ASME V & V Symposium, May, 2012

Size: px
Start display at page:

Download "ASME V & V Symposium, May, 2012"

Transcription

1 ASME V & V Symposium, May, 2012 SBIR N07-098: Fire Integrity in Advanced Ship Structures Dr. Dave Keyser Fellow, ASME dave.keyser@survice.com Mark Butkiewicz mark.butkiewicz@survice.com Dave Hall dave.hall@survice.com

2 Project Goal Apollo TM Develop integrated software for engineers and shipbuilders to predict the strength-degradation of composite structural members during and after exposure to fires 2

3 Introduction of Apollo Provides modern, flexible computing structure Dynamic/adaptable Eulerian and Lagrangian grids Easily tie into existing Finite Element Analysis (FEA) codes for modeling structural response Eulerian CFD (Flow Field) Grid Dynamic and Adaptable Grid Eulerian/Lagrangian Grid Interface Apollo Grid Apollo core structure developed under SURVICE IR&D 3

4 Apollo CFD Fundamentals Apollo TM uses the same three fundamental concepts as all Computational Fluid Dynamics (CFD) codes: Conservation of Mass Conservation of Momentum Conservation of Energy However, Apollo uses them differently: applying Control Volume Integrals, vice partial differential equations: Conservation of Mass is effected via Conservation of Species Each mole of each substance is tracked through the space Needed for combustion reactions and tracking products of combustion Conservation of Momentum is computed directly Conservation of Energy includes: Kinetic energy Enthalpy Gravitational Potential Energy 4

5 Conservation of Momentum We begin with the conservation of momentum: t gρdxdydz = V( p da + F + ) surface vol surface volume pdxdydz when discretized becomes: 6 s da g 7 n MW dxdydz + jj i i jk cs= 1 1 cs= 1 cs= 1 6 s da + 6 p( V da) = t [ pdxdydz] Where n i is the number of moles of species i per unit volume, and p is the momentum per unit volume, and the s jj & jk are the stresses on the surface of the cell. 5

6 Conservation of Mass and Species Conservation of Mass and Species: surface p da = t vol ρdxdydz 6 cs= 1 p daδt = nimwidxdydz t t + δ i i n MW dxdydz i i t Where n i = the number of moles of species i per unit volume. Presently we have 6 species: Oxygen, Nitrogen, Fuel Vapor, Carbon Dioxide, Water Vapor, and Carbon (soot) These can be augmented easily as the application requires. 6

7 Conservation of Energy Conservation of energy (e) is defined as the energy per unit mass, which is the sum of the kinetic energy, the gravitational potential energy, and the enthalpy. Enthalpy, h, is the sum of the internal thermal energy and stored elastic energy: 2 V sii e = + g + u( T ) +, where : u = C pt, and : h = u + 2 ρ Then, the rate of change of energy inside each cell equals the heat added by combustion and the net flux of energy through the surface: 6 t Q t ( eρdxdydz) = + eρv Multiplying by the time step and discretizing: 1 n da ( V da) δt + δq = eρdxdydz t+ δt eρdxdydz t = eρ e( p da) δt + δq cs n cs sii ρ 7

8 The Joint DoD Validation Process The DoD V&V Process is described in MIL-STD

9 Validation of High-Pressure Steam Flow in Performance Test Code Measurement These are Primarily used in Multi-megawatt Electric- Power Plants: Performance Tests & Regulatory Power Monitoring of both Nuclear and Fossil-fueled Plants High Pressure and High Temperature Steam Flow: Pressure = 12,592.5 kpa Density = kg/m 3 Temperature = K Uniform Inlet Velocity = m/s Absolute viscosity = 2.68 x 10-5 Pa-s Throat Reynolds No. = x 10 6 Reference Flow Standard: ASME PTC 19.5, Flow Measurement, Section 5 The flow equation is based on the Bernoulli equation for compressible flow, and its calculated result is modified by a semi-empirical Coefficient of Discharge derived from boundary layer theory and a half-century of laboratory test data 9

10 Theoretical Model of the ASME Nozzle The boundary layer causes the coefficient of discharge Flow Regime 10

11 Validation of High-Pressure Steam Flow Performance Test Code Measurement Verification & validation test case; ASME Throat Tap Nozzle The most accurate large-flow device used in Performance Test Codes on Steam Turbines Thousands Lab Calibration Data Decades of use, Coefficient of Discharge known + 0.3% Inlet D = 40 cm Nozzle throat, d = 20 cm Inlet uniform velocity = 9.83 m/s Fluid Properties: Density = kg/cu. M. System Pressure = 126 bar Temp = K Apollo TM CFD of Flow Model Nozzle V&V CFD Flow of Steam from Apollo Results: kg/s ASME mass flow vice from Apollo = kg/s (= 1/3% difference, equivalent to test data). 11

12 fd St = V 2 nd Validation Test: Vortex-Shedding The pioneering work was carried out by Vincenc Strouhal, a Czech physicist who published it in 1878 [1]. He investigated the relation between the tone of a singing wire and fluid velocity and found that the sound produced by the wire was directly related to the vortex-shedding frequency. The nondimensional analysis led to the dimensionless Strouhal number: Sr = fd / V Then Rayleigh [2] pointed out that the Strouhal number should be a function of the Reynolds number. 12

13 Historical Published Data -- Rayleigh Observations of Rayleigh show the variation of St versus Rd It shows a quite nonlinear curve which increases significantly at higher Rd The following validation comparison for Apollo is in the rising portion of the curve at its upper Rd Region of Simulated Test 13

14 Simulation Data Analysis The shedding frequency calculated by Apollo was determined by counting the passing vortices during the simulation s elapsed time The output showed the initial transient formation and growth of the vortices; consequently the beginning of the measurement period began at around 0.6 seconds when the oscillatory pattern appeared to be unchanging Von Karman Vortices Apollo Results 14

15 2 nd Validation Test-Vortex Shedding Observed Data of Vortex Periods Run # End Time, sec Start Time, sec Cycles Period sec Freq., Hz The mean observed frequency from the simulation is 26.2 Hz, and the uncertainty at the 95% confidence level is Hz 15

16 Empirical Experiments: Validation References CASE 1: Apollo vs. Rayleigh s data of a long cylinder in free stream In this case, the upstream, uniform velocity was used to calculate the Strouhal number, and the Reynolds number based on the diameter of the cylinder is: Rd = 1.4 x 10 6 The empirical Sr = 0.23, so the frequency = Hz The difference between Rayleigh s tests and Apollo TM is that our cylinder is not long nor is it in an atmospheric free stream The ceiling and floor of the conduit may attenuate the vortex waves by viscous friction. Hence, this condition likely forms a lower bound on the frequency 16

17 St V 0.24(13.11) f = = = Hz d 0.1 Empirical Experiments: Validation References CASE 2: Apollo vs. Rayleigh s data of a long cylinder in free stream In this case, accounting for the blockage of the conduit by the cylinder increases the velocity in the plane of the cylinder, since its presence reduces the area available to the flow, so: Rd = 1.87E06 St = 0.24 And the empirically predicted frequency becomes: f = St V =.24 x = Hz d 0.1 This velocity is determined from conservation of mass via the area ratio Therefore this value represents a kind of upper bound on the true value. 17

18 Vortex-Shedding Validation Results The midrange of the Upper and Lower Bounds found in reported tests = 27 Hz Which is 3% higher than 26.2 Hz observed from the simulations, And is well within the +0.9 Hz 2σ uncertainty of these observations Since the published references do not match the boundary conditions of the simulations precisely, some magnitude of differences need be expected 18

19 Uncertainty Analysis of the Vortex-Shedding The method for estimating the overall test uncertainty for the simulations and cases in this paper is that established by the ASME in their Performance Test Codes [3]. The accepted standard, reported value is that at the 95% confidence level. Sources of Uncertainty: The empirical uncertainty of the measurements of Strouhal number The observational uncertainty of Apollo s shedding frequency The measurement of velocity The measurement of the Reynolds number The readability of the data curve of Strouhal number The geometric dimensions of the bluff bodies and the conduits-- negligible 19

20 Uncertainty Analysis of the Vortex-Shedding Strouhal vs. Reynolds numbers for Oscillatory Flow in Ref. 5 The uncertainty bands shown for St are + 0.7% 20

21 Uncertainty Analysis of the Vortex-Shedding The random uncertainty of the observed Apollo frequencies as reported is + 3.4%. The reported uncertainty [5] in the velocity, and also the Rd, values is + 2.0% The systematic readability error of the reference curve of Figure 3 is ¼ of a division, which is ~St When these are combined IAW ASME PTC 19.1, Test Uncertainty The result at the 95% confidence level is ~+8.3% There is no statistically significant difference between the simulation of oscillatory flow computed by Apollo s CFD and the published, experimental results 21

22 Future Work 1. Run another simulation of vortex-shedding with another fluid at a lower Rd where the St/Rd curve is more constant. 2. Conduct some simulations of blast effects: 1. Since Apollo is based completely on the fundamentals of physics, it seems to simulate very rapid flows, acoustic waves, and blast fronts. 2. Validation will utilize a couple of USA blast codes as well as tests from the Aberdeen Proving Ground. Warhead Fragments Blast Wave Weapon Detonation 22

23 References and Bibliography [1] Strouhal, V. Ueber eine besondere Art der Tonerregung, Annalen der Physik und Chemie, 1878, 5 (10) (1878), [2] Rayleigh, L. The Theory of Sound, 1945 (Dover Publications, New York). [3] ASME Performance Test Code 19.1, Test Uncertainty [4] en.wikipedia.org/wiki/strouhal_number [5] SHI,L. YU, Z. and JAWORSKI, A.,Investigation into the Strouhal numbers associated with vortex shedding from parallel-plate thermoacoustic stacks in oscillatory flow conditions, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, United Kingdom [6] van Dyke, M., An Album of Fluid Motion, The Parabolic Press, Stanford, CA, 1982 [7] Reference Flow Standard: ASME PTC 19.5, Flow Measurement, Section 5. 23

24 Fin 24

25 Cells in the Grid & Conservation Equations Memory management In the CFD computation, each cell is treated as a Control Volume having six sides and a miniature volume These cells are grouped into regions for efficient processing Minimize/eliminate missed cache events Region Internal cells guaranteed to be within on-chip memory cache Boundary cells require adjacent region to be loaded/locked in on-chip memory cache 25

CHAPTER (13) FLOW MEASUREMENTS

CHAPTER (13) FLOW MEASUREMENTS CHAPTER (13) FLOW MEASUREMENTS 09/12/2010 Dr. Munzer Ebaid 1 Instruments for the Measurements of Flow Rate 1. Direct Methods: Volume or weight measurements. 2. Indirect Methods: Venturi meters, Orifices

More information

MASS, MOMENTUM, AND ENERGY EQUATIONS

MASS, MOMENTUM, AND ENERGY EQUATIONS MASS, MOMENTUM, AND ENERGY EQUATIONS This chapter deals with four equations commonly used in fluid mechanics: the mass, Bernoulli, Momentum and energy equations. The mass equation is an expression of the

More information

Chapter Four fluid flow mass, energy, Bernoulli and momentum

Chapter Four fluid flow mass, energy, Bernoulli and momentum 4-1Conservation of Mass Principle Consider a control volume of arbitrary shape, as shown in Fig (4-1). Figure (4-1): the differential control volume and differential control volume (Total mass entering

More information

Introduction to Chemical Engineering Thermodynamics. Chapter 7. KFUPM Housam Binous CHE 303

Introduction to Chemical Engineering Thermodynamics. Chapter 7. KFUPM Housam Binous CHE 303 Introduction to Chemical Engineering Thermodynamics Chapter 7 1 Thermodynamics of flow is based on mass, energy and entropy balances Fluid mechanics encompasses the above balances and conservation of momentum

More information

COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics

COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour Basic Equations in fluid Dynamics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Description of Fluid

More information

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

More information

Hydroelectric Design

Hydroelectric Design INTERAMERICAN UNIVERSITY OF BAYAMON PUERTO RICO Hydroelectric Design Dr. Eduardo G. Pérez Díaz Erik T. Rosado González 5/14/2012 Hydroelectric design project for fluid class. TABLE OF CONTENTS TABLE OF

More information

Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

More information

Objectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation

Objectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Objectives Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Conservation of Mass Conservation of Mass Mass, like energy, is a conserved

More information

Hydromechanics: Course Summary

Hydromechanics: Course Summary Hydromechanics: Course Summary Hydromechanics VVR090 Material Included; French: Chapters to 9 and 4 + Sample problems Vennard & Street: Chapters 8 + 3, and (part of it) Roberson & Crowe: Chapter Collection

More information

Mass of fluid leaving per unit time

Mass of fluid leaving per unit time 5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.

More information

Validation 3. Laminar Flow Around a Circular Cylinder

Validation 3. Laminar Flow Around a Circular Cylinder Validation 3. Laminar Flow Around a Circular Cylinder 3.1 Introduction Steady and unsteady laminar flow behind a circular cylinder, representing flow around bluff bodies, has been subjected to numerous

More information

Chapter 5: The First Law of Thermodynamics: Closed Systems

Chapter 5: The First Law of Thermodynamics: Closed Systems Chapter 5: The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy

More information

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives Chapter 17 COMPRESSIBLE FLOW For the most part, we have limited our consideration so far to flows for which density variations and thus compressibility effects are negligible. In this chapter we lift this

More information

Fluid Mechanics Theory I

Fluid Mechanics Theory I Fluid Mechanics Theory I Last Class: 1. Introduction 2. MicroTAS or Lab on a Chip 3. Microfluidics Length Scale 4. Fundamentals 5. Different Aspects of Microfluidcs Today s Contents: 1. Introduction to

More information

Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders

Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders A. Jugal M. Panchal, B. A M Lakdawala 2 A. M. Tech student, Mechanical Engineering Department, Institute

More information

FIRE SAFETY DESIGN USING LARGE EDDY SIMULATION MODELS: EME BUILDING OF BUET: A CASE STUDY

FIRE SAFETY DESIGN USING LARGE EDDY SIMULATION MODELS: EME BUILDING OF BUET: A CASE STUDY Proceedings of the International Conference on Mechanical Engineering 2011 (ICME2011) 18-20 December 2011, Dhaka, Bangladesh ICME11- FIRE SAFETY DESIGN USING LARGE EDDY SIMULATION MODELS: EME BUILDING

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

Empirical Co - Relations approach for solving problems of convection 10:06:43

Empirical Co - Relations approach for solving problems of convection 10:06:43 Empirical Co - Relations approach for solving problems of convection 10:06:43 10:06:44 Empirical Corelations for Free Convection Use T f or T b for getting various properties like Re = VL c / ν β = thermal

More information

FLOW MEASUREMENT. INC 102 Fundamental of Instrumentation and Process Control 2/2560

FLOW MEASUREMENT. INC 102 Fundamental of Instrumentation and Process Control 2/2560 FLOW MEASUREMENT INC 102 Fundamental of Instrumentation and Process Control 2/2560 TABLE OF CONTENTS A. INTRODUCTION B. LOCAL FLOW MEASUREMENT B.1 Particle Image Velocimetry (PIV) B.2 Laser doppler anemometry

More information

5 ENERGY EQUATION OF FLUID MOTION

5 ENERGY EQUATION OF FLUID MOTION 5 ENERGY EQUATION OF FLUID MOTION 5.1 Introduction In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics. The pertinent laws

More information

PTT 277/3 APPLIED THERMODYNAMICS SEM 1 (2013/2014)

PTT 277/3 APPLIED THERMODYNAMICS SEM 1 (2013/2014) PTT 77/3 APPLIED THERMODYNAMICS SEM 1 (013/014) 1 Energy can exist in numerous forms: Thermal Mechanical Kinetic Potential Electric Magnetic Chemical Nuclear The total energy of a system on a unit mass:

More information

CFD Modeling of Reciprocating Flow around a Bend in Pulse Tube Cryocoolers

CFD Modeling of Reciprocating Flow around a Bend in Pulse Tube Cryocoolers CFD Modeling of Reciprocating Flow around a Bend in Pulse Tube Cryocoolers I.Nachman 1, N. Pundak 1, and G. Grossman 2 1 Ricor Cryogenic and Vacuum Systems En Harod Ihud 18960, Israel 2 Faculty of Mechanical

More information

Simulation analysis using CFD on vibration behaviors of circular cylinders subjected to free jets through narrow gaps in the vicinity of walls

Simulation analysis using CFD on vibration behaviors of circular cylinders subjected to free jets through narrow gaps in the vicinity of walls Fluid Structure Interaction V 85 Simulation analysis using CFD on vibration behaviors of circular cylinders subjected to free jets through narrow gaps in the vicinity of walls K. Fujita Osaka City University,

More information

Applied Gas Dynamics Flow With Friction and Heat Transfer

Applied Gas Dynamics Flow With Friction and Heat Transfer Applied Gas Dynamics Flow With Friction and Heat Transfer Ethirajan Rathakrishnan Applied Gas Dynamics, John Wiley & Sons (Asia) Pte Ltd c 2010 Ethirajan Rathakrishnan 1 / 121 Introduction So far, we have

More information

DESIGN AND PERFORMANCE OF THE CONVERGING-DIVERGING VORTEX FLOWMETER

DESIGN AND PERFORMANCE OF THE CONVERGING-DIVERGING VORTEX FLOWMETER Metrol. Meas. Syst., Vol. XVIII (011), No. 1, pp. 19-136 METROLOGY AND MEASUREMENT SYSTEMS Index 330930, ISSN 0860-89 www.metrology.pg.gda.pl DESIGN AND PERFORMANCE OF THE CONVERGING-DIVERGING VORTEX FLOWMETER

More information

High Speed Aerodynamics. Copyright 2009 Narayanan Komerath

High Speed Aerodynamics. Copyright 2009 Narayanan Komerath Welcome to High Speed Aerodynamics 1 Lift, drag and pitching moment? Linearized Potential Flow Transformations Compressible Boundary Layer WHAT IS HIGH SPEED AERODYNAMICS? Airfoil section? Thin airfoil

More information

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

More information

Chapter 1 Introduction and Basic Concepts

Chapter 1 Introduction and Basic Concepts Chapter 1 Introduction and Basic Concepts 1-1 Thermodynamics and Energy Application Areas of Thermodynamics 1-2 Importance of Dimensions and Units Some SI and English Units Dimensional Homogeneity Unity

More information

EXAMPLE SHEET FOR TOPIC 3 AUTUMN 2013

EXAMPLE SHEET FOR TOPIC 3 AUTUMN 2013 EXAMPLE SHEET FOR TOPIC ATMN 01 Q1. se dimensional analysis to investigate how the capillary rise h of a liquid in a tube varies with tube diameter d, gravity g, fluid density ρ, surface tension σ and

More information

Alden Test Results On AMITY Insert Venturi

Alden Test Results On AMITY Insert Venturi Alden Test Results On AMITY Insert Venturi Richard W. Miller PhD, PE A laboratory test was performed on an AMITY designed insert Venturi at the Alden on October 27, 2009 to obtain the coefficient of discharge

More information

Self-Excited Vibration in Hydraulic Ball Check Valve

Self-Excited Vibration in Hydraulic Ball Check Valve Self-Excited Vibration in Hydraulic Ball Check Valve L. Grinis, V. Haslavsky, U. Tzadka Abstract This paper describes an experimental, theoretical model and numerical study of concentrated vortex flow

More information

ME3560 Tentative Schedule Spring 2019

ME3560 Tentative Schedule Spring 2019 ME3560 Tentative Schedule Spring 2019 Week Number Date Lecture Topics Covered Prior to Lecture Read Section Assignment Prep Problems for Prep Probs. Must be Solved by 1 Monday 1/7/2019 1 Introduction to

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

Air Blast and the Science of Dynamic High Amplitude Acoustic Pressure Measurements. 1

Air Blast and the Science of Dynamic High Amplitude Acoustic Pressure Measurements.   1 Air Blast and the Science of Dynamic High Amplitude Acoustic Pressure Measurements 1 Agenda Blast Pressure Summary Pencil Probe Design Pencil Probe Positioning Other Blast Pressure Sensors Microphones

More information

1. INTRODUCTION TO CFD SPRING 2019

1. INTRODUCTION TO CFD SPRING 2019 1. INTRODUCTION TO CFD SPRING 2019 1.1 What is computational fluid dynamics? 1.2 Basic principles of CFD 1.3 Stages in a CFD simulation 1.4 Fluid-flow equations 1.5 The main discretisation methods Appendices

More information

Flow Measurement: Physical principle employed in various types of flow meters. PART 4 PREPARED BY: ESO OLUWATOBILOBA

Flow Measurement: Physical principle employed in various types of flow meters. PART 4 PREPARED BY: ESO OLUWATOBILOBA Flow Measurement: Physical principle employed in various types of flow meters. PART 4 PREPARED BY: ESO OLUWATOBILOBA Pressure Differential Flow Meters In a differential pressure drop device the flow is

More information

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola CONCEPTS AND DEFINITIONS Prepared by Engr. John Paul Timola ENGINEERING THERMODYNAMICS Science that involves design and analysis of devices and systems for energy conversion Deals with heat and work and

More information

ME3560 Tentative Schedule Fall 2018

ME3560 Tentative Schedule Fall 2018 ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read

More information

Flow Measurement in Pipes and Ducts COURSE CONTENT

Flow Measurement in Pipes and Ducts COURSE CONTENT Flow Measurement in Pipes and Ducts Dr. Harlan H. Bengtson, P.E. COURSE CONTENT 1. Introduction This course is about measurement of the flow rate of a fluid flowing under pressure in a closed conduit.

More information

MCE380: Measurements and Instrumentation Lab

MCE380: Measurements and Instrumentation Lab MCE380: Measurements and Instrumentation Lab Chapter 8: Flow Measurements Topics: Basic Flow Equations Flow Obstruction Meters Positive Displacement Flowmeters Other Methods Holman, Ch. 7 Cleveland State

More information

WALL ROUGHNESS EFFECTS ON SHOCK BOUNDARY LAYER INTERACTION FLOWS

WALL ROUGHNESS EFFECTS ON SHOCK BOUNDARY LAYER INTERACTION FLOWS ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

EXPERIMENT NO. 4 CALIBRATION OF AN ORIFICE PLATE FLOWMETER MECHANICAL ENGINEERING DEPARTMENT KING SAUD UNIVERSITY RIYADH

EXPERIMENT NO. 4 CALIBRATION OF AN ORIFICE PLATE FLOWMETER MECHANICAL ENGINEERING DEPARTMENT KING SAUD UNIVERSITY RIYADH EXPERIMENT NO. 4 CALIBRATION OF AN ORIFICE PLATE FLOWMETER MECHANICAL ENGINEERING DEPARTMENT KING SAUD UNIVERSITY RIYADH Submitted By: ABDULLAH IBN ABDULRAHMAN ID: 13456789 GROUP A EXPERIMENT PERFORMED

More information

Determination of the Blockage Effect on a Thermal Anemometer using a Small Open Jet Wind Tunnel

Determination of the Blockage Effect on a Thermal Anemometer using a Small Open Jet Wind Tunnel 17 International Congress of Metrology, 03003 (2015) DOI: 10.1051/ metrolo gy/ 201503003 C Owned by the authors, published by EDP Sciences, 2015 Determination of the Blockage Effect on a Thermal Anemometer

More information

Experimental Study on Port to Channel Flow Distribution of Plate Heat Exchangers

Experimental Study on Port to Channel Flow Distribution of Plate Heat Exchangers Proceedings of Fifth International Conference on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology, Eds. R.K. Shah, M. Ishizuka, T.M. Rudy, and V.V. Wadekar, Engineering

More information

Fluid Mechanics. du dy

Fluid Mechanics. du dy FLUID MECHANICS Technical English - I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's

More information

Contents. I Introduction 1. Preface. xiii

Contents. I Introduction 1. Preface. xiii Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

More information

A fundamental study of the flow past a circular cylinder using Abaqus/CFD

A fundamental study of the flow past a circular cylinder using Abaqus/CFD A fundamental study of the flow past a circular cylinder using Abaqus/CFD Masami Sato, and Takaya Kobayashi Mechanical Design & Analysis Corporation Abstract: The latest release of Abaqus version 6.10

More information

Convective Mass Transfer

Convective Mass Transfer Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface

More information

Orifice and Venturi Pipe Flow Meters

Orifice and Venturi Pipe Flow Meters Orifice and Venturi Pipe Flow Meters For Liquid and Gas Flow by Harlan H. Bengtson, PhD, P.E. 1. Introduction Orifice and Venturi Pipe Flow Meters The flow rate of a fluid flowing in a pipe under pressure

More information

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the co-efficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1

More information

Existing Resources: Supplemental/reference for students with thermodynamics background and interests:

Existing Resources: Supplemental/reference for students with thermodynamics background and interests: Existing Resources: Masters, G. (1991) Introduction to Environmental Engineering and Science (Prentice Hall: NJ), pages 15 29. [ Masters_1991_Energy.pdf] Supplemental/reference for students with thermodynamics

More information

Therefore, the control volume in this case can be treated as a solid body, with a net force or thrust of. bm # V

Therefore, the control volume in this case can be treated as a solid body, with a net force or thrust of. bm # V When the mass m of the control volume remains nearly constant, the first term of the Eq. 6 8 simply becomes mass times acceleration since 39 CHAPTER 6 d(mv ) CV m dv CV CV (ma ) CV Therefore, the control

More information

THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE

THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE Polymers Research Journal ISSN: 195-50 Volume 6, Number 01 Nova Science Publishers, Inc. THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE E. Poursaeidi, M. Mohammadi and S. S. Khamesi University

More information

Thermoacoustic Instabilities Research

Thermoacoustic Instabilities Research Chapter 3 Thermoacoustic Instabilities Research In this chapter, relevant literature survey of thermoacoustic instabilities research is included. An introduction to the phenomena of thermoacoustic instability

More information

AAE COMBUSTION AND THERMOCHEMISTRY

AAE COMBUSTION AND THERMOCHEMISTRY 5. COMBUSTIO AD THERMOCHEMISTRY Ch5 1 Overview Definition & mathematical determination of chemical equilibrium, Definition/determination of adiabatic flame temperature, Prediction of composition and temperature

More information

Fundamentals of Fluid Mechanics

Fundamentals of Fluid Mechanics Sixth Edition Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

More information

URANS Computations of Cavitating Flow around a 2-D Wedge by Compressible Two-Phase Flow Solver

URANS Computations of Cavitating Flow around a 2-D Wedge by Compressible Two-Phase Flow Solver URANS Computations of Cavitating Flow around a 2-D Wedge by Compressible Two-Phase Flow Solver *Yohan Choe 1), Hyeongjun Kim 1), Chongam Kim 2) 1), 2) Department of Aerospace Engineering, Seoul National

More information

Experiences in an Undergraduate Laboratory Using Uncertainty Analysis to Validate Engineering Models with Experimental Data

Experiences in an Undergraduate Laboratory Using Uncertainty Analysis to Validate Engineering Models with Experimental Data Experiences in an Undergraduate Laboratory Using Analysis to Validate Engineering Models with Experimental Data W. G. Steele 1 and J. A. Schneider Abstract Traditionally, the goals of engineering laboratory

More information

VORTEX LEVITATION. Toshiharu Kagawa 1 and Xin Li 2

VORTEX LEVITATION. Toshiharu Kagawa 1 and Xin Li 2 VORTEX LEVITATION Toshiharu Kagawa 1 and Xin Li ABSTRACT In this paper, a new pneumatic levitation method, called vortex levitation, is introduced. Vortex levitation can achieve non-contact handling by

More information

Engineering Fluid Mechanics

Engineering Fluid Mechanics Engineering Fluid Mechanics Eighth Edition Clayton T. Crowe WASHINGTON STATE UNIVERSITY, PULLMAN Donald F. Elger UNIVERSITY OF IDAHO, MOSCOW John A. Roberson WASHINGTON STATE UNIVERSITY, PULLMAN WILEY

More information

EXPERIMENTAL VERIFICATION OF A GENERIC BUFFETING LOAD MODEL FOR HIGH-RISE AND LONG-SPAN STRUCTURES

EXPERIMENTAL VERIFICATION OF A GENERIC BUFFETING LOAD MODEL FOR HIGH-RISE AND LONG-SPAN STRUCTURES EXPERIMENTAL VERIFICATION OF A GENERIC BUFFETING LOAD MODEL FOR HIGH-RISE AND LONG-SPAN STRUCTURES Robin G. SROUJI, Kristoffer HOFFMANN Svend Ole Hansen ApS, Denmark rgs@sohansen.dk, kho@sohansen.dk Svend

More information

SYSTEMS VS. CONTROL VOLUMES. Control volume CV (open system): Arbitrary geometric space, surrounded by control surfaces (CS)

SYSTEMS VS. CONTROL VOLUMES. Control volume CV (open system): Arbitrary geometric space, surrounded by control surfaces (CS) SYSTEMS VS. CONTROL VOLUMES System (closed system): Predefined mass m, surrounded by a system boundary Control volume CV (open system): Arbitrary geometric space, surrounded by control surfaces (CS) Many

More information

Review of Fluid Mechanics

Review of Fluid Mechanics Chapter 3 Review of Fluid Mechanics 3.1 Units and Basic Definitions Newton s Second law forms the basis of all units of measurement. For a particle of mass m subjected to a resultant force F the law may

More information

Angular momentum equation

Angular momentum equation Angular momentum equation For angular momentum equation, B =H O the angular momentum vector about point O which moments are desired. Where β is The Reynolds transport equation can be written as follows:

More information

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit.

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. Both the Kelvin and Fahrenheit scales are absolute temperature scales. Specific volume, v, is an intensive property,

More information

Chemistry: The Central Science. Chapter 5: Thermochemistry

Chemistry: The Central Science. Chapter 5: Thermochemistry Chemistry: The Central Science Chapter 5: Thermochemistry Study of energy and its transformations is called thermodynamics Portion of thermodynamics that involves the relationships between chemical and

More information

Acoustic and Vibration Stability Analysis of Furnace System in Supercritical Boiler

Acoustic and Vibration Stability Analysis of Furnace System in Supercritical Boiler Acoustic and Vibration Stability Analysis of Furnace System in Supercritical Boiler Hyuk-Min Kwon 1 ; Chi-Hoon Cho 2 ; Heui-Won Kim 3 1,2,3 Advanced Technology Institute, Hyundai Heavy Industries, Co.,

More information

68 Guo Wei-Bin et al Vol. 12 presented, and are thoroughly compared with other numerical data with respect to the Strouhal number, lift and drag coeff

68 Guo Wei-Bin et al Vol. 12 presented, and are thoroughly compared with other numerical data with respect to the Strouhal number, lift and drag coeff Vol 12 No 1, January 2003 cfl 2003 Chin. Phys. Soc. 1009-1963/2003/12(01)/0067-08 Chinese Physics and IOP Publishing Ltd Lattice-BGK simulation of a two-dimensional channel flow around a square cylinder

More information

Introduction. In general, gases are highly compressible and liquids have a very low compressibility. COMPRESSIBLE FLOW

Introduction. In general, gases are highly compressible and liquids have a very low compressibility. COMPRESSIBLE FLOW COMRESSIBLE FLOW COMRESSIBLE FLOW Introduction he compressibility of a fluid is, basically, a measure of the change in density that will be produced in the fluid by a specific change in pressure and temperature.

More information

William В. Brower, Jr. A PRIMER IN FLUID MECHANICS. Dynamics of Flows in One Space Dimension. CRC Press Boca Raton London New York Washington, D.C.

William В. Brower, Jr. A PRIMER IN FLUID MECHANICS. Dynamics of Flows in One Space Dimension. CRC Press Boca Raton London New York Washington, D.C. William В. Brower, Jr. A PRIMER IN FLUID MECHANICS Dynamics of Flows in One Space Dimension CRC Press Boca Raton London New York Washington, D.C. Table of Contents Chapter 1 Fluid Properties Kinetic Theory

More information

MOMENTUM PRINCIPLE. Review: Last time, we derived the Reynolds Transport Theorem: Chapter 6. where B is any extensive property (proportional to mass),

MOMENTUM PRINCIPLE. Review: Last time, we derived the Reynolds Transport Theorem: Chapter 6. where B is any extensive property (proportional to mass), Chapter 6 MOMENTUM PRINCIPLE Review: Last time, we derived the Reynolds Transport Theorem: where B is any extensive property (proportional to mass), and b is the corresponding intensive property (B / m

More information

AEROACOUSTIC INVESTIGATION OF THE EFFECT OF A DETACHED FLAT PLATE ON THE NOISE FROM A SQUARE CYLINDER

AEROACOUSTIC INVESTIGATION OF THE EFFECT OF A DETACHED FLAT PLATE ON THE NOISE FROM A SQUARE CYLINDER Abstract AEROACOUSTIC INVESTIGATION OF THE EFFECT OF A DETACHED FLAT PLATE ON THE NOISE FROM A SQUARE CYLINDER Aniket D. Jagtap 1, Ric Porteous 1, Akhilesh Mimani 1 and Con Doolan 2 1 School of Mechanical

More information

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt number Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer Average Nusselt number: convective heat transfer Nu L = conductive heat transfer = hl where L is the characteristic

More information

Section 2. Energy Fundamentals

Section 2. Energy Fundamentals Section 2 Energy Fundamentals 1 Energy Fundamentals Open and Closed Systems First Law of Thermodynamics Second Law of Thermodynamics Examples of heat engines and efficiency Heat Transfer Conduction, Convection,

More information

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 17 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. In

More information

vector H. If O is the point about which moments are desired, the angular moment about O is given:

vector H. If O is the point about which moments are desired, the angular moment about O is given: The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment

More information

Engineering Thermodynamics. Chapter 1. Introductory Concepts and Definition

Engineering Thermodynamics. Chapter 1. Introductory Concepts and Definition 1.1 Introduction Chapter 1 Introductory Concepts and Definition Thermodynamics may be defined as follows : Thermodynamics is an axiomatic science which deals with the relations among heat, work and properties

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Chapter 4 DYNAMICS OF FLUID FLOW

Chapter 4 DYNAMICS OF FLUID FLOW Faculty Of Engineering at Shobra nd Year Civil - 016 Chapter 4 DYNAMICS OF FLUID FLOW 4-1 Types of Energy 4- Euler s Equation 4-3 Bernoulli s Equation 4-4 Total Energy Line (TEL) and Hydraulic Grade Line

More information

Ph.D. Qualifying Exam in Fluid Mechanics

Ph.D. Qualifying Exam in Fluid Mechanics Student ID Department of Mechanical Engineering Michigan State University East Lansing, Michigan Ph.D. Qualifying Exam in Fluid Mechanics Closed book and Notes, Some basic equations are provided on an

More information

4 Compressible Fluid Dynamics

4 Compressible Fluid Dynamics 4 Compressible Fluid Dynamics 4. Compressible flow definitions Compressible flow describes the behaviour of fluids that experience significant variations in density under the application of external pressures.

More information

Comptes Rendus Mecanique

Comptes Rendus Mecanique C. R. Mecanique 338 (2010) 12 17 Contents lists available at ScienceDirect Comptes Rendus Mecanique www.sciencedirect.com Vortex-induced vibration of a square cylinder in wind tunnel Xavier Amandolèse

More information

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m 1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

More information

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us Problems of Practices Of Fluid Mechanics Compressible Fluid Flow Prepared By Brij Bhooshan Asst. Professor B. S. A. College of Engg. And Technology Mathura, Uttar Pradesh, (India) Supported By: Purvi Bhooshan

More information

The First Law of Thermodynamics. By: Yidnekachew Messele

The First Law of Thermodynamics. By: Yidnekachew Messele The First Law of Thermodynamics By: Yidnekachew Messele It is the law that relates the various forms of energies for system of different types. It is simply the expression of the conservation of energy

More information

Vortex shedding from slender surface mounted pyramids

Vortex shedding from slender surface mounted pyramids Vortex shedding from slender surface mounted pyramids M. J. Morrison 1, R. J. Martinuzzi 3, E. Savory 1, G. A. Kopp 2 1 Department of Mechanical and Materials Engineering, University of Western Ontario,

More information

Isentropic Efficiency in Engineering Thermodynamics

Isentropic Efficiency in Engineering Thermodynamics June 21, 2010 Isentropic Efficiency in Engineering Thermodynamics Introduction This article is a summary of selected parts of chapters 4, 5 and 6 in the textbook by Moran and Shapiro (2008. The intent

More information

first law of ThermodyNamics

first law of ThermodyNamics first law of ThermodyNamics First law of thermodynamics - Principle of conservation of energy - Energy can be neither created nor destroyed Basic statement When any closed system is taken through a cycle,

More information

Orifice and Venturi Pipe Flow Meters

Orifice and Venturi Pipe Flow Meters Orifice and Venturi Pipe Flow Meters by Harlan H. Bengtson, PhD, P.E. 1. Introduction Your Course Title Here The flow rate of a fluid flowing in a pipe under pressure is measured for a variety of applications,

More information

열과유체, 에너지와친해지기 KAIST 기계공학과정상권

열과유체, 에너지와친해지기 KAIST 기계공학과정상권 열과유체, 에너지와친해지기 KAIST 기계공학과정상권 이번시간에는! 열역학 - 세상을움직이는스마트한법칙 물과공기로움직이는기계 사라지지않는에너지 / 증가하는엔트로피 열역학 - 세상을움직이는스마트한법칙 KAIST 기계공학과정상권 [ 학습목차 ] Thermofluids Energy conservation principle Energy Work (boundary work)

More information

ABSTRACT I. INTRODUCTION

ABSTRACT I. INTRODUCTION 2016 IJSRSET Volume 2 Issue 4 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Analysis of Compressible Effect in the Flow Metering By Orifice Plate Using Prasanna

More information

Non-Synchronous Vibrations of Turbomachinery Airfoils

Non-Synchronous Vibrations of Turbomachinery Airfoils Non-Synchronous Vibrations of Turbomachinery Airfoils 600 500 NSV Frequency,!, hz 400 300 200 F.R. Flutter 100 SFV 0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Rotor Speed,!, RPM Kenneth C. Hall,

More information

GAS MASS FLOW METERING AN ALTERNATIVE APPROACH Eric Sanford, Vortek Instruments Koichi Igarashi, Azbil North America Kim Lewis, DP Diagnostics

GAS MASS FLOW METERING AN ALTERNATIVE APPROACH Eric Sanford, Vortek Instruments Koichi Igarashi, Azbil North America Kim Lewis, DP Diagnostics GAS MASS FLOW METERING AN ALTERNATIVE APPROACH Eric Sanford, Vortek Instruments Koichi Igarashi, Azbil North America Kim Lewis, DP Diagnostics INTRODUCTION Metering a fluid s mass flow rate in a pipe with

More information

Effect of roughness shape on heat transfer and flow friction characteristics of solar air heater with roughened absorber plate

Effect of roughness shape on heat transfer and flow friction characteristics of solar air heater with roughened absorber plate Advanced Computational Methods in Heat Transfer IX 43 Effect of roughness shape on heat transfer and flow friction characteristics of solar air heater with roughened absorber plate A. Chaube 1, P. K. Sahoo

More information

ME332 FLUID MECHANICS LABORATORY (PART I)

ME332 FLUID MECHANICS LABORATORY (PART I) ME332 FLUID MECHANICS LABORATORY (PART I) Mihir Sen Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame, IN 46556 Version: January 14, 2002 Contents Unit 1: Hydrostatics

More information

1. Introduction, tensors, kinematics

1. Introduction, tensors, kinematics 1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Lecture slides by Dr. Fawzi Elfghi

More information

Chapter 7. Entropy: A Measure of Disorder

Chapter 7. Entropy: A Measure of Disorder Chapter 7 Entropy: A Measure of Disorder Entropy and the Clausius Inequality The second law of thermodynamics leads to the definition of a new property called entropy, a quantitative measure of microscopic

More information

Chapter 5 Control Volume Approach and Continuity Equation

Chapter 5 Control Volume Approach and Continuity Equation Chapter 5 Control Volume Approach and Continuity Equation Lagrangian and Eulerian Approach To evaluate the pressure and velocities at arbitrary locations in a flow field. The flow into a sudden contraction,

More information