Physics 231 Lecture 9

Size: px
Start display at page:

Download "Physics 231 Lecture 9"

Transcription

1 Physics 31 Lecture 9 Mi Main points o today s lecture: Potential energy: ΔPE = PE PE = mg ( y ) 0 y 0 Conservation o energy E = KE + PE = KE 0 + PE 0

2 Reading Quiz 3. I you raise an object to a greater height, you are increasing A. kinetic energy. B. heat. C. potential energy. D. chemical energy. E. thermal energy. Slide 10-10

3

4 Checking Understanding Three balls are thrown o a cli with the same speed, but in dierent directions. Which ball has the greatest speed just beore it hits the ground? A. Ball A B. Ball B C. Ball C D. All balls have the same speed Slide 10-6

5 Potential energy For certain orces, the work done by the orce in going rom position (x 0,y 0 ) to position (x,y) depends only the displacement and not on the path taken. Such a orce is called conservative. gravity is such a orce. Consider the work on a mass m under a displacement Δs at an angle θ with respect to the vertical as shown below: Δs (x 0,y 0 ) θ (x,y) W gravity F g = mg downwards g ( ) Δs = mg( y y) = Fgravity cos θ 0 From work - energy theorem : mg ( y0 y ) = KE KE0 From this we can see that being higher initially means that you can have a higher inal kinetic energy. Thus, mg(y 0 -y) is the part o the stored potential energy, which was changed into kinetic energy as the object moves rom its initial to its inal position. The potential energy only depends on the dierence in height between the initial and inal positions, i.e. on the vertical component o the displacement.

6 Example What dierence between the PE o a 000 kg car raised 10 m in the air and that o the same car on the ground? How much work would it require to lit it to that height? Δ PE = mgh = (000kg)(9.8m / s )(10m) Δ PE = x10 J 5 W =Δ PE= 1.96x10 J The potential energy o the car is 1.95x10 5 J larger when the car is 10 m above the ground than it is on the ground. It would take 1.95x10 5 J o work to lit it the 10 m.

7 Gravitational potential energy The most important t point o a potential ti energy is that t is only a unction o the position and not o the path taken to get there. I we break the path o the pail in to vertical sections the potential energy change is just mgδy and horizontal sections where the potential energy remains constant, we can see that the potential energy depends on the total vertical displacement and is independent o the path over which it is achieved. PE-PE 0 =mg(y-y 0 ) (x,y) (x 0,y 0 ) Thus we can deine PE=0 or some y 0 and then PE=mg(y-y 0) thereater. PE is W grav. It is the work one would need to do to move the pail rom A to B.

8 Conceptual problem At the bowling alley, the ball-eeder mechanism must exert a orce to push the bowling balls up a 1.0-m long ramp.the ramp leads the balls to a chute 0.5 m above the base o the ramp. Approximately how much orce must be exerted on a 5.0-kg bowling ball? a) 00 N b) 50 N c) 5 N d) 5.0 N e) impossible to determine Hint: the orce is conservative. It doesn t matter how you get up there. work = PE = FΔs PE mgδy F = = Δs Δs ( ) ( ) ( ) J = 5N 1m

9 Conservation o energy Up to an additive constant, we can deine PE=mgy. It is equal in magnitude but opposition in sign to the work being done by gravity.. Then KE KE0 = PE0 PE We can deine the total energy E as the sum o kinetic and potential energy. Then we have E = KE + PE = KE 0 + PE 0 Thus, when all work being done by orces in a problem can be expressed in terms o a potential energy, the total energy is conserved (i.e. remains constant). This is true or gravity and many other orces, but not or riction, or example.

10 Checking Understanding Three balls are thrown o a cli with the same speed, but in dierent directions. Which ball has the greatest speed just beore it hits the ground? A. Ball A B. Ball B C. Ball C D. All balls have the same speed E= KE + PE = KE + PE E= KE = mv = KE + PE PE 0 0 Slide 10-6

11 Example A water slide is constructed t so that t swimmers, starting ti rom rest at the top o the slide, leave the end o the slide traveling horizontally. As the drawing shows, one person is observed to hit the water 5.00 m rom the end o the slide in a time o s ater leaving the slid. Ignoring riction and air resistance, ind the height H in the drawing. Δx 5 m Δt 0.5 s h? v 0 0 v? H? Δx x 5m Δ x = vt; v = = = 10m/s t 0.5s h = height at bottom o slide: 1 -h = gt h = (4.9m 9m/s) 0.5s = 1.3m ( ) Conservation o energy (deine PE=0 at h): 1 mv + 0 = 0 + mg H h v H= h+ = 6.33m g ( )

Physics 231 Lecture 12

Physics 231 Lecture 12 Physics 31 Lecture 1 Work energy theorem W Potential energy o gravity: ΔPE total = = PE KE PE KE 0 mg Conservation o energy ( y ) 0 y 0 E = KE + PE = KE 0 + PE 0 Potential energy o a spring = PE = 1 kx

More information

Today: Work, Kinetic Energy, Potential Energy. No Recitation Quiz this week

Today: Work, Kinetic Energy, Potential Energy. No Recitation Quiz this week Today: Work, Kinetic Energy, Potential Energy HW #4 due Thursday, 11:59 p.m. pm No Recitation Quiz this week 1 What is Energy? Mechanical Electromagnetic PHY 11 PHY 13 Chemical CHE 105 Nuclear PHY 555

More information

There are two types of forces: conservative (gravity, spring force) nonconservative (friction)

There are two types of forces: conservative (gravity, spring force) nonconservative (friction) Chapter 8: Conservation o Energy There are two types o orces: conservative (gravity, spring orce) nonconservative (riction) Conservative Forces Conservative Force the work done by the orce on an object

More information

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY ENERGY Energy present in a variety of forms Mechanical energy Chemical energy Nuclear energy Electromagnetic energy Energy can be transformed form one form to another Energy is conserved (isolated system)

More information

Fs (30.0 N)(50.0 m) The magnitude of the force that the shopper exerts is f 48.0 N cos 29.0 cos 29.0 b. The work done by the pushing force F is

Fs (30.0 N)(50.0 m) The magnitude of the force that the shopper exerts is f 48.0 N cos 29.0 cos 29.0 b. The work done by the pushing force F is Chapter 6: Problems 5, 6, 8, 38, 43, 49 & 53 5. ssm Suppose in Figure 6. that +1.1 1 3 J o work is done by the orce F (magnitude 3. N) in moving the suitcase a distance o 5. m. At what angle θ is the orce

More information

One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s

One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s v x t Position x Meters Speed v m/s v t Length l Meters

More information

Physics 111 Lecture 6 Work-Energy -Power Dr.Ali ÖVGÜN

Physics 111 Lecture 6 Work-Energy -Power Dr.Ali ÖVGÜN Physics 111 Lecture 6 Work-Energy -Power Dr.Ali ÖVGÜN EMU Physics Department www.aovgun.com Why Energy? q Why do we need a concept o energy? q The energy approach to describing motion is particularly useul

More information

Chapter 6. Work and Energy

Chapter 6. Work and Energy Chapter 6 Work and Energy The Ideal Spring HOOKE S LAW: RESTORING FORCE OF AN IDEAL SPRING The restoring orce on an ideal spring is F x = k x SI unit or k: N/m The Ideal Spring Example: A Tire Pressure

More information

Physics 111. Lecture 18 (Walker: 8.3-4) Energy Conservation I March 11, Conservation of Mechanical Energy

Physics 111. Lecture 18 (Walker: 8.3-4) Energy Conservation I March 11, Conservation of Mechanical Energy Physics 111 Lecture 18 (Walker: 8.3-4) Energy Conservation I March 11, 2009 Lecture 18 1/24 Conservation o Mechanical Energy Deinition o mechanical energy: (8-6) I the only work done in going rom the initial

More information

Physics 10 Lecture 7A. "Energy and persistence conquer all things. --Benjamin Franklin

Physics 10 Lecture 7A. Energy and persistence conquer all things. --Benjamin Franklin Physics 10 Lecture 7A "Energy and persistence conquer all things. --Benjamin Franklin Quiz 1 Info It will be a Scantron test covering Chapters 1, 2, 3, 4, 5, and 6. A list of equations, constants, and

More information

Physics 2010 Work and Energy Recitation Activity 5 (Week 9)

Physics 2010 Work and Energy Recitation Activity 5 (Week 9) Physics 2010 Work and Energy Recitation Activity 5 (Week 9) Name Section Tues Wed Thu 8am 10am 12pm 2pm 1. The figure at right shows a hand pushing a block as it moves through a displacement Δ! s. a) Suppose

More information

Physics 11 HW #6 Solutions

Physics 11 HW #6 Solutions Physics HW #6 Solutions Chapter 6: Focus On Concepts:,,, Probles: 8, 4, 4, 43, 5, 54, 66, 8, 85 Focus On Concepts 6- (b) Work is positive when the orce has a coponent in the direction o the displaceent.

More information

Conservation of Mechanical Energy 8.01

Conservation of Mechanical Energy 8.01 Conservation o Mechanical Energy 8.01 Non-Conservative Forces Work done on the object by the orce depends on the path taken by the object Example: riction on an object moving on a level surace F riction

More information

Physics 1A Lecture 6B. "If the only tool you have is a hammer, every problem looks like a nail. --Abraham Maslow

Physics 1A Lecture 6B. If the only tool you have is a hammer, every problem looks like a nail. --Abraham Maslow Physics 1A Lecture 6B "If the only tool you have is a hammer, every problem looks like a nail. --Abraham Maslow Work Let s assume a constant force F acts on a rolling ball in a trough at an angle θ over

More information

Potential Energy. Serway 7.6, 7.7;

Potential Energy. Serway 7.6, 7.7; Potential Energy Conservative and non-conservative forces Gravitational and elastic potential energy Mechanical Energy Serway 7.6, 7.7; 8.1 8.2 Practice problems: Serway chapter 7, problems 41, 43 chapter

More information

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero Power Forces Conservative Force: P ave = W Δt P = dw dt P = F net v Net work done by a conservative force on an object moving around every closed path is zero Non-conservative Force: Net work done by a

More information

( ) = ( ) W net = ΔKE = KE f KE i W F. F d x. KE = 1 2 mv2. Note: Work is the dot product of F and d. Work-Kinetic Energy Theorem

( ) = ( ) W net = ΔKE = KE f KE i W F. F d x. KE = 1 2 mv2. Note: Work is the dot product of F and d. Work-Kinetic Energy Theorem Work-Kinetic Energy Theorem KE = 1 2 mv2 W F change in the kinetic energy of an object F d x net work done on the particle ( ) = ( ) W net = ΔKE = KE f KE i Note: Work is the dot product of F and d W g

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 Work and Energy Midterm exams will be available next Thursday. Assignment 6 Textbook (Giancoli, 6 th edition), Chapter 6: Due on Thursday, November 5 1. On page 162 of Giancoli, problem 4. 2.

More information

Physics Test VI Chapter 7 Impulse and Momentum

Physics Test VI Chapter 7 Impulse and Momentum Physics Test VI Chapter 7 Impulse and Momentum Name: Date: Period: Honor Pledge On my honor as a student I have neither given nor received aid on this test Sign Below HW Grade: Test Grade / Mr. Stark Loudoun

More information

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS 231 INTRODUCTORY PHYSICS I PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 6 Last Lecture: Gravity Normal forces Strings, ropes and Pulleys Today: Friction Work and Kinetic Energy Potential Energy Conservation of Energy Frictional Forces

More information

Lecture 10. Potential energy and conservation of energy

Lecture 10. Potential energy and conservation of energy Lecture 10 Potential energy and conservation of energy Today s Topics: Potential Energy and work done by conservative forces Work done by nonconservative forces Conservation of mechanical energy Potential

More information

The Electric Potential Energy

The Electric Potential Energy Lecture 6 Chapter 25 The Electric Potential Energy Course website: http://aculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 25: Section 25.1 Electric Potential Energy

More information

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

Physics 121. Tuesday, February 19, Physics 121. Tuesday, February 19, Physics 121. Course announcements. Topics:

Physics 121. Tuesday, February 19, Physics 121. Tuesday, February 19, Physics 121. Course announcements. Topics: Physics 121. Tuesday, ebruary 19, 2008. avy Lt. Ron Candiloro's /A-18 Hornet creates a shock wave as he breaks the sound barrier July 7. The shock wave is visible as a large cloud o condensation ormed

More information

Lecture 10 Mechanical Energy Conservation; Power

Lecture 10 Mechanical Energy Conservation; Power Potential energy Basic energy Lecture 10 Mechanical Energy Conservation; Power ACT: Zero net work The system of pulleys shown below is used to lift a bag of mass M at constant speed a distance h from the

More information

GRADE 12 JUNE 2017 PHYSICAL SCIENCES P1

GRADE 12 JUNE 2017 PHYSICAL SCIENCES P1 NATIONAL SENIOR CERTIFICATE GRADE 1 JUNE 017 PHYSICAL SCIENCES P1 MARKS: 150 TIME: 3 hours *JPHSCE1* This question paper consists o 1 pages, including a page data sheet. PHYSICAL SCIENCES P1 (EC/JUNE 017)

More information

PHYS 101 Previous Exam Problems. Kinetic Energy and

PHYS 101 Previous Exam Problems. Kinetic Energy and PHYS 101 Previous Exam Problems CHAPTER 7 Kinetic Energy and Work Kinetic energy Work Work-energy theorem Gravitational work Work of spring forces Power 1. A single force acts on a 5.0-kg object in such

More information

Tutorial 1 Calculating the Kinetic Energy of a Moving Object

Tutorial 1 Calculating the Kinetic Energy of a Moving Object 5. Energy As you learned in Section 5.1, mechanical work is done by applying orces on objects and displacing them. How are people, machines, and Earth able to do mechanical work? The answer is energy:

More information

If you have a conflict, you should have already requested and received permission from Prof. Shapiro to take the make-up exam.

If you have a conflict, you should have already requested and received permission from Prof. Shapiro to take the make-up exam. Reminder: Exam this Sunday Nov. 9. Chapters 5. 5.4, 3.4,.0, 6, 7. Time: 6:0 7:30 PM Look up locations online. Bring calculator and formula sheet. If you have a conflict, you should have already requested

More information

Physics 201, Review 2

Physics 201, Review 2 Physics 01, Review Important Notes: v This review does not replace your own preparation efforts v The review is not meant to be complete. v Exercises used in this review do not form a test problem pool.

More information

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy Chapter 5: Energy Energy is one of the most important concepts in the world of science. Common forms of Energy Mechanical Chemical Thermal Electromagnetic Nuclear One form of energy can be converted to

More information

13.7 Power Applied by a Constant Force

13.7 Power Applied by a Constant Force 13.7 Power Applied by a Constant Force Suppose that an applied force F a acts on a body during a time interval Δt, and the displacement of the point of application of the force is in the x -direction by

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion.

Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. K = K f K i = 1 2 mv 2 f rf = v v F dr Consider a vertical spring oscillating with mass m attached

More information

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 6

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 6 CHAPTER 6 1. Because there is no acceleration, the contact orce must have the same magnitude as the weight. The displacement in the direction o this orce is the vertical displacement. Thus, W = F Æy =

More information

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Closed book and closed notes. No work needs to be shown. 1. Three rocks are thrown with identical speeds from the top of the same building.

More information

This chapter covers all kinds of problems having to do with work in physics terms. Work

This chapter covers all kinds of problems having to do with work in physics terms. Work Chapter 7 Working the Physics Way In This Chapter Understanding work Working with net force Calculating kinetic energy Handling potential energy Relating kinetic energy to work This chapter covers all

More information

Time dilation Gamma factor

Time dilation Gamma factor Time dilation Gamma actor Quick derivation o the Relativistic Sqrt(1-v 2 /c 2 ) ormula or time, in two inertial systems The arrows are a light beam seen in two dierent systems. Everybody observes the light

More information

Ch 11 ENERGY and its CONSERVATION. work causes a change in the energy of a system KE (an increase or decrease in KE) ket.

Ch 11 ENERGY and its CONSERVATION. work causes a change in the energy of a system KE (an increase or decrease in KE) ket. Ch 11 ENERGY and its CONSERVATION 11.1 The Many Forms of Energy work causes a change in the energy of a system W = KE (an increase or decrease in KE) work energy theorem object + work object work increase

More information

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power ENERGY Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power Conservative Forces A force is conservative if the work it does on an object moving between two points is independent

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

Announcements 2 Oct 2014

Announcements 2 Oct 2014 Announcements 2 Oct 2014 1. Prayer 2. Exam 1 starts today! a. Thursday Oct 2 Tuesday Oct 7 (2 pm) in the Testing Center, late fee after Oct 6, 2 pm b. Covers through today's lecture (unless we don't quite

More information

Work Up an Incline. Work = Force x Distance. Push up: 1500J. What is the PE at the top? mg = 500N. An incline is a simple machine!

Work Up an Incline. Work = Force x Distance. Push up: 1500J. What is the PE at the top? mg = 500N. An incline is a simple machine! Quick Question Work Up an Incline The block o ice weighs 500 Newtons. How much work does it take to push it up the incline compared to liting it straight up? Ignore riction. Work Up an Incline Work = Force

More information

Which iceboat crosses the finish line with more kinetic energy (KE)?

Which iceboat crosses the finish line with more kinetic energy (KE)? Two iceboats (one of mass m, one of mass 2m) hold a race on a frictionless, horizontal, frozen lake. Both iceboats start at rest, and the wind exerts the same constant force on both iceboats. Which iceboat

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Impulse and momentum 09-2 1 Current assignments Reading: Chapter 10 in textbook Prelecture due next Tuesday HW#8 due this Friday at 5 pm. 09-2 2 9-2.1 A crash

More information

The Electric. Potential Energy

The Electric. Potential Energy Lecture 7 Chapter 25 The Electric Ok, let s move to scalar quantities. Potential Energy I am sick and tired o your orces, ields!!! Course website: http://aculty.uml.edu/andriy_danylov/teaching/physicsii

More information

25/01/2014. Chapter 4: Work, Energy and Power. Work of a force. Chapter 4: Work, Energy and Power (First part) Work = Force x Displacement

25/01/2014. Chapter 4: Work, Energy and Power. Work of a force. Chapter 4: Work, Energy and Power (First part) Work = Force x Displacement 5/0/04 Chapter 4: Work, Energy and Power King Saud University College o Science Physics & Astronomy Dept. Phys 45 (General Physics) Chapter 4: Work, Energy and Power (Part ) Week n 5 This presentation

More information

5-2 Energy. Potential and Kinetic Energy. Energy: The ability to do work. Vocabulary

5-2 Energy. Potential and Kinetic Energy. Energy: The ability to do work. Vocabulary 5-2 Energy Potential and Kinetic Energy Vocabulary Energy: The ability to do work. There are many dierent types o energy. This chapter will ocus on only mechanical energy, or the energy related to position

More information

Gravitational Potential Energy (filled in)

Gravitational Potential Energy (filled in) Name: Date: 4/3 Period: Unit 5 Gravitational Potential Energy (filled in) Essential Questions: Why is energy and work useful to learn? What does work mean in physics? What does energy mean in physics?

More information

CHAPTER 4. Impulse and momentum. CHAPTER s Objectives

CHAPTER 4. Impulse and momentum. CHAPTER s Objectives 60 CHAPTER 4 Impulse and momentum CHAPTER s Objectives To understand the interaction between objects through the impulse and momentum concepts To introduce the law o conservation o momentum, and apply

More information

Conservation of Energy and Momentum

Conservation of Energy and Momentum Conservation of Energy and Momentum Three criteria for Work There must be a force. There must be a displacement, d. The force must have a component parallel to the displacement. Work, W = F x d, W = Fd

More information

Review D: Potential Energy and the Conservation of Mechanical Energy

Review D: Potential Energy and the Conservation of Mechanical Energy MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics 8. Spring 4 Review D: Potential Energy and the Conservation o Mechanical Energy D.1 Conservative and Non-conservative Force... D.1.1 Introduction...

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum Chaper 6 Review: Work and Energy Forces and Displacements Effect of forces acting over a displacement Work W = (F cos)s Work changes the Kinetic Energy of a mass Kinetic

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m PSI AP Physics C Work and Energy (Algebra Based) Multiple Choice Questions (use g = 10 m/s 2 ) 1. A student throws a ball upwards from the ground level where gravitational potential energy is zero. At

More information

Potential Energy & Conservation of Energy

Potential Energy & Conservation of Energy PHYS 101 Previous Exam Problems CHAPTER 8 Potential Energy & Conservation of Energy Potential energy Conservation of energy conservative forces Conservation of energy friction Conservation of energy external

More information

In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion.

In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion. 1 PHYS:100 LECTURE 9 MECHANICS (8) In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion. 9 1. Conservation of Energy. Energy is one of the most fundamental

More information

Physics Unit 4:Work & Energy Name:

Physics Unit 4:Work & Energy Name: Name: Review and Preview We have come a long way in our study of mechanics. We started with the concepts of displacement and time, and built up to the more complex quantities of velocity and acceleration.

More information

Chapter 5 Work and Energy

Chapter 5 Work and Energy Chapter 5 Work and Energy Work and Kinetic Energy Work W in 1D Motion: by a Constant orce by a Varying orce Kinetic Energy, KE: the Work-Energy Theorem Mechanical Energy E and Its Conservation Potential

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Work Power Physics 211 Fall 2012 Lecture 09-2 1 Current assignments HW#9 due this Friday at 5 pm. Short assignment SAGE (Thanks for the feedback!) I am using

More information

Essentially, the amount of work accomplished can be determined two ways:

Essentially, the amount of work accomplished can be determined two ways: 1 Work and Energy Work is done on an object that can exert a resisting force and is only accomplished if that object will move. In particular, we can describe work done by a specific object (where a force

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

= v 0 x. / t = 1.75m / s 2.25s = 0.778m / s 2 nd law taking left as positive. net. F x ! F

= v 0 x. / t = 1.75m / s 2.25s = 0.778m / s 2 nd law taking left as positive. net. F x ! F Multiple choice Problem 1 A 5.-N bos sliding on a rough horizontal floor, and the only horizontal force acting on it is friction. You observe that at one instant the bos sliding to the right at 1.75 m/s

More information

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial =

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial = Practice Template K.E. = 1 2 mv2 P.E. height = mgh P.E. spring = 1 2 kx2 dw =! F! d! r = Fdr cosθ Energy Conservation T.E. initial = T.E. Final (1) Isolated system P.E. initial (2) Energy added E added

More information

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: N Ans:

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: N Ans: Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Q1. Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 20 N, acting due east, and the other

More information

Physics 111. Lecture 15 (Walker: 7.1-2) Work & Energy March 2, Wednesday - Midterm 1

Physics 111. Lecture 15 (Walker: 7.1-2) Work & Energy March 2, Wednesday - Midterm 1 Physics 111 Lecture 15 (Walker: 7.1-2) Work & Energy March 2, 2009 Wednesday - Midterm 1 Lecture 15 1/25 Work Done by a Constant Force The definition of work, when the force is parallel to the displacement:

More information

Lectures Chapter 6 (Cutnell & Johnson, Physics 7 th edition)

Lectures Chapter 6 (Cutnell & Johnson, Physics 7 th edition) PH 201-4A spring 2007 Work and Energy Lectures 16-17 Chapter 6 (Cutnell & Johnson, Physics 7 th edition) 1 Work and Energy: Work done by a constant force Constant pushing force F pointing in the same direction

More information

In-Class Problems 22-23: Mechanical Energy Solution

In-Class Problems 22-23: Mechanical Energy Solution MASSACHUSETTS INSTITUTE OF TECHNOLOGY Deparent o Physics Physics 801 TEAL Fall Term 004 In-Class Problems -3: Mechanical Energy Solution Section Table and Group Number Names Hand in one solution per group

More information

PHYSICS 149: Lecture 17

PHYSICS 149: Lecture 17 PHYSICS 149: Lecture 17 Chapter 6: Conservation of Energy 6.7 Elastic Potential Energy 6.8 Power Chapter 7: Linear Momentum 7.1 A Vector Conservation Law 7. Momentum Lecture 17 Purdue University, Physics

More information

Physics 201, Review 2

Physics 201, Review 2 Physics 201, Review 2 Important Notes: v This review does not replace your own preparation efforts v The review is not meant to be complete. v Exercises used in this review do not form a test problem pool.

More information

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1 Monday, October 17, 011 Page: 1 Q1. 1 b The speed-time relation of a moving particle is given by: v = at +, where v is the speed, t t + c is the time and a, b, c are constants. The dimensional formulae

More information

Boxcars and Ropes Stopping Force in Same Distance 56

Boxcars and Ropes Stopping Force in Same Distance 56 Boxcars and Ropes Stopping orce in Same Distance 56 In a western movie, a confederate raiding party stopped a runaway boxcar carrying gold by using many ropes tied to trees. Given below are six boxcars

More information

Physics 101 Lecture 12 Equilibrium and Angular Momentum

Physics 101 Lecture 12 Equilibrium and Angular Momentum Physics 101 Lecture 1 Equilibrium and Angular Momentum Ali ÖVGÜN EMU Physics Department www.aovgun.com Static Equilibrium q Equilibrium and static equilibrium q Static equilibrium conditions n Net external

More information

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time.

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time. 1. n object is launched across a room. How can a student determine the average horizontal velocity of the object using a meter stick and a calculator? The student can calculate the object s initial potential

More information

CPS lesson Work and Energy ANSWER KEY

CPS lesson Work and Energy ANSWER KEY CPS lesson Work and Energy ANSWER KEY 1. A ball feeder slowly pushes a bowling ball up a 1-m ramp to a height of 0.5 m above the floor. Neglecting friction, what constant force must be exerted on the 5-kg

More information

Chapter 5. Work and Energy. continued

Chapter 5. Work and Energy. continued Chapter 5 Work and Energy continued 5.2 Work on a Spring & Work by a Spring HOOKE S LAW Force Required to Distort an Ideal Spring The force applied to an ideal spring is proportional to the displacement

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Kinetic Energy and Work Like other undamental concepts, energy is harder to deine in words than in equations. It is closely linked to the concept o orce. Conservation o Energy is one o Nature

More information

Chapter 10. Energy and Work. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc.

Chapter 10. Energy and Work. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc. Chapter 10 Energy and Work PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 10 Energy and Work Slide 10-2 Slide 10-3 Slide 10-4 Slide 10-5 Reading Quiz 1. If a system is isolated,

More information

PSI AP Physics I Work and Energy

PSI AP Physics I Work and Energy PSI AP Physics I Work and Energy Multiple-Choice questions 1. A driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to accelerate

More information

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

Physics 110 Homework Solutions Week #5

Physics 110 Homework Solutions Week #5 Physics 110 Homework Solutions Week #5 Wednesday, October 7, 009 Chapter 5 5.1 C 5. A 5.8 B 5.34. A crate on a ramp a) x F N 15 F 30 o mg Along the x-axis we that F net = ma = Fcos15 mgsin30 = 500 cos15

More information

PHYSICS - CLUTCH CH 07: WORK & ENERGY.

PHYSICS - CLUTCH CH 07: WORK & ENERGY. !! www.clutchprep.com INTRO TO ENERGY & ENERGY FORMS ENERGY: A physical quantity without a precise definition. We don't know exactly WHAT it is, but we know HOW it works. - Energy "exists" in many forms;

More information

5.3. Conservation of Energy

5.3. Conservation of Energy 5.3. Conservation of Energy Conservation of Energy Energy is never created or destroyed. Any time work is done, it is only transformed from one form to another: Kinetic Energy Potential Energy Gravitational,

More information

Module 27: Rigid Body Dynamics: Rotation and Translation about a Fixed Axis

Module 27: Rigid Body Dynamics: Rotation and Translation about a Fixed Axis Module 27: Rigid Body Dynamics: Rotation and Translation about a Fixed Axis 27.1 Introduction We shall analyze the motion o systems o particles and rigid bodies that are undergoing translational and rotational

More information

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a)

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a) Chapter Work, Energy and Power Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Q2. A bullet of mass 10g leaves a rifle at an initial velocity of

More information

AP Physics C - Mechanics

AP Physics C - Mechanics Slide 1 / 84 Slide 2 / 84 P Physics C - Mechanics Energy Problem Solving Techniques 2015-12-03 www.njctl.org Table of Contents Slide 3 / 84 Introduction Gravitational Potential Energy Problem Solving GPE,

More information

Chapter 7: Potential energy and energy conservation

Chapter 7: Potential energy and energy conservation Chapter 7: Potential energy and energy conservation Two types of Potential energy gravitational and elastic potential energy Conservation of total mechanical energy When What: Kinetic energy+potential

More information

Work. Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d

Work. Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d ENERGY CHAPTER 11 Work Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d Units = Joules Work and energy transferred are equivalent in ideal systems. Two Types of Energy

More information

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Physics 1 Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Date 1. Define work. 2. Define energy. 3. Determine the work done by a constant force. Period 4. Determine the work done by a

More information

Question 8.1 Sign of the Energy II

Question 8.1 Sign of the Energy II Question 8. Sign of the Energy II Is it possible for the gravitational potential energy of an object to be negative? a) yes b) no Question 8. Sign of the Energy II Is it possible for the gravitational

More information

Physics 231 Lecture 8

Physics 231 Lecture 8 Shelf-life of ideas at the Bookstore Physics 31 Lecture 8 Mi Main points of today s lecture: Frictional forces: kinetic friction: fk = μk N static friction f < μs N s Work: W = FΔs cos( θ ) = FxΔx Kinetic

More information

PHYSICS 231 Chapter 5: Energy & work!

PHYSICS 231 Chapter 5: Energy & work! PHYSICS 231 Chapter 5: Energy & work! Remco Zegers 1 WORK Work: Transfer of energy Quantitatively: The work W done by a constant force on an object is the product of the force along the direction of displacement

More information

Physics 231. Topic 5: Energy and Work. Alex Brown October 2, MSU Physics 231 Fall

Physics 231. Topic 5: Energy and Work. Alex Brown October 2, MSU Physics 231 Fall Physics 231 Topic 5: Energy and Work Alex Brown October 2, 2015 MSU Physics 231 Fall 2015 1 What s up? (Friday Sept 26) 1) The correction exam is now open. The exam grades will be sent out after that on

More information

Motion of Charged Particles in Electric Fields. Part A Motion of a charged particle due to the presence of another charged particle

Motion of Charged Particles in Electric Fields. Part A Motion of a charged particle due to the presence of another charged particle Motion of Charged Particles in Electric Fields We will be looking at two situations in which a charged particle is moving in an electric field. The first situation occurs when the motion of the charged

More information

Recall: Gravitational Potential Energy

Recall: Gravitational Potential Energy Welcome back to Physics 15 Today s agenda: Work Power Physics 15 Spring 017 Lecture 10-1 1 Recall: Gravitational Potential Energy For an object of mass m near the surface of the earth: U g = mgh h is height

More information

Energy Problem Solving Techniques.

Energy Problem Solving Techniques. 1 Energy Problem Solving Techniques www.njctl.org 2 Table of Contents Introduction Gravitational Potential Energy Problem Solving GPE, KE and EPE Problem Solving Conservation of Energy Problem Solving

More information

Chapter 5. Work and Energy. continued

Chapter 5. Work and Energy. continued Chapter 5 Work and Energy continued 5.2 Work on a Spring & Work by a Spring Work done by applied force stretching (or compressing) a spring. Force is changing while stretching so use the average force.

More information

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Q1. Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 20 N, acting due east, and the other

More information

KINETIC AND POTENTIAL ENERGY. Chapter 6 (cont.)

KINETIC AND POTENTIAL ENERGY. Chapter 6 (cont.) KINETIC AND POTENTIAL ENERGY Chapter 6 (cont.) The Two Types of Mechanical Energy Energy- the ability to do work- measured in joules Potential Energy- energy that arises because of an object s position

More information

Last Time: Chapter 6 Today: Chapter 7

Last Time: Chapter 6 Today: Chapter 7 Last Time: Chapter 6 Today: Chapter 7 Last Time Work done by non- constant forces Work and springs Power Examples Today Poten&al Energy of gravity and springs Forces and poten&al energy func&ons Energy

More information

General Physics I Work & Energy

General Physics I Work & Energy General Physics I Work & Energy Forms of Energy Kinetic: Energy of motion. A car on the highway has kinetic energy. We have to remove this energy to stop it. The brakes of a car get HOT! This is an example

More information