s < 0) Distance between waves increases Frequency decreases f obs f source 1 1 v v source sound source moving towards + source moving away

29 Lecture 14 29/38 Phys 220 Question A police car passes you with its siren on. The frequency of the sound you hear from its siren after the car passes A) Increases B) Decreases C) Same

30 Lecture 14 30/38 Phys 220 Doppler Effect Moving Observer When moving toward source (v o < 0) Distance between waves decreases Frequency increases When moving away from source (v o > 0) Distance between waves increases Frequency decreases v f obs fsource 1 v obs sound + moving towards source moving away from source

31 Lecture 14 31/38 Phys 220 Moving Observer and Source Combine moving observer and moving source equations Frequency is increased when moving toward each other Frequency is decreased when moving away from each other f obs f source v 1 v v 1 v obs sound source sound moving towards + on top, on bottom (1 + v obs /v sound ) on top (1 v source /v sound ) on bottom moving away on top, + on bottom (1 v obs /v sound ) on top (1 + v source /v sound ) on bottom

32 Lecture 14 32/38 Phys 220 Demo Doppler Effect

33 Lecture 14 33/38 Phys 220 Question A: You are driving along the highway at 65 mph, and behind you a police car, also traveling at 65 mph, has its siren turned on. B: You and the police car have both pulled over to the side of the road, but the siren is still turned on. In which case, is the observed frequency of the siren higher? A) Case A B) Case B C) same f v f v s v o

34 Lecture 14 34/38 Phys 220 Doppler Effect Example: Speed Gun A speed gun uses the Doppler effect with reflected electromagnetic waves to measure the speed of a moving object As the initial waves hit the object, it acts like a moving observer For the scattered rays, the object acts like a moving source The speed gun uses the Dopplershifted frequency to deduce the speed of the object

35 Lecture 14 35/38 Phys 220 Doppler Effect Example: Bats Bats employ an approach similar to the speed gun Bats generate pulses of ultrasonic waves These waves are reflected and the bat uses the reflected sound to judge its environment

36 Lecture 14 36/38 Phys 220 Shock Waves The speed of the wave s source can be greater than the speed of the wave When the source moves at or faster than the speed of the wave, the pressure in front of the object piles up along a conic envelope As many different sound waves arrive at a point on the envelope, they produce a very loud sound intensity and form a shock wave

37 Lecture 14 37/38 Phys 220 Ultrasound Images Ultrasonic imaging uses sound waves to obtain images inside a material The most familiar use is to produce views inside the human body The depth of objects inside the body is determined by the time it takes the reflected ray to return to the detector Some medical ultrasounds also use the Doppler effect

38 Lecture 14 38/38 Phys 220 If a car is not moving, the sound waves from the horn move out evenly, as shown in the figure below. Question Where is the frequency higher for a stationary observer if the car is moving to the right? A) at the blue side B) at the red side C) both sides see the same frequency The car is moving to the right, and the sound waves from the horn move out from the car, as shown above.

PHYSICS 220. Lecture 21. Textbook Sections Lecture 21 Purdue University, Physics 220 1

PHYSICS 220. Lecture 21. Textbook Sections Lecture 21 Purdue University, Physics 220 1 PHYSICS 220 Lecture 21 Sound Textbook Sections 13.1 13.7 Lecture 21 Purdue University, Physics 220 1 Overview Last Lecture Interference and Diffraction Constructive, destructive Diffraction: bending of

More information

Nicholas J. Giordano. Chapter 13 Sound

Nicholas J. Giordano.  Chapter 13 Sound Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 13 Sound Sound Sounds waves are an important example of wave motion Sound is central to hearing, speech, music and many other daily activities

More information

Physics 101: Lecture 22 Sound

Physics 101: Lecture 22 Sound EXAM III Physics 101: Lecture 22 Sound Today s lecture will cover Textbook Chapter 12 Physics 101: Lecture 22, Pg 1 Standing Waves Fixed Endpoints Fundamental n=1 (2 nodes) l n = 2L/n f n = n v / (2L)

More information

Physics 101: Lecture 22 Sound

Physics 101: Lecture 22 Sound EXAM III Physics 101: Lecture 22 Sound Today s lecture will cover Textbook Chapter 12 Physics 101: Lecture 22, Pg 1 Speed of Sound Recall for pulse on string: v = sqrt(t / m) For fluids: v = sqrt(b/r)

More information

Sound Waves. Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects.

Sound Waves. Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects. Sound Waves Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects Introduction Sound Waves: Molecular View When sound travels through a medium, there

More information

Producing a Sound Wave. Chapter 14. Using a Tuning Fork to Produce a Sound Wave. Using a Tuning Fork, cont.

Producing a Sound Wave. Chapter 14. Using a Tuning Fork to Produce a Sound Wave. Using a Tuning Fork, cont. Producing a Sound Wave Chapter 14 Sound Sound waves are longitudinal waves traveling through a medium A tuning fork can be used as an example of producing a sound wave Using a Tuning Fork to Produce a

More information

Page # Physics 103: Lecture 26 Sound. Lecture 26, Preflight 2. Lecture 26, Preflight 1. Producing a Sound Wave. Sound from a Tuning Fork

Page # Physics 103: Lecture 26 Sound. Lecture 26, Preflight 2. Lecture 26, Preflight 1. Producing a Sound Wave. Sound from a Tuning Fork Physics 103: Lecture 6 Sound Producing a Sound Wave Sound waves are longitudinal waves traveling through a medium A tuning fork can be used as an example of producing a sound wave A tuning fork will produce

More information

Wave Motions and Sound

Wave Motions and Sound EA Notes (Scen 101), Tillery Chapter 5 Wave Motions and Sound Introduction Microscopic molecular vibrations determine temperature (last Chapt.). Macroscopic vibrations of objects set up what we call Sound

More information

Sound. Speed of Sound

Sound. Speed of Sound Sound TUNING FORK CREATING SOUND WAVES GUITAR STRING CREATING SOUND WAVES Speed of Sound Sound travels at a speed that depends on the medium through which it propagates. The speed of sound depends: - directly

More information

Physics Mechanics. Lecture 34 Waves and sound II

Physics Mechanics. Lecture 34 Waves and sound II 1 Physics 170 - Mechanics Lecture 34 Waves and sound II 2 Sound Waves Sound waves are pressure waves in solids, liquids, and gases. They are longitudinal in liquids and gases, and may have transverse components

More information

CLASS 2 CLASS 2. Section 13.5

CLASS 2 CLASS 2. Section 13.5 CLASS 2 CLASS 2 Section 13.5 Simple Pendulum The simple pendulum is another example of a system that exhibits simple harmonic motion The force is the component of the weight tangent to the path of motion

More information

Chapter 2 SOUND WAVES

Chapter 2 SOUND WAVES Chapter SOUND WAVES Introduction: A sound wave (or pressure or compression wave) results when a surface (layer of molecules) moves back and forth in a medium producing a sequence of compressions C and

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XII Sound sound waves Doppler effect Standing waves Light Reflection and refraction Lightning Review Last lecture: 1. Vibration and waves Hooke s law Potential energy

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XII Sound sound waves Doppler effect Standing waves Light Reflection and refraction http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Vibration

More information

Chapters 11 and 12. Sound and Standing Waves

Chapters 11 and 12. Sound and Standing Waves Chapters 11 and 12 Sound and Standing Waves The Nature of Sound Waves LONGITUDINAL SOUND WAVES Speaker making sound waves in a tube The Nature of Sound Waves The distance between adjacent condensations

More information

General Physics I. Lecture 14: Sinusoidal Waves. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 14: Sinusoidal Waves. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 14: Sinusoidal Waves Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Motivation When analyzing a linear medium that is, one in which the restoring force

More information

Lecture 18. Waves and Sound

Lecture 18. Waves and Sound Lecture 18 Waves and Sound Today s Topics: Nature o Waves Periodic Waves Wave Speed The Nature o Sound Speed o Sound Sound ntensity The Doppler Eect Disturbance Wave Motion DEMO: Rope A wave is a traveling

More information

Superposition and Standing Waves

Superposition and Standing Waves Physics 1051 Lecture 9 Superposition and Standing Waves Lecture 09 - Contents 14.5 Standing Waves in Air Columns 14.6 Beats: Interference in Time 14.7 Non-sinusoidal Waves Trivia Questions 1 How many wavelengths

More information

Chap 12. Sound. Speed of sound is different in different material. Depends on the elasticity and density of the medium. T v sound = v string =

Chap 12. Sound. Speed of sound is different in different material. Depends on the elasticity and density of the medium. T v sound = v string = Chap 12. Sound Sec. 12.1 - Characteristics of Sound Sound is produced due to source(vibrating object and travels in a medium (londitudinal sound waves and can be heard by a ear (vibrations. Sound waves

More information

Copyright 2009, August E. Evrard.

Copyright 2009, August E. Evrard. Unless otherwise noted, the content of this course material is licensed under a Creative Commons BY 3.0 License. http://creativecommons.org/licenses/by/3.0/ Copyright 2009, August E. Evrard. You assume

More information

Exam 3 Review. Chapter 10: Elasticity and Oscillations A stress will deform a body and that body can be set into periodic oscillations.

Exam 3 Review. Chapter 10: Elasticity and Oscillations A stress will deform a body and that body can be set into periodic oscillations. Exam 3 Review Chapter 10: Elasticity and Oscillations stress will deform a body and that body can be set into periodic oscillations. Elastic Deformations of Solids Elastic objects return to their original

More information

Physics 11. Unit 7 (Part 2) The Physics of Sound

Physics 11. Unit 7 (Part 2) The Physics of Sound Physics 11 Unit 7 (Part 2) The Physics of Sound 1. Sound waves As introduced in the previous section, sound is one of the many types of waves we encounter in our daily lives. It possesses the properties

More information

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string)

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) 1 Part 5: Waves 5.1: Harmonic Waves Wave a disturbance in a medium that propagates Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) Longitudinal

More information

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G)

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G) 42 TRAVELING WAVES 1. Wave progagation Source Disturbance Medium (D) Speed (E) Traveling waves (F) Mechanical waves (G) Electromagnetic waves (D) (E) (F) (G) 2. Transverse Waves have the classic sinusoidal

More information

16 SUPERPOSITION & STANDING WAVES

16 SUPERPOSITION & STANDING WAVES Chapter 6 SUPERPOSITION & STANDING WAVES 6. Superposition of waves Principle of superposition: When two or more waves overlap, the resultant wave is the algebraic sum of the individual waves. Illustration:

More information

PHYSICS 231 Sound PHY 231

PHYSICS 231 Sound PHY 231 PHYSICS 231 Sound 1 Travelling (transverse) waves The wave moves to the right, but each point makes a simple harmonic vertical motion oscillation position y position x wave Since the oscillation is in

More information

LECTURE 8 DOPPLER EFFECT AND SHOCK WAVES

LECTURE 8 DOPPLER EFFECT AND SHOCK WAVES LECTURE 8 DOPPLER EFFECT AND SHOCK WAVES 15.7 The Doppler effect Sound waves from a moving source A stationary source and a moving observer The Doppler effect for light waves Frequency shift on reflection

More information

SIMPLE HARMONIC MOTION AND WAVES

SIMPLE HARMONIC MOTION AND WAVES Simple Harmonic Motion (SHM) SIMPLE HARMONIC MOTION AND WAVES - Periodic motion any type of motion that repeats itself in a regular cycle. Ex: a pendulum swinging, a mass bobbing up and down on a spring.

More information

Unit 4 Waves and Sound Waves and Their Properties

Unit 4 Waves and Sound Waves and Their Properties Lesson35.notebook May 27, 2013 Unit 4 Waves and Sound Waves and Their Properties Today's goal: I can explain the difference between transverse and longitudinal waves and their properties. Waves are a disturbances

More information

Physics General Physics. Lecture 25 Waves. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 25 Waves. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 25 Waves Fall 2016 Semester Prof. Matthew Jones 1 Final Exam 2 3 Mechanical Waves Waves and wave fronts: 4 Wave Motion 5 Two Kinds of Waves 6 Reflection of Waves When

More information

Chapter 6. Wave Motion. Longitudinal and Transverse Waves

Chapter 6. Wave Motion. Longitudinal and Transverse Waves Chapter 6 Waves We know that when matter is disturbed, energy emanates from the disturbance. This propagation of energy from the disturbance is know as a wave. We call this transfer of energy wave motion.

More information

Chapter 20: Mechanical Waves

Chapter 20: Mechanical Waves Chapter 20: Mechanical Waves Section 20.1: Observations: Pulses and Wave Motion Oscillation Plus Propagation Oscillation (or vibration): Periodic motion (back-and-forth, upand-down) The motion repeats

More information

Class Average = 71. Counts Scores

Class Average = 71. Counts Scores 30 Class Average = 71 25 20 Counts 15 10 5 0 0 20 10 30 40 50 60 70 80 90 100 Scores Chapter 12 Mechanical Waves and Sound To describe mechanical waves. To study superposition, standing waves, and interference.

More information

Marketed and Distributed By FaaDoOEngineers.com

Marketed and Distributed By FaaDoOEngineers.com WAVES GUPTA CLASSES For any help contact: 995368795, 968789880 Nishant Gupta, D-, Prashant vihar, Rohini, Delhi-85 Waves Wave motion A wave motion is a kind of disturbance which is transferred from one

More information

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter Oscillation the vibration of an object Wave a transfer of energy without a transfer of matter Equilibrium Position position of object at rest (mean position) Displacement (x) distance in a particular direction

More information

due to striking, rubbing, Any vibration of matter spinning, plucking, etc. Find frequency first, then calculate period.

due to striking, rubbing, Any vibration of matter spinning, plucking, etc. Find frequency first, then calculate period. Equilibrium Position Disturbance Period (T in sec) # sec T = # cycles Frequency (f in Hz) f = # cycles # sec Amplitude (A in cm, m or degrees [θ]) Other Harmonic Motion Basics Basic Definitions Pendulums

More information

Oscillations and Waves

Oscillations and Waves Oscillations and Waves Periodic Motion Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring Energy Conservation in Oscillatory

More information

SoundWaves. Lecture (2) Special topics Dr.khitam Y, Elwasife

SoundWaves. Lecture (2) Special topics Dr.khitam Y, Elwasife SoundWaves Lecture (2) Special topics Dr.khitam Y, Elwasife VGTU EF ESK stanislovas.staras@el.vgtu.lt 2 Mode Shapes and Boundary Conditions, VGTU EF ESK stanislovas.staras@el.vgtu.lt ELEKTRONIKOS ĮTAISAI

More information

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 16 - Ljud 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1 15.8 Ljud

More information

Schedule for the remainder of class

Schedule for the remainder of class Schedule for the remainder of class 04/25 (today): Regular class - Sound and the Doppler Effect 04/27: Cover any remaining new material, then Problem Solving/Review (ALL chapters) 04/29: Problem Solving/Review

More information

Physics 231 Lecture 25

Physics 231 Lecture 25 Physics 231 Lecture 25 Spherical waves P Main points of today s I = lecture: 2 4πr Wave Dopper speed shift for a string v + v o ƒ' = ƒ F v = v vs µ Interference of sound waves L Here F is the string tension

More information

Lecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves.

Lecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves. Lecture 17 Mechanical waves. Transverse waves. Sound waves. Standing Waves. What is a wave? A wave is a traveling disturbance that transports energy but not matter. Examples: Sound waves (air moves back

More information

Work. Work and Energy Examples. Energy. To move an object we must do work Work is calculated as the force applied to the object through a distance or:

Work. Work and Energy Examples. Energy. To move an object we must do work Work is calculated as the force applied to the object through a distance or: Work To move an object we must do work Work is calculated as the force applied to the object through a distance or: W F( d) Work has the units Newton meters (N m) or Joules 1 Joule = 1 N m Energy Work

More information

Reflection & Transmission

Reflection & Transmission Reflection & Transmission when end is fixed, reflected wave in inverted when end is free to move, reflected wave is not inverted General Physics 2 Waves & Sound 1 Reflection & Transmission when a wave

More information

Quiz on Chapters 13-15

Quiz on Chapters 13-15 Quiz on Chapters 13-15 Final Exam, Thursday May 3, 8:00 10:00PM ANH 1281 (Anthony Hall). Seat assignments TBD RCPD students: Thursday May 3, 5:00 9:00PM, BPS 3239. Email will be sent. Alternate Final Exam,

More information

Origin of Sound. Those vibrations compress and decompress the air (or other medium) around the vibrating object

Origin of Sound. Those vibrations compress and decompress the air (or other medium) around the vibrating object Sound Each celestial body, in fact each and every atom, produces a particular sound on account of its movement, its rhythm or vibration. All these sounds and vibrations form a universal harmony in which

More information

Physics 25 Section 2 Exam #1 February 1, 2012 Dr. Alward

Physics 25 Section 2 Exam #1 February 1, 2012 Dr. Alward 1.The tension in a taut rope is increased by a factor of 9, and the mass per length is reduced to one-fourth of its former value.. How does the speed of wave pulses on the rope change, if at all? A) The

More information

Physics 111. Lecture 31 (Walker: ) Wave Superposition Wave Interference Standing Waves Physics of Musical Instruments Temperature

Physics 111. Lecture 31 (Walker: ) Wave Superposition Wave Interference Standing Waves Physics of Musical Instruments Temperature Physics 111 Lecture 31 (Walker: 14.7-8) Wave Superposition Wave Interference Physics of Musical Instruments Temperature Superposition and Interference Waves of small amplitude traveling through the same

More information

Final Exam Notes 8am WednesdayDecember 16, 2015 Physics 1320 Music & Physics Prof. Tunks & Olness

Final Exam Notes 8am WednesdayDecember 16, 2015 Physics 1320 Music & Physics Prof. Tunks & Olness Final Exam Notes 8am WednesdayDecember 16, 2015 Physics 1320 Music & Physics Prof. Tunks & Olness 1)This contains review material for the Final exam. It consists of review sheets for exams 1 and 2, as

More information

1. A wave is a traveling disturbance. 2. A wave carries energy from place to place.

1. A wave is a traveling disturbance. 2. A wave carries energy from place to place. v = fλ 1. A wave is a traveling disturbance. 2. A wave carries energy from place to place. Transverse Wave Longitudinal Wave How is a guitar made to create different notes/pitches/frequencies? A wave s

More information

Let s Review What is Sound?

Let s Review What is Sound? Mathematics of Sound Objectives: Understand the concept of sound quality and what it represents. Describe the conditions which produce standing waves in a stretched string. Be able to describe the formation

More information

PHYSICS. Chapter 16 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 16 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 16 Lecture RANDALL D. KNIGHT 2017 Pearson Education, Inc. Chapter 16 Traveling Waves IN THIS CHAPTER, you will learn the basic properties

More information

Waves Encountering Barriers

Waves Encountering Barriers Waves Encountering Barriers Reflection and Refraction: When a wave is incident on a boundary that separates two regions of different wave speed, part of the wave is reflected and part is transmitted. Figure

More information

TYPES OF WAVES. 4. Waves and Sound 1

TYPES OF WAVES. 4. Waves and Sound 1 TYPES OF WAVES Consider a set of playground swings attached by a rope from seat to seat If you sit in the first swing and begin oscillating, this disturbs the equilibrium The connecting ropes cause the

More information

CHAPTER 11 VIBRATIONS AND WAVES

CHAPTER 11 VIBRATIONS AND WAVES CHAPTER 11 VIBRATIONS AND WAVES http://www.physicsclassroom.com/class/waves/u10l1a.html UNITS Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Period and Sinusoidal Nature of SHM The

More information

PHYS-2020: General Physics II Course Lecture Notes Section VIII

PHYS-2020: General Physics II Course Lecture Notes Section VIII PHYS-2020: General Physics II Course Lecture Notes Section VIII Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and

More information

What does the speed of a wave depend on?

What does the speed of a wave depend on? Today s experiment Goal answer the question What does the speed of a wave depend on? Materials: Wave on a String PHeT Simulation (link in schedule) and Wave Machine Write a CER in pairs. Think about the

More information

Lecture 30. Chapter 21 Examine two wave superposition (-ωt and +ωt) Examine two wave superposition (-ω 1 t and -ω 2 t)

Lecture 30. Chapter 21 Examine two wave superposition (-ωt and +ωt) Examine two wave superposition (-ω 1 t and -ω 2 t) To do : Lecture 30 Chapter 21 Examine two wave superposition (-ωt and +ωt) Examine two wave superposition (-ω 1 t and -ω 2 t) Review for final (Location: CHEM 1351, 7:45 am ) Tomorrow: Review session,

More information

17 SOUND. Introduction. Chapter Outline

17 SOUND. Introduction. Chapter Outline Chapter 17 Sound 867 17 SOUND Figure 17.1 Hearing is an important human sense that can detect frequencies of sound, ranging between 20 Hz and 20 khz. However, other species have very different ranges of

More information

Chapter 16: Oscillatory Motion and Waves. Simple Harmonic Motion (SHM)

Chapter 16: Oscillatory Motion and Waves. Simple Harmonic Motion (SHM) Chapter 6: Oscillatory Motion and Waves Hooke s Law (revisited) F = - k x Tthe elastic potential energy of a stretched or compressed spring is PE elastic = kx / Spring-block Note: To consider the potential

More information

Standing waves. The interference of two sinusoidal waves of the same frequency and amplitude, travel in opposite direction, produce a standing wave.

Standing waves. The interference of two sinusoidal waves of the same frequency and amplitude, travel in opposite direction, produce a standing wave. Standing waves The interference of two sinusoidal waves of the same frequency and amplitude, travel in opposite direction, produce a standing wave. y 1 (x, t) = y m sin(kx ωt), y 2 (x, t) = y m sin(kx

More information

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one 5.1.1 Oscillating Systems Waves Review Checklist 5.1.2 Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one Four pendulums are built as shown

More information

Phys101 Lectures 28, 29. Wave Motion

Phys101 Lectures 28, 29. Wave Motion Phys101 Lectures 8, 9 Wave Motion Key points: Types of Waves: Transverse and Longitudinal Mathematical Representation of a Traveling Wave The Principle of Superposition Standing Waves; Resonance Ref: 11-7,8,9,10,11,16,1,13,16.

More information

Chapter 11 Vibrations and Waves

Chapter 11 Vibrations and Waves Chapter 11 Vibrations and Waves 11-1 Simple Harmonic Motion If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic.

More information

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2)

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) What to study: Quiz 6 Homework problems for Chapters 15 & 16 Material indicated in the following review slides Other Specific things:

More information

KEY TERMS. compression rarefaction pitch Doppler effect KEY TERMS. intensity decibel resonance KEY TERMS

KEY TERMS. compression rarefaction pitch Doppler effect KEY TERMS. intensity decibel resonance KEY TERMS CHAPTER 12 SECTION 1 Sound Waves Summary The frequency of a sound wave determines its pitch. The speed of sound depends on the medium. The relative motion between the source of waves and an observer creates

More information

Chapter 16 Traveling Waves

Chapter 16 Traveling Waves Chapter 16 Traveling Waves GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms as it is used in physics,

More information

Baccalieu Collegiate. Physics Course Outline

Baccalieu Collegiate. Physics Course Outline Baccalieu Collegiate Physics 2204 Course Outline Course Content: Unit 1: Kinematics Motion is a common theme in our everyday lives: birds fly, babies crawl, and we, ourselves, seem to be in a constant

More information

Lecture 18. Sound Waves: Intensity, Interference, Beats and Doppler Effect.

Lecture 18. Sound Waves: Intensity, Interference, Beats and Doppler Effect. Lecture 18 Sound Waes: Intensity, Interference, Beats and Doppler Effect. Speed of sound Speed of soun in air, depends on temperature: = (331 + 0.60 T ) m/s where T in C Sound intensity leel β = 10log

More information

G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice exam

G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice exam G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice exam G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice Exam Instructions The final exam will be weighted as follows: Modules 1 6 15 20% Modules

More information

SIMPLE HARMONIC MOTION

SIMPLE HARMONIC MOTION WAVES SIMPLE HARMONIC MOTION Simple Harmonic Motion (SHM) Vibration about an equilibrium position in which a restoring force is proportional to the displacement from equilibrium TYPES OF SHM THE PENDULUM

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 14

PHYS Summer Professor Caillault Homework Solutions. Chapter 14 PHYS 1111 - Summer 2007 - Professor Caillault Homework Solutions Chapter 14 5. Picture the Problem: A wave of known amplitude, frequency, and wavelength travels along a string. We wish to calculate the

More information

Physics P201 D. Baxter/R. Heinz. FINAL EXAM December 10, :00 10:00 AM INSTRUCTIONS

Physics P201 D. Baxter/R. Heinz. FINAL EXAM December 10, :00 10:00 AM INSTRUCTIONS Seat # Physics P201 D. Baxter/R. Heinz FINAL EXAM December 10, 2001 8:00 10:00 AM INSTRUCTIONS 1. Sit in SEAT # given above. 2. DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO. 3. Print your name (last

More information

Longitudinal Waves. Reading: Chapter 17, Sections 17-7 to Sources of Musical Sound. Pipe. Closed end: node Open end: antinode

Longitudinal Waves. Reading: Chapter 17, Sections 17-7 to Sources of Musical Sound. Pipe. Closed end: node Open end: antinode Longitudinal Waes Reading: Chapter 7, Sections 7-7 to 7-0 Sources o Musical Sound Pipe Closed end: node Open end: antinode Standing wae pattern: Fundamental or irst harmonic: nodes at the ends, antinode

More information

Physics 11 Chapters 15: Traveling Waves and Sound and 16: Superposition and Standing Waves

Physics 11 Chapters 15: Traveling Waves and Sound and 16: Superposition and Standing Waves Physics 11 Chapters 15: Traeling Waes and Sound and 16: Superposition and Standing Waes We are what we beliee we are. Benjamin Cardozo We would accomplish many more things if we did not think of them as

More information

Fineman Honors Physics Final Study Guide

Fineman Honors Physics Final Study Guide All Science Tests are on Wednesday, June 17 th. Students who take more than one Science class will take their second science final on Thursday, June 18 from 8:00-10:00 AM in the Library. The Honors Physics

More information

PHYSICS 149: Lecture 24

PHYSICS 149: Lecture 24 PHYSICS 149: Lecture 24 Chapter 11: Waves 11.8 Reflection and Refraction 11.10 Standing Waves Chapter 12: Sound 12.1 Sound Waves 12.4 Standing Sound Waves Lecture 24 Purdue University, Physics 149 1 ILQ

More information

WAVE MOTION. Synopsis :

WAVE MOTION. Synopsis : WAE MOTION Synopsis : 1 Sound is a form of energy produced by a vibrating body, which requires medium to travel Sound travels in the form of waves 3 The audiable sound has frequency range 0 Hz to 0 khz

More information

Fineman CP Physics Final Study Guide

Fineman CP Physics Final Study Guide All Science Tests are on Wednesday, June 17 th. Students who take more than one Science class will take their second science final on Thursday, June 18 from 8:00-10:00 AM in the Library. The CP Physics

More information

Introduction to Acoustics. Phil Joseph

Introduction to Acoustics. Phil Joseph Introduction to Acoustics Phil Joseph INTRODUCTION TO ACOUSTICS Sound and Noise Sound waves Frequency, wavelength and wavespeed Point sources Sound power and intensity Wave reflection Standing waves Measures

More information

Topic 4 &11 Review Waves & Oscillations

Topic 4 &11 Review Waves & Oscillations Name: Date: Topic 4 &11 Review Waves & Oscillations 1. A source produces water waves of frequency 10 Hz. The graph shows the variation with horizontal position of the vertical displacement of the surface

More information

1) The K.E and P.E of a particle executing SHM with amplitude A will be equal to when its displacement is:

1) The K.E and P.E of a particle executing SHM with amplitude A will be equal to when its displacement is: 1) The K.E and P.E of a particle executing SHM with amplitude A will be equal to when its displacement is: 2) The bob of simple Pendulum is a spherical hallow ball filled with water. A plugged hole near

More information

What is a wave? Waves

What is a wave? Waves What is a wave? Waves Waves What is a wave? A wave is a disturbance that carries energy from one place to another. Classifying waves 1. Mechanical Waves - e.g., water waves, sound waves, and waves on strings.

More information

Lectures Chapter 16 (Cutnell & Johnson, Physics 7 th edition)

Lectures Chapter 16 (Cutnell & Johnson, Physics 7 th edition) PH 201-4A spring 2007 Waves and Sound Lectures 26-27 Chapter 16 (Cutnell & Johnson, Physics 7 th edition) 1 Waves A wave is a vibrational, trembling motion in an elastic, deformable body. The wave is initiated

More information

Physics 202 Homework 7

Physics 202 Homework 7 Physics 202 Homework 7 May 15, 2013 1. On a cello, the string with the largest linear density (0.0156 kg/m) is the C 171 newtons string. This string produces a fundamental frequency of 65.4 Hz and has

More information

Section 1 Simple Harmonic Motion. The student is expected to:

Section 1 Simple Harmonic Motion. The student is expected to: Section 1 Simple Harmonic Motion TEKS The student is expected to: 7A examine and describe oscillatory motion and wave propagation in various types of media Section 1 Simple Harmonic Motion Preview Objectives

More information

Physics Common Assessment Unit 5-8 3rd Nine Weeks

Physics Common Assessment Unit 5-8 3rd Nine Weeks 1) What is the direction of the force(s) that maintain(s) circular motion? A) one force pulls the object inward toward the radial center while another force pushes the object at a right angle to the first

More information

Simple Harmonic Motion and Waves

Simple Harmonic Motion and Waves Simple Harmonic Motion and Waves Simple Harmonic Motion (SHM) periodic motion that occurs whenever the restoring force is proportional to the displacement and in the opposite direction. Give some example

More information

PHYSICS 231 Sound PHY 231

PHYSICS 231 Sound PHY 231 PHYSICS 231 Sound 1 Sound: longitudinal waves A sound wave consist o longitudinal oscillations in the pressure o the medium that carries the sound wave. Thereore, in vacuum: there is no sound. 2 Relation

More information

Physics 1C. Lecture 13B

Physics 1C. Lecture 13B Physics 1C Lecture 13B Speed of Sound! Example values (m/s): Description of a Sound Wave! A sound wave may be considered either a displacement wave or a pressure wave! The displacement of a small element

More information

4. What is the speed (in cm s - 1 ) of the tip of the minute hand?

4. What is the speed (in cm s - 1 ) of the tip of the minute hand? Topic 4 Waves PROBLEM SET Formative Assessment NAME: TEAM: THIS IS A PRACTICE ASSESSMENT. Show formulas, substitutions, answers, and units! Topic 4.1 Oscillations A mass is attached to a horizontal spring.

More information

Physics Worksheet Sound and Light Section: Name:

Physics Worksheet Sound and Light Section: Name: Do Now: What is common between sound and light? What are the differences between sound and light? Sound Waves 1. Define Sound Waves from three different perspectives 6. Speed of sound =. Formula: v =.

More information

3/9/2011. Outline Chapter 7 Waves Water Waves Water Waves. Water waves are really circular. They are an example of Mechanical waves.

3/9/2011. Outline Chapter 7 Waves Water Waves Water Waves. Water waves are really circular. They are an example of Mechanical waves. Outline Chapter 7 Waves 7-1. Water Waves 7-2. Transverse and Longitudinal Waves 7-3. Describing Waves 7-4. Standing Waves 7-5. Sound 7-6. Doppler Effect 7-7. Musical Sounds 7-8. Electromagnetic Waves 7-9.

More information

3 THE P HYSICS PHYSICS OF SOUND

3 THE P HYSICS PHYSICS OF SOUND Chapter 3 THE PHYSICS OF SOUND Contents What is sound? What is sound wave?» Wave motion» Source & Medium How do we analyze sound?» Classifications» Fourier Analysis How do we measure sound?» Amplitude,

More information

12.3 The Doppler Effect

12.3 The Doppler Effect 12.3 The Doppler Effect Doppler Effect Fire engine doppler effect video Car doppler effect video Doppler Effect The pitch (frequency) of the horn of a passing car changes from high to low. This is due

More information

What is a Wave. Why are Waves Important? Power PHYSICS 220. Lecture 19. Waves

What is a Wave. Why are Waves Important? Power PHYSICS 220. Lecture 19. Waves PHYSICS 220 Lecture 19 Waves What is a Wave A wave is a disturbance that travels away from its source and carries energy. A wave can transmit energy from one point to another without transporting any matter

More information

Superposition & Interference

Superposition & Interference Lecture 29, Dec. 10 To do : Chapter 21 Understand beats as the superposition of two waves of unequal frequency. Prep for exam. Room 2103 Chamberlain Hall Sections: 602, 604, 605, 606, 610, 611, 612, 614

More information

CHAPTER 11 TEST REVIEW

CHAPTER 11 TEST REVIEW AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM CHAPTER TEST

More information

INDIANA UNIVERSITY, DEPT. OF PHYSICS P105, Basic Physics of Sound, Spring 2010

INDIANA UNIVERSITY, DEPT. OF PHYSICS P105, Basic Physics of Sound, Spring 2010 Name: Joe E. Physics ID#: 999 999 999 INDIANA UNIVERSITY, DEPT. OF PHYSICS P105, Basic Physics of Sound, Spring 2010 Midterm Exam #1 Thursday, 11 Feb. 2010, 7:30 9:30 p.m. Closed book. You are allowed

More information

The velocity (v) of the transverse wave in the string is given by the relation: Time taken by the disturbance to reach the other end, t =

The velocity (v) of the transverse wave in the string is given by the relation: Time taken by the disturbance to reach the other end, t = Question 15.1: A string of mass 2.50 kg is under a tension of 200 N. The length of the stretched string is 20.0 m. If the transverse jerk is struck at one end of the string, how long does the disturbance

More information