CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola


 Ashlie King
 2 years ago
 Views:
Transcription
1 CONCEPTS AND DEFINITIONS Prepared by Engr. John Paul Timola
2 ENGINEERING THERMODYNAMICS Science that involves design and analysis of devices and systems for energy conversion Deals with heat and work and those substances related to heat and work
3 Working Substance Fluid in which energy can be stored or from which energy can be removed Function is to receive, transport, or disperse heat, work, or energy Examples: Steam in a steam turbine Air in an air compressor
4 Thermodynamic System Matter or region of space which we consider or analyze
5 Surroundings Everything external to the system
6 Boundary Interface between the system and its surroundings Usually represented in a diagram by broken lines
7 Closed System Or control mass System where no mass can cross its boundary Only energy can enter and leave Example Gas inside a closed balloon Gas trapped in a cylinder by movable piston
8 Open System Or control volume Permits both mass and energy across its boundary Example Jet engine Window air conditioner
9 Identify the working substance, specify the kind of system, and sketch the system boundary. Example: Nitrogen, at a pressure of 200 kpa and a temperature of 25 C, flows at a velocity of 20 m/s through a pipe with a diameter of 35 mm. 1. Liquid water enters a pump at 25 C, 100 kpa and exits at a pressure of 5 MPa. 2. A compressor receives ambient air at 95 kpa, 20 C, with a low velocity. At the compressor discharge, air exists at 1.14 kpa, 380 C, with a velocity of 110 m/sec. 3. Steam enters a turbine at 300 C and is exhausted at 20 kpa.
10 Thermodynamic Property Any measurable characteristic of a system Quantity whose numerical value depends on the state of a system Examples: pressure, temperature, volume, specific volume
11 Extensive Property Property that depends on the amount of mass or material in a system Examples: Mass, total volume
12 Intensive Property Property that is independent of the size or the amount of mass or material in a system Examples: Specific volume, temperature, pressure density
13 Some Observable Properties Density Mass of substance per unit volume m kg lb [, m ] 3 3 V m ft where : m mass V volume
14 Specific Volume Volume per unit mass 3 3 V m ft [, ] m kg lb m where : m mass V volume
15 Specific Weight Weight of a substance per unit volume W kn N lbf = g [,, ] V m m ft where : W weight [ kn, N, lb ] g acceleration due to gravity at sea level m sec 2 f ft sec 2
16 Weight Force of gravity on a substance W mg [ kn, N, lb f ]
17 Specific Gravity Ratio of the specific weight of a substance to the specific weight of water SG Note: H2O 2 H O At 4 and kpa, H O g kg kn H O 3 cm m m 2 2
18 Example 1 Two cubic meters of air at 25 C and 1 bar has a mass of 2.34 kg a) List the values of three intensive properties and two extensive properties for this system b) If the local gravity is 9.65 m/s 2, evaluate the specific weight of the system
19 Example 2 An object has a mass of 10 kg. Calculate the following quantities: a) Weight of the object at sea level b) Weight of the object at a location where g = 9.4 m/s 2
20 Fill in the missing quantities 1. m = 3 kg V = 6 m3 υ = ρ = 2. m = 4 lb V = υ = 0.33 ft 3 /lb ρ = 3. m = V = 2 m 3 υ = 0.10 ft 3 /lb ρ =
21 Pressure Normal force per unit area Acting on the surface of a system F kg p [ kpa,, psi ] 3 A cm where : F normal force [ kn, N, kg, lb ] A area [ m, cm, ft,in ] f f
22 Pressure Measuring Devices Bourdon gauges Simple mechanical devices calibrated to read pressure directly by the movement of a needle attached to a hollow tube connected to a pressurized container
23 Pressure Measuring Devices Manometer Uses the height of a fluid column barometer p h gh gauge where : density of measuring liquid h height of column liquid
24 Absolute Pressure Actual pressure at a given position in a system
25 Gauge Pressure Difference of the absolute pressure and atmospheric pressure
26 Vacuum If a fluid exists at a pressure lower than the atmospheric pressure, its gauge pressure is negative The term vacuum is applied to the magnitude of the gauge pressure for convenience
27
28 Notes for Pressure p abs = p atm + p gauge = p atm p vacuum 2 1 pascal ( Pa) 1 N / m bar 10 N / m 1 atm 760 mm Hg 101,325 Pa 14.7psi
29 Example A manometer is attached to a pressurized container. One end of the manometer is open to the atmosphere and the local atmospheric pressure is 760 mm Hg. The height of the manometer fluid is 42 cm and the fluid has a specific gravity of 1.6. Calculate the absolute pressure on the inside surface of the container.
30 Fill in the missing quantity 1. Force = 400 N Area = 14 m 2 Pressure = 2. Force = Area = 12 ft 2 Pressure = 100 lb m /ft 2 3. Force = 10 kn Area = Pressure = 60 kpa
31 Temperature Measure of the hotness or coldness of a substance 9 F C 32 5 C 5 ( F 32) 9 R F R 460 K C K 5
32 Convert F to C F to K R to C
33 State Condition of a system as indicated by its properties
34 Process Progress of a system proceeding from an initial state to a final state
35 Internally Reversible Process Or QuasiEquilibrium An ideal process in which a system remains infinitesimally close to equilibrium condition throughout the process
36 Isothermal Process Process in which temperature remain constant
37 Isobaric Process Process in which pressure remain constant
38 Isochoric Process Also known as Isometric process Process in which volume remain constant
39 Adiabatic Process Process in which there is no heat transfer across the boundary of the system
40 Cycle Process or series of processes whose initial and final values are identical
41 Point Function Quantity whose value at any state is independent of the path or process used to reach that state Examples: pressure, temperature, specific volume, entropy, enthalpy
42 Path Function Also known as Process function Quantity whose value depends on the path followed during a particular change in state Examples: work and heat
43 Test Your Self 1. The condition of a system as indicated by its properties is its. 2. The progress of a system proceeding from an initial state to a final state is called. 3. The process in which volume remain constant is the. 4. The process or series of processes whose initial and final values are identical is named. 5. The process in which temperature remain constant is the.
44 Potential Energy Energy possessed by a body by virtue of its position PE Wz mgz [ kj, Btu ] mgz [ kg / s, Btu / hr, ft lb / s ] gz [ kj / kg, Btu / lb ] where : z elevation [ m, ft ] m mass m f [ kg, lb ] m mass flow rate [ kg / s, lb / s ] g acceleration due to gravity m s ft s m m 2 2 [ /, / ]
45 Kinetic Energy Energy possessed by an object due to its motion KE 1 mv 2 [ kj, Btu ] 2 where : v velocity [ m / s, ft / s ] m mass [ kg, lb ] m
46 Example Two identical automobiles each has a mass of 1500 kg. Both automobiles start from rest at the same location with an elevation of 1000 m. Automobile A passes a point with an elevation of 2000 m maintaining a velocity of 15 m/s while automobile B follows with a velocity of 20 m/s. Determine the change in potential and kinetic energy of both automobiles.
Engineering Thermodynamics. Chapter 1. Introductory Concepts and Definition
1.1 Introduction Chapter 1 Introductory Concepts and Definition Thermodynamics may be defined as follows : Thermodynamics is an axiomatic science which deals with the relations among heat, work and properties
More informationEnergy: The ability to cause changes. thermodynamics stems from therme (heat) and dynamis (power).
Energy: The ability to cause changes. thermodynamics stems from therme (heat) and dynamis (power). Thermodynamics: The science of energy. Conservation of energy principle: During an interaction, energy
More informationCourse: TDEC202 (Energy II) dflwww.ece.drexel.edu/tdec
Course: TDEC202 (Energy II) Thermodynamics: An Engineering Approach Course Director/Lecturer: Dr. Michael Carchidi Course Website URL dflwww.ece.drexel.edu/tdec 1 Course Textbook Cengel, Yunus A. and Michael
More informationThermodynamic Systems
Thermodynamic Systems For purposes of analysis we consider two types of Thermodynamic Systems: Closed System  usually referred to as a System or a Control Mass. This type of system is separated from its
More informationChapter 1 Introduction
Fundamentals of Thermodynamics Chapter 1 Introduction Prof. Siyoung Jeong Thermodynamics I MEE202201 Thermodynamics : Science of energy and entropy  Science of heat and work and properties related to
More informationNonNewtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste,
CHAPTER1: Basic Definitions, Zeroth, First, and Second Laws of Thermodynamics 1.1. Definitions What does thermodynamic mean? It is a Greeks word which means a motion of the heat. Water is a liquid substance
More informationThe word thermodynamics is derived from two Greek words Therm which means heat Dynamis which means power
THERMODYNAMICS INTRODUCTION The word thermodynamics is derived from two Greek words Therm which means heat Dynamis which means power Together the spell heat power which fits the time when the forefathers
More informationME 2322 Thermodynamics I PRELECTURE Lesson 10 Complete the items below Name:
Lesson 10 1. (5 pt) If P > P sat (T), the phase is a subcooled liquid. 2. (5 pt) if P < P sat (T), the phase is superheated vapor. 3. (5 pt) if T > T sat (P), the phase is superheated vapor. 4. (5 pt)
More informationWhy do we need to study thermodynamics? Examples of practical thermodynamic devices:
Why do we need to study thermodynamics? Knowledge of thermodynamics is required to design any device involving the interchange between heat and work, or the conversion of material to produce heat (combustion).
More informationChapter 1: Basic Concepts of Thermodynamics. Thermodynamics and Energy. Dimensions and Units
Chapter 1: Basic Concepts of Thermodynamics Every science has its own unique vocabulary associated with it. recise definition of basic concepts forms a sound foundation for development of a science and
More informationIntroduction CHAPTER Prime Movers. 1.2 Sources of Energy
Introduction CHAPTER 1 1.1 Prime Movers Prime mover is a device which converts natural source of energy into mechanical work to drive machines for various applications. In olden days, man had to depend
More informationME2320 Thermodynamics I. Summer I Instructor: Dr. William W. Liou
ME2320 Thermodynamics I Summer I 2016 Instructor: Dr. William W. Liou Syllabus http://homepages.wmich.edu/~liou/wp_course.htm Homework Solutions Format 3 How to get, and stay, ahead in this class? Preview
More informationThermodynamics INTRODUCTION AND BASIC CONCEPTS. Copyright The McGrawHill Companies, Inc. Permission required for reproduction or display.
Thermodynamics INTRODUCTION AND BASIC CONCEPTS Copyright The McGrawHill Companies, Inc. Permission required for reproduction or display. THERMODYNAMICS AND ENERGY Thermodynamics: The science of energy.
More informationINTRODUCTION AND BASIC CONCEPTS. Chapter 1. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A.
Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGrawHill, 2008 Chapter 1 INTRODUCTION AND BASIC CONCEPTS Mehmet Kanoglu Copyright The McGrawHill Companies, Inc.
More informationCHAPTER 28 PRESSURE IN FLUIDS
CHAPTER 8 PRESSURE IN FLUIDS EXERCISE 18, Page 81 1. A force of 80 N is applied to a piston of a hydraulic system of crosssectional area 0.010 m. Determine the pressure produced by the piston in the hydraulic
More informationGATE & PSUs CHEMICAL ENGINEERING
Postal Correspondence GATE & PSUs CHEMICAL ENGINEERING THERMODYNAMICS 1 T A B L E O F C O N T E N T S. No. Title Page no. 1. Introduction 3 2. Work and Heat Transfer 9 3. Second Law of Thermodynamics 27
More informationfirst law of ThermodyNamics
first law of ThermodyNamics First law of thermodynamics  Principle of conservation of energy  Energy can be neither created nor destroyed Basic statement When any closed system is taken through a cycle,
More informationLecture 1 INTRODUCTION AND BASIC CONCEPTS
Lecture 1 INTRODUCTION AND BASIC CONCEPTS Objectives Identify the unique vocabulary associated with thermodynamics through the precise definition of basic concepts to form a sound foundation for the development
More informationPTT 277/3 APPLIED THERMODYNAMICS SEM 1 (2013/2014)
PTT 77/3 APPLIED THERMODYNAMICS SEM 1 (013/014) 1 Energy can exist in numerous forms: Thermal Mechanical Kinetic Potential Electric Magnetic Chemical Nuclear The total energy of a system on a unit mass:
More information Apply closed system energy balances, observe sign convention for work and heat transfer.
CHAPTER : ENERGY AND THE FIRST LAW OF THERMODYNAMICS Objectives:  In this chapter we discuss energy and develop equations for applying the principle of conservation of energy. Learning Outcomes:  Demonstrate
More informationTwo mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW SVCET
Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW 1. What do you understand by pure substance? A pure substance is defined as one that is homogeneous and invariable in chemical composition
More informationChapter 5: The First Law of Thermodynamics: Closed Systems
Chapter 5: The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy
More informationThe First Law of Thermodynamics. By: Yidnekachew Messele
The First Law of Thermodynamics By: Yidnekachew Messele It is the law that relates the various forms of energies for system of different types. It is simply the expression of the conservation of energy
More informationWhere F1 is the force and dl1 is the infinitesimal displacement, but F1 = p1a1
In order to force the fluid to flow across the boundary of the system against a pressure p1, work is done on the boundary of the system. The amount of work done is dw =  F1.dl1, Where F1 is the force
More informationChapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn
Chapter 5 Mass and Energy Analysis of Control Volumes by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics:
More informationClassification following properties of the system in Intensive and Extensive
Unit I Classification following properties of the system in Intensive and Extensive Extensive : mass, weight, volume, potential energy, Kinetic energy, Internal energy, entropy, exergy, energy, magnetization
More informationChapter 1 INTRODUCTION AND BASIC CONCEPTS
Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGrawHill, 2011 Chapter 1 INTRODUCTION AND BASIC CONCEPTS Mehmet Kanoglu University of Gaziantep
More informationProperties of Gases. The perfect gas. States of gases Gas laws Kinetic model of gases (Ch th ed, th ed.) Real gases
Properties of Gases Chapter 1 of Physical Chemistry  6th Edition P.W. Atkins. Chapter 1 and a little bit of Chapter 24 of 7th Edition. Chapter 1 and a little bit of Chapter 21 of 8th edition. The perfect
More informationCHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES
Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Çengel, Michael A. Boles McGrawHill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Lecture slides by Dr. Fawzi Elfghi
More informationApplied Thermodynamics (Lecture#01)
Applied Thermodynamics (Lecture#0) Course Outline: Basic Concepts, the system, Open and close system, properties of a system, control volume, working substance, heat and work, state and properties, thermodynamic
More informationT H E R M O D Y N A M I C S M E
T H E R M O D Y N A M I C S M E THERMODYNAMICS CONTENTS 1 BASIC CONCEPTS IN THERMODYNAMICS 2 TEMPERATURE 3 WORK AND HEAT TRANSFER Thermodynamic system, surroundings, universe, system boundary Types of
More information(1)5. Which of the following equations is always valid for a fixed mass system undergoing an irreversible or reversible process:
Last Name First Name ME 300 Engineering Thermodynamics Exam #2 Spring 2008 March 28, 2008 Form A Note : (i) (ii) (iii) (iv) Closed book, closed notes; one 8.5 x 11 sheet allowed. 60 points total; 60 minutes;
More informationChapter 5. Mass and Energy Analysis of Control Volumes
Chapter 5 Mass and Energy Analysis of Control Volumes Conservation Principles for Control volumes The conservation of mass and the conservation of energy principles for open systems (or control volumes)
More informationME Thermodynamics I. Lecture Notes and Example Problems
ME 227.3 Thermodynamics I Lecture Notes and Example Problems James D. Bugg September 2018 Department of Mechanical Engineering Introduction Part I: Lecture Notes This part contains handout versions of
More informationME Thermodynamics I
HW03 (25 points) i) Given: for writing Given, Find, Basic equations Rigid tank containing nitrogen gas in two sections initially separated by a membrane. Find: Initial density (kg/m3) of nitrogen gas
More informationIntroduction. Chemistry the science of matter and the changes it can undergo.
Introduction Chemistry the science of matter and the changes it can undergo. Physical Chemistry concerned with the physical principles that underlie chemistry. Seeks to account for the properties of matter
More information! =!"#$% exerted by a fluid (liquid or gas) !"#$ =!"# FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME
FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME PRESSURE, P! =!"#$%!"#! exerted by a fluid (liquid or gas) Thermodynamic importance of pressure One of two independent
More information1.4 Perform the following unit conversions: (b) (c) s. g s. lb min. (d) (e) in. ft s. m 55 h. (f) ft s. km h. (g)
1.4 Perform the following unit conversions: 0.05 ft 1 in. (a) 1L 61in. 1L 1ft (b) 1kJ 650 J 10 J 1Btu 1.0551kJ 0.616 Btu (c) 41 Btu/h 0.15 kw 1kW 1h 600 s 778.17 ft lbf 1Btu ft lbf 99.596 s (d) g 78 s
More informationTemperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines
Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Zeroeth Law Two systems individually in thermal equilibrium with a third
More informationT H E R M O D Y N A M I C S M T
T H E R M O D Y N A M I C S M T THERMODYNAMICS AND RATE PROCESSES CONTENTS CHAPTER DESCRIPTION PAGE NO 1 Thermodynamics NOTES 1.1. Definitions 1 1.2. Laws of Thermodynamics 3 1.2.1. Zeroth Law of Thermodynamics
More information5/6/ :41 PM. Chapter 6. Using Entropy. Dr. Mohammad Abuhaiba, PE
Chapter 6 Using Entropy 1 2 Chapter Objective Means are introduced for analyzing systems from the 2 nd law perspective as they undergo processes that are not necessarily cycles. Objective: introduce entropy
More informationI. (20%) Answer the following True (T) or False (F). If false, explain why for full credit.
I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. Both the Kelvin and Fahrenheit scales are absolute temperature scales. Specific volume, v, is an intensive property,
More informationChapter 1: INTRODUCTION AND BASIC CONCEPTS. Thermodynamics = Greek words : therme(heat) + dynamis(force or power)
Chapter 1: INTRODUCTION AND BASIC CONCEPTS 1.1 Basic concepts and definitions Thermodynamics = Greek words : therme(heat) + dynamis(force or power) Note that, force x displacement = work; power = work/time
More informationCHAPTER 2 Pressure and Head
FLUID MECHANICS Gaza, Sep. 2012 CHAPTER 2 Pressure and Head Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Introduce the concept of pressure. Prove it has a unique value at any particular elevation.
More informationIE 211 INTRODUCTION TO ENGINEERING THERMODYNAMICS
IE 211 INTRODUCTION TO ENGINEERING THERMODYNAMICS Chapter1 Introduction and Basic Concepts INDUSTRIAL REVOLUTION A period in 18th and early 19th centuries Major changes in agriculture, mining, manufacturing,
More informationSpring_#1. Thermodynamics. Youngsuk Nam.
Spring_#1 Thermodynamics Youngsuk Nam ysnam1@khu.ac.kr Chapter 1: Objectives Understand the importance of thermodynamics Identify the unique vocabulary associated with thermodynamics through the precise
More informationKNOWN: Data are provided for a closed system undergoing a process involving work, heat transfer, change in elevation, and change in velocity.
Problem 44 A closed system of mass of 10 kg undergoes a process during which there is energy transfer by work from the system of 0147 kj per kg, an elevation decrease of 50 m, and an increase in velocity
More informationThermodynamics System Surrounding Boundary State, Property Process Quasi Actual Equilibrium English
Session1 Thermodynamics: An Overview System, Surrounding and Boundary State, Property and Process Quasi and Actual Equilibrium SI and English Units Thermodynamic Properties 1 Thermodynamics, An Overview
More informationUNIT I Basic concepts and Work & Heat Transfer
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: Engineering Thermodynamics (16ME307) Year & Sem: IIB. Tech & IISem
More informationTo receive full credit all work must be clearly provided. Please use units in all answers.
Exam is Open Textbook, Open Class Notes, Computers can be used (Computer limited to class notes, lectures, homework, book material, calculator, conversion utilities, etc. No searching for similar problems
More informationSKMM 2413 Thermodynamics
SKMM 2413 Thermodynamics Md. Mizanur Rahman, PhD Department of ThermoFluids Faculty of Mechanical Engineering Universiti Teknologi Malaysia UTM Office: C23228 mizanur@fkm.utm.my Semester I, 20162017
More informationPhysics 106 Lecture 13. Fluid Mechanics
Physics 106 Lecture 13 Fluid Mechanics SJ 7 th Ed.: Chap 14.1 to 14.5 What is a fluid? Pressure Pressure varies with depth Pascal s principle Methods for measuring pressure Buoyant forces Archimedes principle
More informationEng Thermodynamics I conservation of mass; 2. conservation of energy (1st Law of Thermodynamics); and 3. the 2nd Law of Thermodynamics.
Eng3901  Thermodynamics I 1 1 Introduction 1.1 Thermodynamics Thermodynamics is the study of the relationships between heat transfer, work interactions, kinetic and potential energies, and the properties
More informationGeneral Physics I (aka PHYS 2013)
General Physics I (aka PHYS 2013) PROF. VANCHURIN (AKA VITALY) University of Minnesota, Duluth (aka UMD) OUTLINE CHAPTER 12 CHAPTER 19 REVIEW CHAPTER 12: FLUID MECHANICS Section 12.1: Density Section 12.2:
More informationIntroduction & Basic Concepts of Thermodynamics
Introduction & Basic Concepts of Thermodynamics Reading Problems 21 28 253, 267, 285, 296 Introduction to Thermal Sciences Thermodynamics Conservation of mass Conservation of energy Second law of
More informationFirst Law of Thermodynamics
CH2303 Chemical Engineering Thermodynamics I Unit II First Law of Thermodynamics Dr. M. Subramanian 07July2011 Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College
More informationFUNDAMENTALS OF CLASSICAL AND STATISTICAL THERMODYNAMICS SPRING 2005
FUNDAMENTALS OF CLASSICAL AND STATISTICAL THERMODYNAMICS SPRING 2005 1 1. Basic Concepts of Thermodynamics The basic concepts of thermodynamics such as system, energy, property, state, process, cycle,
More informationCHAPTER 2: THE NATURE OF ENERGY
Principles of Engineering Thermodynamics st Edition Reisel Solutions Manual Full Download: http://testbanklive.com/download/principlesofengineeringthermodynamicssteditionreiselsolutionsmanual/
More informationFirst Law of Thermodynamics Closed Systems
First Law of Thermodynamics Closed Systems Content The First Law of Thermodynamics Energy Balance Energy Change of a System Mechanisms of Energy Transfer First Law of Thermodynamics in Closed Systems Moving
More informationThe first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer
Thermodynamics Investigation of the energy transfer by heat and work and how natural systems behave (Q) Heat transfer of energy due to temp differences. (W) Work transfer of energy through mechanical means.
More informationc Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2)
Thermodynamic Processes & Isentropic Efficiency Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET Dhaka1000, Bangladesh zahurul@me.buet.ac.bd
More information1 st Law Analysis of Control Volume (open system) Chapter 6
1 st Law Analysis of Control Volume (open system) Chapter 6 In chapter 5, we did 1st law analysis for a control mass (closed system). In this chapter the analysis of the 1st law will be on a control volume
More informationPowerPoint Presentation by: Associated Technical Authors. Publisher The GoodheartWillcox Company, Inc. Tinley Park, Illinois
Althouse Turnquist Bracciano PowerPoint Presentation by: Associated Technical Authors Publisher The GoodheartWillcox Company, Inc. Tinley Park, Illinois Chapter 1 History and Fundamentals of Refrigeration
More informationThermodynamics ENGR360MEP112 LECTURE 3
Thermodynamics ENGR360MEP11 LECTURE 3 ENERGY, ENERGY TRANSFER, AND ENERGY ANALYSIS Objectives: 1. Introduce the concept of energy and define its various forms.. Discuss the nature of internal energy.
More informationPhysics 153 Introductory Physics II. Week One: FLUIDS. Dr. Joseph J. Trout
Physics 153 Introductory Physics II Week One: FLUIDS Dr. Joseph J. Trout joseph.trout@drexel.edu 6103486495 States (Phases) of Matter: Solid: Fixed shape. Fixed size. Even a large force will not readily
More informationDual Program Level 1 Physics Course
Dual Program Level 1 Physics Course Assignment 15 Due: 11/Feb/2012 14:00 Assume that water has a constant specific heat capacity of 4190 J/kg K at all temperatures between its melting point and boiling
More informationME 201 Thermodynamics
ME 0 Thermodynamics Solutions First Law Practice Problems. Consider a balloon that has been blown up inside a building and has been allowed to come to equilibrium with the inside temperature of 5 C and
More informationCommon Terms, Definitions and Conversion Factors
1 Common Terms, Definitions and Conversion Factors 1. Force: A force is a push or pull upon an object resulting from the object s interaction with another object. It is defined as Where F = m a F = Force
More informationR13 SET  1 '' ''' '' ' '''' Code No RT21033
SET  1 II B. Tech I Semester Supplementary Examinations, June  2015 THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (PartA and PartB)
More informationDownload Solution Manual for Thermodynamics for Engineers 1st Edition by Kroos and Potter
Download Solution Manual for Thermodynamics for Engineers 1st Edition by Kroos and Potter Link download full: https://digitalcontentmarket.org/download/solutionmanualforthermodynamicsforengineers1steditionbykroosandpotter/
More informationChapter 1: Basic Definitions, Terminologies and Concepts
Chapter : Basic Definitions, Terminologies and Concepts . UThermodynamics:U It is a basic science that deals with: . Energy transformation from one form to another..
More informationChapter 15  Fluid Mechanics Thursday, March 24 th
Chapter 15  Fluid Mechanics Thursday, March 24 th Fluids Static properties Density and pressure Hydrostatic equilibrium Archimedes principle and buoyancy Fluid Motion The continuity equation Bernoulli
More informationCH 15. Zeroth and First Law of Thermodynamics
CH 15 Zeroth and First Law of Thermodynamics THERMODYNAMICS Thermodynamics Branch of Physics that is built upon the fundamental laws that heat and work obey. Central Heating Objectives: After finishing
More informationTHERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial.
THERMODYNAMICS, FLUID AND PLANT PROCESSES The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS TUTORIAL 2 THERMODYNAMIC PRINCIPLES SAE
More informationReadings for this homework assignment and upcoming lectures
Homework #3 (group) Tuesday, February 13 by 4:00 pm 5290 exercises (individual) Thursday, February 15 by 4:00 pm extra credit (individual) Thursday, February 15 by 4:00 pm Readings for this homework assignment
More informationProperties of Gases. Molecular interactions van der Waals equation Principle of corresponding states
Properties of Gases Chapter 1 of Atkins and de Paula The Perfect Gas States of gases Gas laws Real Gases Molecular interactions van der Waals equation Principle of corresponding states Kinetic Model of
More informationME 200 Final Exam December 12, :00 a.m. to 10:00 a.m.
CIRCLE YOUR LECTURE BELOW: First Name Last Name 7:30 a.m. 8:30 a.m. 10:30 a.m. 1:30 p.m. 3:30 p.m. Mongia Abraham Sojka Bae Naik ME 200 Final Exam December 12, 2011 8:00 a.m. to 10:00 a.m. INSTRUCTIONS
More informationME 200 Final Exam December 14, :00 a.m. to 10:00 a.m.
CIRCLE YOUR LECTURE BELOW: First Name Last Name 7:30 a.m. 8:30 a.m. 10:30 a.m. 11:30 a.m. Boregowda Boregowda Braun Bae 2:30 p.m. 3:30 p.m. 4:30 p.m. Meyer Naik Hess ME 200 Final Exam December 14, 2015
More informationBMEA PREVIOUS YEAR QUESTIONS
BMEA PREVIOUS YEAR QUESTIONS CREDITS CHANGE ACCHA HAI TEAM UNIT1 Introduction: Introduction to Thermodynamics, Concepts of systems, control volume, state, properties, equilibrium, quasistatic process,
More informationChapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn
Chapter 7 Entropy by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics: An Engineering Approach, 5th ed.,
More informationBasic Thermodynamics Module 1
Basic Thermodynamics Module 1 Lecture 1: Introduction Introduction The most of general sense of thermodynamics is the study of energy and its relationship to the properties of matter. All activities in
More informationFINAL EXAM. ME 200 Thermodynamics I, Spring 2013 CIRCLE YOUR LECTURE BELOW:
ME 200 Thermodynamics I, Spring 2013 CIRCLE YOUR LECTURE BELOW: Div. 5 7:30 am Div. 2 10:30 am Div. 4 12:30 am Prof. Naik Prof. Braun Prof. Bae Div. 3 2:30 pm Div. 1 4:30 pm Div. 6 4:30 pm Prof. Chen Prof.
More informationENT 254: Applied Thermodynamics
ENT 54: Applied Thermodynamics Mr. Azizul bin Mohamad Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis (UniMAP) azizul@unimap.edu.my 0194747351 049798679 Chapter
More informationKNOWN: Pressure, temperature, and velocity of steam entering a 1.6cmdiameter pipe.
4.3 Steam enters a.6cmdiameter pipe at 80 bar and 600 o C with a velocity of 50 m/s. Determine the mass flow rate, in kg/s. KNOWN: Pressure, temperature, and velocity of steam entering a.6cmdiameter
More informationChapter (6) Energy Equation and Its Applications
Chapter (6) Energy Equation and Its Applications Bernoulli Equation Bernoulli equation is one of the most useful equations in fluid mechanics and hydraulics. And it s a statement of the principle of conservation
More informationENERGY TRANSFER BY WORK: Electrical Work: When N Coulombs of electrical charge move through a potential difference V
Weight, W = mg Where m=mass, g=gravitational acceleration ENERGY TRANSFER BY WOR: Sign convention: Work done on a system = (+) Work done by a system = () Density, ρ = m V kg m 3 Where m=mass, V =Volume
More informationMAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) SUMMER 17 EXAMINATION
Important Instructions to examiners: 1) The answers should be examined by key words and not as wordtoword as given in the model answer scheme. 2) The model answer and the answer written by candidate
More informationFirst Law of Thermodynamics
First Law of Thermodynamics During an interaction between a system and its surroundings, the amount of energy gained by the system must be exactly equal to the amount of energy lost by the surroundings.
More informationUnified Quiz: Thermodynamics
Fall 004 Unified Quiz: Thermodynamics November 1, 004 Calculators allowed. No books allowed. A list of equations is provided. Put your name on each page of the exam. Read all questions carefully. Do all
More informationEngineering Thermodynamics
David Ng Summer 2017 Contents 1 July 5, 2017 3 1.1 Thermodynamics................................ 3 2 July 7, 2017 3 2.1 Properties.................................... 3 3 July 10, 2017 4 3.1 Systems.....................................
More informationApplied Fluid Mechanics
Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and
More informationSHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT
B.Tech. [SEM III (ME31, 32, 33,34,35 & 36)] QUIZ TEST1 Time: 1 Hour THERMODYNAMICS Max. Marks: 30 (EME303) Note: Attempt All Questions. Q1) 2 kg of an ideal gas is compressed adiabatically from pressure
More informationPeople s Physics book 3e
The Big Ideas Heat is a form of energy transfer. It can change the kinetic energy of a substance. For example, the average molecular kinetic energy of gas molecules is related to temperature. A heat engine
More informationLagrangian description from the perspective of a parcel moving within the flow. Streamline Eulerian, tangent line to instantaneous velocity field.
Chapter 2 Hydrostatics 2.1 Review Eulerian description from the perspective of fixed points within a reference frame. Lagrangian description from the perspective of a parcel moving within the flow. Streamline
More informationFundamentals of Thermodynamics 8e
Fundamentals of Thermodynamics 8e Authors Borgnakke Copyright 2012 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted
More informationExergy and the Dead State
EXERGY The energy content of the universe is constant, just as its mass content is. Yet at times of crisis we are bombarded with speeches and articles on how to conserve energy. As engineers, we know that
More informationDishwasher. Heater. Homework Solutions ME Thermodynamics I Spring HW1 (25 points)
HW1 (25 points) (a) Given: 1 for writing given, find, EFD, etc., Schematic of a household piping system Find: Identify system and location on the system boundary where the system interacts with the environment
More informationPhase Changes and Latent Heat
Review Questions Why can a person remove a piece of dry aluminum foil from a hot oven with bare fingers without getting burned, yet will be burned doing so if the foil is wet. Equal quantities of alcohol
More informationGAS. Outline. Experiments. Device for inclass thought experiments to prove 1 st law. First law of thermodynamics Closed systems (no mass flow)
Outline First law of thermodynamics Closed systems (no mass flow) Device for inclass thought experiments to prove 1 st law Rubber stops GAS Features: Quasiequlibrium expansion/compression Constant volume
More informationME 300 Thermodynamics II
ME 300 Thermodynamics II Prof. S. H. Frankel Fall 2006 ME 300 Thermodynamics II 1 Week 1 Introduction/Motivation Review Unsteady analysis NEW! ME 300 Thermodynamics II 2 Today s Outline Introductions/motivations
More information