Physics 110 Homework Solutions Week #5

Size: px
Start display at page:

Download "Physics 110 Homework Solutions Week #5"

Transcription

1 Physics 110 Homework Solutions Week #5 Wednesday, October 7, 009 Chapter C 5. A 5.8 B A crate on a ramp a) x F N 15 F 30 o mg Along the x-axis we that F net = ma = Fcos15 mgsin30 = 500 cos15 75(9.8)sin30 = 115 N; then a = F net /m = 115/75 = 1.54 m/s up the plane b) v = v o + ax gives us v = 0 + (1.54)5 or v = 3.9 m/s c) W F = Fcos15 x = 500(5)cos15 = 415 J d) W grav = -mgh = -mgdsin30 = -75(9.8)(5)sin30 = J e) First note that W FN = 0; then W net = ΔKE = = 575 J; so ½ mv 0 = 575 J so that v = 3.9 m/s 5.35 A toy car a) E init = mg H init = mg(1. m); E top = mg H top + ½ mv top Conservation of energy then implies that: mg(1.) = mg(0.5) + ½ mv top Or v top = [(1.)g 0.5g] = 1.9 g or v top = 4.3 m/s b) At the bottom E b = 0 + ½ mv b ; then conservation of energy gives mg(1.) = ½ m v b ; or v b =.4 g so that v b = 4.85 m/s both on way up and down c) E init = mgh with H to be determined. Conservation of energy gives us mgh = E top = mg(0.5) + ½ mv We two unknowns H and v; but at the top a free body diagram would only two downward forces (mg and F N (why is F N down here?) and to just barely make it to the top, the car will be barely in contact with the track and so F N = 0 and the only force acting is mg. The centripetal force mg is then equal to ma = mg and so v /r = g or v = rg = (0.5/)g. Then we can write mgh = 0.5mg + ½ m(0.5/)g = 0.31 mg and so H = 0.31 m The initial energy stored in the spring as potential energy is converted to a gravitational potential energy as the marble rises vertically and travels a distance D

2 along the ramp. To determine the distance D we use conservation of energy and we ΔU s + ΔU g = 1 kx f 1 kx i ( ) + ( mgy f mgy i ) = 1 kxi + mgy f = 0 ( ) kx i mgsinθ = 10 N 0.03m m y f = Dsinθ = kx i mg D = = 0.175m =17.5cm. 0.05kg 9.8 m sin3 s Since this is less than the 60cm the ball does not make it. In order to the ball travel 60cm we need to compress the spring by an amount given by ΔU s + ΔU g = 1 kx f 1 kx i x i = ( ) + ( mgy f mgy i ) = 1 kxi + mgy f = 0 mgdsinθ = 0.05kg 9.8 m 06msin3 s k 10 N m = 0.055m = 5.5cm Thursday, October 8, 009 Chapter B 5.37 A roller coaster a. Applying conservation of energy between the top of the crest, point #1 and point #, 10 m up the second hill we ΔKE + ΔU g = 1 mv f, 1 mv i,1 v f, ( ) + ( mgy f, mgy i,1 ) = 0 = g( y i,1 y f, ) + v i,1 v f, = 9.8 m 10m + ( 10 m s s ) =17. m s b. The maximum height of the second hill is found when the velocity of the cart goes to zero. Applying conservation of energy between point #1 and this maximum height, point # we ΔKE + ΔU g = 1 mv f, 1 mv i,1 ( ) + ( mgy f, mgy i,1 ) = 0 y f, = y i,1 + v i,1 g y = 0m + f, ( 10 m s ) = 5.1m 9.8 m s c. Here a frictional force causes the cart to lose 8000J of energy. The maximum height is found from ΔKE + ΔU g = 1 mv f, 1 mv i,1 ( ) + ( mgy f, mgy i,1 ) = ΔE = 8000J y f, = y i,1 + v i,1 g 8000J mg y f, m ( 10 s ) = 0m m s 8000J 500kg 9.8 m s = 3.5m

3 5.39 A block on a ramp connected to a hanging mass a. First we need free-body diagrams for each block: F N T T m 1 g m g Then we write Newton s second law equations for each block: T m 1 gsin30 = m 1 a and m g T = m a T and a are unknowns; eliminate T (easiest to add both equations together): m g m 1 gsin30 = (m 1 + m )a and solving for a we a = (m g m 1 gsin30)/(m 1 + m ) = 4.15 m/s b. If a = 4.15 m/s, x = m, v o = 0 then v = ax gives v = [(4.15)()] = 4.07 m/s 5.48 Applying conservation of energy we ΔKE + ΔU = mgh mgh = F fr x = µ k mgx x = H h µ k 5.71 An amusement park thrill ride a. Applying conservation of energy we b. To determine the speed of the cart before the loop-the-loop we apply conservation of energy between the top of the ramp and the bottom. Thus we c. Again apply conservation of energy between the bottom and the top of the loopthe-loop and we d. The work done is the difference in the kinetic energies and we e. To calculate the new speed we consider the energy dissipated by friction. Noting that the difference in energy is the energy dissipated as friction we

4 Friday, October 9, 009 Chapter C 5.4 D 5.5 D 5.36 A loop-the-loop roller coaster a) E initial = mgh, with H = 15 m ; E final = mgr + ½ mv, where R = radius of loopthe-loop; Using conservation of energy, we mgh = mgr + ½ mv ; solving, we find v = 15.0 m/s b) When at ground level, the energy is all KE and using conservation of energy we ½ mv = mgh, or v = sqrt(gh) = 17.1 m/s c) When at the position in part (a) the forces acting are the weight (vertically down) and the normal force (horizontally directed toward the center of the loop). The normal force is then the net centripetal force and must equal mv /R = (500)(15) /3.5 = 3140 N; while the weight is mg = (500)(9.8) = 4900 N. The net force is then equal to (by Pythagorean theorem) sqrt((4900) + (3140) ) = 3500 N directed at an angle of θ = tan -1 (4900/3140) = 8.6 o below the horizontal 5.38 Applying conservation of energy between the release point of the block and when the spring is compressed we, with ΔKE = 0 since the block starts at rest and returns to rest when the spring is fully compressed. Thus. Choosing x i (the spring is uncompressed) and y f (the zero of the gravitational potential energy) equal to zero we, where the height the block fell through is given by the geometry of the system as y i = dsinθ A box on an incline

5 a. Choosing down the incline as the positive direction for the horizontal forces we the net work given as, since the displacement is opposite to the force of gravity on the way up and in the same direction on the way down. b. The frictional force opposes the motion on the way up and on the way down. The net work is therefore. The distance traveled by the block is determined from the time independent equation of motion, where the final velocity of the block is zero and the acceleration is determined from Newton s nd law. We therefore c. The net change in the energy during the round trip is the sum of the work done by the force of gravity and by the frictional force. Thus the net work done is 1.03J Monday, October 1, 009 Chapter C 6.7 D 6.8 B 6.9 C 6.1 It s velocity as the ball hits the ground is found from v = v o + ay with v o = 0m/s, a = 9.8m/s and y = 1 m; so v = 4.43 m/s down; then p = mv =.1 kg m/s down A ball bouncing off of a wall a. Change in momentum = p final p init (both are vectors in bold); but the direction reverses after the collision and so Δp = 0.1(5) (-0.1)(5) = 1 kgm/s away from the wall b. Since the average force times the collision time = impulse = change in momentum, we that the average force = (change in momentum)/(collision time) = 1/.005 s = 00 N away from the wall c. Yes it did, because the momentum of the (ball + wall) is conserved. The force on the wall from the ball is equal and opposite of the force on the ball from the wall

6 and so Δp wall + Δp ball = 0 and Δp wall = -Δp ball ; but the M wall is so large that the v wall is negligible miles per hour translates to 55.6m/s. For a tennis ball launched from rest, the change in the momentum of the object is given as. By the impulse momentum theorem, (Newton s second law) the average force is A railroad car a. Using conservation of momentum, the final velocity is given by 10,000kg(4m/s) + 0 = (10,000kg+1,00kg)v final or v final = 1.4 m/s in the direction the railroad car was traveling. b. KE init = ½ (10,000)(4) =.88 x 10 6 J KE final = ½ (11,00)(1.4) =.56 x 10 6 J, so the % loss is [KE init KE final ]/KE init x 100 = 11.1% c. Frictional force = µ k F N = 0.9(11,00)(9.8) = 9.88 x 10 4 N. d. Work by friction = ΔKE = 0 ½ mv = -1/ (11,00)(1.4) = -.56 x 10 6 J A roller coaster a. Using conservation of energy between the initial point and point A we the speed of the object as where we take the zero of the gravitational potential energy to be at ground level. The centripetal force, directed vertically upward at point A, has magnitude. b. To determine the speed at point B we use conservation of energy between points A and B. We,. c. Point C is at the zero of gravitational potential energy and given that energy is conserved, the speed of the car at point C has to be the same as at point A or 14 m/s. Using conservation of momentum we the right. directed to

Physics 110 Homework Solutions Week #6 - Wednesday

Physics 110 Homework Solutions Week #6 - Wednesday Physics 110 Homework Solutions Week #6 - Wednesday Friday, May3, 2013 Chapter 6 Questions - none Multiple-Choice 66 C 67 D 68 B 69 C Problems 612 It s velocity as the ball hits the ground is found from

More information

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero Power Forces Conservative Force: P ave = W Δt P = dw dt P = F net v Net work done by a conservative force on an object moving around every closed path is zero Non-conservative Force: Net work done by a

More information

D) No, because of the way work is defined D) remains constant at zero. D) 0 J D) zero

D) No, because of the way work is defined D) remains constant at zero. D) 0 J D) zero CHAPTER 6 REVIEW NAME 1) Can work be done on a system if there is no motion? A) Yes, if an outside force is provided. B) Yes, since motion is only relative. C) No, since a system which is not moving has

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

EXAM 3 SOLUTIONS. NAME: SECTION: AU Username: Read each question CAREFULLY and answer all parts. Work MUST be shown to receive credit.

EXAM 3 SOLUTIONS. NAME: SECTION: AU Username: Read each question CAREFULLY and answer all parts. Work MUST be shown to receive credit. EXAM 3 SOLUTIONS NAME: SECTION: AU Username: Print your name: Printing your name above acknowledges that you are subject to the AU Academic Honesty Policy Instructions: Read each question CAREFULLY and

More information

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively.

More information

Physics 2211 A & B Quiz #4 Solutions Fall 2016

Physics 2211 A & B Quiz #4 Solutions Fall 2016 Physics 22 A & B Quiz #4 Solutions Fall 206 I. (6 points) A pendulum bob of mass M is hanging at rest from an ideal string of length L. A bullet of mass m traveling horizontally at speed v 0 strikes it

More information

2. What would happen to his acceleration if his speed were half? Energy The ability to do work

2. What would happen to his acceleration if his speed were half? Energy The ability to do work 1. A 40 kilogram boy is traveling around a carousel with radius 0.5 meters at a constant speed of 1.7 meters per second. Calculate his centripetal acceleration. 2. What would happen to his acceleration

More information

Honor Physics Final Exam Review. What is the difference between series, parallel, and combination circuits?

Honor Physics Final Exam Review. What is the difference between series, parallel, and combination circuits? Name Period Date Honor Physics Final Exam Review Circuits You should be able to: Calculate the total (net) resistance of a circuit. Calculate current in individual resistors and the total circuit current.

More information

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power ENERGY Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power Conservative Forces A force is conservative if the work it does on an object moving between two points is independent

More information

Lecture 10 Mechanical Energy Conservation; Power

Lecture 10 Mechanical Energy Conservation; Power Potential energy Basic energy Lecture 10 Mechanical Energy Conservation; Power ACT: Zero net work The system of pulleys shown below is used to lift a bag of mass M at constant speed a distance h from the

More information

POTENTIAL ENERGY AND ENERGY CONSERVATION

POTENTIAL ENERGY AND ENERGY CONSERVATION 7 POTENTIAL ENERGY AND ENERGY CONSERVATION 7.. IDENTIFY: U grav = mgy so ΔU grav = mg( y y ) SET UP: + y is upward. EXECUTE: (a) ΔU = (75 kg)(9.8 m/s )(4 m 5 m) = +6.6 5 J (b) ΔU = (75 kg)(9.8 m/s )(35

More information

Work Done by a Constant Force

Work Done by a Constant Force Work and Energy Work Done by a Constant Force In physics, work is described by what is accomplished when a force acts on an object, and the object moves through a distance. The work done by a constant

More information

Phys101 Second Major-152 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 2016 Page: 1

Phys101 Second Major-152 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 2016 Page: 1 Phys101 Second Major-15 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 016 Page: 1 Q1. Figure 1 shows two masses; m 1 = 4.0 and m = 6.0 which are connected by a massless rope passing over a

More information

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam.

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam. WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system is always

More information

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

Conservation of Energy

Conservation of Energy Lecture 3 Chapter 8 Physics I 03.0.04 Conservation of Energy Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov03/physicsspring.html

More information

Newton s Laws of Motion

Newton s Laws of Motion Chapter 4 Newton s Second Law: in vector form Newton s Laws of Motion σ റF = m റa in component form σ F x = ma x σ F y = ma y in equilibrium and static situations a x = 0; a y = 0 Strategy for Solving

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 8. Home Page. Title Page. Page 1 of 35.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 8. Home Page. Title Page. Page 1 of 35. Rutgers University Department of Physics & Astronomy 01:750:271 Honors Physics I Fall 2015 Lecture 8 Page 1 of 35 Midterm 1: Monday October 5th 2014 Motion in one, two and three dimensions Forces and Motion

More information

Unit 4 Work, Power & Conservation of Energy Workbook

Unit 4 Work, Power & Conservation of Energy Workbook Name: Per: AP Physics C Semester 1 - Mechanics Unit 4 Work, Power & Conservation of Energy Workbook Unit 4 - Work, Power, & Conservation of Energy Supplements to Text Readings from Fundamentals of Physics

More information

Physics 1 Second Midterm Exam (AM) 2/25/2010

Physics 1 Second Midterm Exam (AM) 2/25/2010 Physics Second Midterm Eam (AM) /5/00. (This problem is worth 40 points.) A roller coaster car of m travels around a vertical loop of radius R. There is no friction and no air resistance. At the top of

More information

AP Physics C. Work and Energy. Free-Response Problems. (Without Calculus)

AP Physics C. Work and Energy. Free-Response Problems. (Without Calculus) AP Physics C Work and Energy Free-Response Problems (Without Calculus) 1. A block with a mass m =10 kg is released from rest and slides a distance d = 5 m down a frictionless plane inclined at an angle

More information

Potential Energy. Uo = mgh. Apply the Work-Kinetic Energy Theorem: F = - mg x = - (h - ho) ΔK = W = Fx ½ mv 2 - ½ mvo 2 = (-mg ) [- (ho - h)]

Potential Energy. Uo = mgh. Apply the Work-Kinetic Energy Theorem: F = - mg x = - (h - ho) ΔK = W = Fx ½ mv 2 - ½ mvo 2 = (-mg ) [- (ho - h)] Physics 17 Part F Potential Energy U = mgh Apply the Work-Kinetic Energy Theorem: F = - mg x = - (h - ho) ΔK = W = Fx ½ mv 2 - ½ mvo 2 = (-mg ) [- (ho - h)] Re-written: ½ mv 2 + mgh = ½ mvo 2 + mgho Ko

More information

Physics 20 Amusement Park WEM

Physics 20 Amusement Park WEM Physics 20 Amusement Park Physics @ WEM Page 1 of 6 Group Members: Mindbender Rollercoaster Materials Needed: Stopwatch Maximum Height: 41.5 m First Hill Drop: 38.7 m Radius of the 1 st Loop: 7.177 m Height

More information

5.3. Conservation of Energy

5.3. Conservation of Energy 5.3. Conservation of Energy Conservation of Energy Energy is never created or destroyed. Any time work is done, it is only transformed from one form to another: Kinetic Energy Potential Energy Gravitational,

More information

PSI AP Physics I Work and Energy

PSI AP Physics I Work and Energy PSI AP Physics I Work and Energy Multiple-Choice questions 1. A driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to accelerate

More information

grav mgr, where r is the radius of the bowl and grav W mgr kg 9.8 m s m J.

grav mgr, where r is the radius of the bowl and grav W mgr kg 9.8 m s m J. Phys 0 Homework 9 Solutions 3. (a) The force of ity is constant, so the work it does is given by W F d, where F is the force and d is the displacement. The force is vertically downward and has magnitude

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m Work/nergy 1. student throws a ball upward where the initial potential energy is 0. t a height of 15 meters the ball has a potential energy of 60 joules and is moving upward with a kinetic energy of 40

More information

Chapter 8 Solutions. The change in potential energy as it moves from A to B is. The change in potential energy in going from A to B is

Chapter 8 Solutions. The change in potential energy as it moves from A to B is. The change in potential energy in going from A to B is Chapter 8 Solutions *8. (a) With our choice for the zero level for potential energy at point B, U B = 0. At point A, the potential energy is given by U A = mgy where y is the vertical height above zero

More information

Potential Energy, Conservation of Energy, and Energy Diagrams. Announcements. Review: Conservative Forces. (path independent) 8.

Potential Energy, Conservation of Energy, and Energy Diagrams. Announcements. Review: Conservative Forces. (path independent) 8. Potential Energy, Conservation of Energy, and Energy Diagrams 8.01 W06D Today s Reading ssignment: Chapter 14 Potential Energy and Conservation of Energy, Sections 14.1-14.7 nnouncements Problem Set 5

More information

Physics 201, Midterm Exam 2, Fall Answer Key

Physics 201, Midterm Exam 2, Fall Answer Key Physics 201, Midterm Exam 2, Fall 2006 Answer Key 1) A constant force is applied to a body that is already moving. The force is directed at an angle of 60 degrees to the direction of the body s velocity.

More information

( ) = ( ) W net = ΔKE = KE f KE i W F. F d x. KE = 1 2 mv2. Note: Work is the dot product of F and d. Work-Kinetic Energy Theorem

( ) = ( ) W net = ΔKE = KE f KE i W F. F d x. KE = 1 2 mv2. Note: Work is the dot product of F and d. Work-Kinetic Energy Theorem Work-Kinetic Energy Theorem KE = 1 2 mv2 W F change in the kinetic energy of an object F d x net work done on the particle ( ) = ( ) W net = ΔKE = KE f KE i Note: Work is the dot product of F and d W g

More information

LECTURE 10- EXAMPLE PROBLEMS. Chapter 6-8 Professor Noronha-Hostler Professor Montalvo

LECTURE 10- EXAMPLE PROBLEMS. Chapter 6-8 Professor Noronha-Hostler Professor Montalvo LECTURE 10- EXAMPLE PROBLEMS Chapter 6-8 Professor Noronha-Hostler Professor Montalvo TEST!!!!!!!!! Thursday November 15, 2018 9:40 11:00 PM Classes on Friday Nov. 16th NO CLASSES week of Thanksgiving

More information

Physics 211 Week 5. Work and Kinetic Energy: Block on Ramp

Physics 211 Week 5. Work and Kinetic Energy: Block on Ramp Physics 211 Week 5 Work and Kinetic Energy: Block on Ramp A block starts with a speed of 15 m/s at the bottom of a ramp that is inclined at an angle of 30 o with the horizontal. The coefficient of kinetic

More information

Slide 1 / 76. Work & Energy Multiple Choice Problems

Slide 1 / 76. Work & Energy Multiple Choice Problems Slide 1 / 76 Work & Energy Multiple Choice Problems Slide 2 / 76 1 A driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to

More information

Extra Circular Motion Questions

Extra Circular Motion Questions Extra Circular Motion Questions Elissa is at an amusement park and is driving a go-cart around a challenging track. Not being the best driver in the world, Elissa spends the first 10 minutes of her go-cart

More information

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Key points: Conservative and Nonconservative Forces Potential Energy Generalized work-energy principle Mechanical Energy and Its Conservation

More information

Study of work done by a variable force. Overview of energy. Study of work done by a constant force. Understanding of energy conservation.

Study of work done by a variable force. Overview of energy. Study of work done by a constant force. Understanding of energy conservation. Chap. 7: Work and Energy Overview of energy. Study of work done by a constant force as defined in physics. Relation between work and kinetic energy. Study of work done by a variable force. Study of potential

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m PSI AP Physics C Work and Energy (Algebra Based) Multiple Choice Questions (use g = 10 m/s 2 ) 1. A student throws a ball upwards from the ground level where gravitational potential energy is zero. At

More information

Energy Problem Solving Techniques.

Energy Problem Solving Techniques. 1 Energy Problem Solving Techniques www.njctl.org 2 Table of Contents Introduction Gravitational Potential Energy Problem Solving GPE, KE and EPE Problem Solving Conservation of Energy Problem Solving

More information

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

Physics 2211 ABC Quiz #4 Solutions Spring 2017

Physics 2211 ABC Quiz #4 Solutions Spring 2017 Physics 22 ABC Quiz #4 Solutions Spring 207 I. (6 points) Corentine is driving her car of mass m around a curve when suddenly, all systems fail! The engine quits, she can t brake, she can t steer, and

More information

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that moving objects eventually stop only because of a force

More information

AP Physics 1 Lesson 9 Homework Outcomes. Name

AP Physics 1 Lesson 9 Homework Outcomes. Name AP Physics 1 Lesson 9 Homework Outcomes Name Date 1. Define uniform circular motion. 2. Determine the tangential velocity of an object moving with uniform circular motion. 3. Determine the centripetal

More information

Chapter 8: Newton s Laws Applied to Circular Motion

Chapter 8: Newton s Laws Applied to Circular Motion Chapter 8: Newton s Laws Applied to Circular Motion Centrifugal Force is Fictitious? F actual = Centripetal Force F fictitious = Centrifugal Force Center FLEEing Centrifugal Force is Fictitious? Center

More information

Solution to Problem. Part A. x m. x o = 0, y o = 0, t = 0. Part B m m. range

Solution to Problem. Part A. x m. x o = 0, y o = 0, t = 0. Part B m m. range PRACTICE PROBLEMS: Final Exam, December 4 Monday, GYM, 6 to 9 PM Problem A Physics Professor did a daredevil stunt in his spare time. In the figure below he tries to cross a river from a 53 ramp at an

More information

α f k θ y N m mg Figure 1 Solution 1: (a) From Newton s 2 nd law: From (1), (2), and (3) Free-body diagram (b) 0 tan 0 then

α f k θ y N m mg Figure 1 Solution 1: (a) From Newton s 2 nd law: From (1), (2), and (3) Free-body diagram (b) 0 tan 0 then Question [ Work ]: A constant force, F, is applied to a block of mass m on an inclined plane as shown in Figure. The block is moved with a constant velocity by a distance s. The coefficient of kinetic

More information

Preparing for Six Flags Physics Concepts

Preparing for Six Flags Physics Concepts Preparing for Six Flags Physics Concepts uniform means constant, unchanging At a uniform speed, the distance traveled is given by Distance = speed x time At uniform velocity, the displacement is given

More information

Recap: Energy Accounting

Recap: Energy Accounting Recap: Energy Accounting Energy accounting enables complex systems to be studied. Total Energy = KE + PE = conserved Even the simple pendulum is not easy to study using Newton s laws of motion, as the

More information

i. Indicate on the figure the point P at which the maximum speed of the car is attained. ii. Calculate the value vmax of this maximum speed.

i. Indicate on the figure the point P at which the maximum speed of the car is attained. ii. Calculate the value vmax of this maximum speed. 1. A 0.20 kg object moves along a straight line. The net force acting on the object varies with the object's displacement as shown in the graph above. The object starts from rest at displacement x = 0

More information

Exam 3 Practice Solutions

Exam 3 Practice Solutions Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

More information

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam #2, Chapters 5-7 Name PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The quantity 1/2 mv2 is A) the potential energy of the object.

More information

MECHANICAL (TOTAL) ENERGY

MECHANICAL (TOTAL) ENERGY DO NOW: 1/19 If you haven t already, please take the short google form survey posted on Edmodo Please turn in your Work done by friction Lab in the top tray POTENTIAL ENERGY Stored energy An object that

More information

B) v `2. C) `2v. D) 2v. E) 4v. A) 2p 25. B) p C) 2p. D) 4p. E) 4p 2 25

B) v `2. C) `2v. D) 2v. E) 4v. A) 2p 25. B) p C) 2p. D) 4p. E) 4p 2 25 1. 3. A ball attached to a string is whirled around a horizontal circle of radius r with a tangential velocity v. If the radius is changed to 2r and the magnitude of the centripetal force is doubled the

More information

Design a Rollercoaster

Design a Rollercoaster Design a Rollercoaster This activity has focussed on understanding circular motion, applying these principles to the design of a simple rollercoaster. I hope you have enjoyed this activity. Here is my

More information

PHYS 1114, Lecture 33, April 10 Contents:

PHYS 1114, Lecture 33, April 10 Contents: PHYS 1114, Lecture 33, April 10 Contents: 1 This class is o cially cancelled, and has been replaced by the common exam Tuesday, April 11, 5:30 PM. A review and Q&A session is scheduled instead during class

More information

Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 2

Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 2 Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 1 3 problems from exam 2 6 problems 13.1 14.6 (including 14.5) 8 problems 1.1---9.6 Go through the

More information

AP Physics C - Mechanics

AP Physics C - Mechanics Slide 1 / 84 Slide 2 / 84 P Physics C - Mechanics Energy Problem Solving Techniques 2015-12-03 www.njctl.org Table of Contents Slide 3 / 84 Introduction Gravitational Potential Energy Problem Solving GPE,

More information

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ Physics 1 Lesson 8 Forces and Momentum Homework Outcomes 1. Define linear momentum. 2. Determine the total linear momentum of a system. 3. Apply the Law of Conservation of Momentum to solve problems. 4.

More information

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate.

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate. Work and energy 1. A 10.0-kg crate is pulled 15.0 m up along a frictionless incline as shown in the figure below. The crate starts at rest and has a final speed of 6.00 m/s. motor 15 m 5 a. Draw the free-body

More information

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY ENERGY Energy present in a variety of forms Mechanical energy Chemical energy Nuclear energy Electromagnetic energy Energy can be transformed form one form to another Energy is conserved (isolated system)

More information

Friction is always opposite to the direction of motion.

Friction is always opposite to the direction of motion. 6. Forces and Motion-II Friction: The resistance between two surfaces when attempting to slide one object across the other. Friction is due to interactions at molecular level where rough edges bond together:

More information

PHYSICS 221, FALL 2010 EXAM #1 Solutions WEDNESDAY, SEPTEMBER 29, 2010

PHYSICS 221, FALL 2010 EXAM #1 Solutions WEDNESDAY, SEPTEMBER 29, 2010 PHYSICS 1, FALL 010 EXAM 1 Solutions WEDNESDAY, SEPTEMBER 9, 010 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Circular motion Impulse and momentum 08-2 1 Current assignments Reading: Chapter 9 in textbook Prelecture due next Thursday HW#8 due NEXT Friday (extension!)

More information

What are two forms of Potential Energy that we commonly use? Explain Conservation of Energy and how we utilize it for problem-solving technics.

What are two forms of Potential Energy that we commonly use? Explain Conservation of Energy and how we utilize it for problem-solving technics. Bell Ringer Define Kinetic Energy, Potential Energy, and Work. What are two forms of Potential Energy that we commonly use? Explain Conservation of Energy and how we utilize it for problem-solving technics.

More information

Practice Exam 2. Multiple Choice Identify the choice that best completes the statement or answers the question.

Practice Exam 2. Multiple Choice Identify the choice that best completes the statement or answers the question. Practice Exam 2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A roller-coaster car has a mass of 500.0 kg when fully loaded with passengers. At the bottom

More information

Physics 231. Topic 5: Energy and Work. Alex Brown October 2, MSU Physics 231 Fall

Physics 231. Topic 5: Energy and Work. Alex Brown October 2, MSU Physics 231 Fall Physics 231 Topic 5: Energy and Work Alex Brown October 2, 2015 MSU Physics 231 Fall 2015 1 What s up? (Friday Sept 26) 1) The correction exam is now open. The exam grades will be sent out after that on

More information

( m/s) 2 4(4.9 m/s 2 )( 52.7 m)

( m/s) 2 4(4.9 m/s 2 )( 52.7 m) Version 072 idterm 2 OConnor (05141) 1 This print-out should have 18 questions ultiple-choice questions may continue on the next column or page find all choices before answering V1:1, V2:1, V3:3, V4:5,

More information

( m/s) 2 4(4.9 m/s 2 )( 53.2 m)

( m/s) 2 4(4.9 m/s 2 )( 53.2 m) Version 074 idterm 2 OConnor (05141) 1 This print-out should have 18 questions ultiple-choice questions may continue on the next column or page find all choices before answering V1:1, V2:1, V3:3, V4:5,

More information

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy Chapter 5: Energy Energy is one of the most important concepts in the world of science. Common forms of Energy Mechanical Chemical Thermal Electromagnetic Nuclear One form of energy can be converted to

More information

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km Name: Physics I Mid Term Exam Review Multiple Choice Questions Date: Mr. Tiesler 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km

More information

Energy methods problem solving

Energy methods problem solving Energy methods problem solving Physics 211 Syracuse University, Physics 211 Spring 2017 Walter Freeman March 28, 2017 W. Freeman Work and potential energy problem solving March 28, 2017 1 / 13 Announcements

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY ANSWERS TO FOCUS ON CONCEPTS QUESTIONS (e) When the force is perpendicular to the displacement, as in C, there is no work When the force points in the same direction as the displacement,

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

s_3x03 Page 1 Physics Samples

s_3x03 Page 1 Physics Samples Physics Samples KE, PE, Springs 1. A 1.0-kilogram rubber ball traveling east at 4.0 meters per second hits a wall and bounces back toward the west at 2.0 meters per second. Compared to the kinetic energy

More information

Comprehensive Review. Mahapatra

Comprehensive Review. Mahapatra Comprehensive Review Mahapatra Ch2 : Equations of motion for constant acceleration x(t) x 0 v 0 t 1 2 at 2 v(t) v 0 at a(t) = a It follows from the one above if you take the derivative wrt time Just says

More information

Recall: Gravitational Potential Energy

Recall: Gravitational Potential Energy Welcome back to Physics 15 Today s agenda: Work Power Physics 15 Spring 017 Lecture 10-1 1 Recall: Gravitational Potential Energy For an object of mass m near the surface of the earth: U g = mgh h is height

More information

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J AP Physics-B Energy And Its Conservation Introduction: Energy is a term that most of us take for granted and use quite freely. We assume we know what we are talking about when speaking of energy. In truth,

More information

Physics 207 Lecture 11. Lecture 11. Chapter 8: Employ rotational motion models with friction or in free fall

Physics 207 Lecture 11. Lecture 11. Chapter 8: Employ rotational motion models with friction or in free fall Goals: Lecture 11 Chapter 8: Employ rotational motion models with friction or in free fall Chapter 9: Momentum & Impulse Understand what momentum is and how it relates to forces Employ momentum conservation

More information

Clicker Quiz. a) 25.4 b) 37.9 c) 45.0 d) 57.1 e) 65.2

Clicker Quiz. a) 25.4 b) 37.9 c) 45.0 d) 57.1 e) 65.2 Clicker Quiz Assume that the rock is launched with an angle of θ = 45. With what angle with respect to the horizontal does the rock strike the ground in front of the castle? v 0 = 14.2 m/s v f = 18.5 m/s

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

velocity, force and momentum are vectors, therefore direction matters!!!!!!!

velocity, force and momentum are vectors, therefore direction matters!!!!!!! 1 Momentum, p is mass times velocity: p = m v vector! unit: (p) = kg m/s Newton s second law: Force = time rate of change of momentum Net force F will produce change in momentum Δp of the object on which

More information

1. In which situation is an object undergoing centripetal acceleration? (C) a car accelerating on a drag strip (D) a hockey puck gliding on ice

1. In which situation is an object undergoing centripetal acceleration? (C) a car accelerating on a drag strip (D) a hockey puck gliding on ice Physics 3204 Assignment 2.1 UCM DUE: Thursday Nov 24, 2017 Name: Part A. Multiple Choice: Select the best possible answer. Place the answer on the answer sheet. 1. In which situation is an object undergoing

More information

Potential and Kinetic Energy: The Roller Coaster Lab Teacher Version

Potential and Kinetic Energy: The Roller Coaster Lab Teacher Version Potential and Kinetic Energy: The Roller Coaster Lab Teacher Version This lab illustrates the type of energy conversions that are experienced on a roller coaster, and as a method of enhancing the students

More information

Potential Energy & Conservation of Energy

Potential Energy & Conservation of Energy PHYS 101 Previous Exam Problems CHAPTER 8 Potential Energy & Conservation of Energy Potential energy Conservation of energy conservative forces Conservation of energy friction Conservation of energy external

More information

Forces of Rolling. 1) Ifobjectisrollingwith a com =0 (i.e.no netforces), then v com =ωr = constant (smooth roll)

Forces of Rolling. 1) Ifobjectisrollingwith a com =0 (i.e.no netforces), then v com =ωr = constant (smooth roll) Physics 2101 Section 3 March 12 rd : Ch. 10 Announcements: Mid-grades posted in PAW Quiz today I will be at the March APS meeting the week of 15-19 th. Prof. Rich Kurtz will help me. Class Website: http://www.phys.lsu.edu/classes/spring2010/phys2101-3/

More information

*************************************************************************

************************************************************************* Your Name: TEST #2 Print clearly. On the Scantron, fill out your student ID, leaving the first column empty and starting in the second column. Also write your name, class time (11:30 or 12:30), and Test

More information

AP Physics Free Response Practice Dynamics

AP Physics Free Response Practice Dynamics AP Physics Free Response Practice Dynamics 14) In the system shown above, the block of mass M 1 is on a rough horizontal table. The string that attaches it to the block of mass M 2 passes over a frictionless

More information

Conservation of Energy Challenge Problems Problem 1

Conservation of Energy Challenge Problems Problem 1 Conservation of Energy Challenge Problems Problem 1 An object of mass m is released from rest at a height h above the surface of a table. The object slides along the inside of the loop-the-loop track consisting

More information

Springs. A spring exerts a force when stretched or compressed that is proportional the the displacement from the uncompressed position: F = -k x

Springs. A spring exerts a force when stretched or compressed that is proportional the the displacement from the uncompressed position: F = -k x Springs A spring exerts a force when stretched or compressed that is proportional the the displacement from the uncompressed position: F = -k x where x is the displacement from the uncompressed position

More information

Announcements. If you think there was an error in the scoring, fill out a regrade form and had back to ME (not TAs)

Announcements. If you think there was an error in the scoring, fill out a regrade form and had back to ME (not TAs) Exam 1 scores posted on Canvas: Ø Announcements If you think there was an error in the scoring, fill out a regrade form and had back to ME (not TAs) Ø Must return regrade forms before next Wednesday, October

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

General Physics I Work & Energy

General Physics I Work & Energy General Physics I Work & Energy Forms of Energy Kinetic: Energy of motion. A car on the highway has kinetic energy. We have to remove this energy to stop it. The brakes of a car get HOT! This is an example

More information

Work changes Energy. Do Work Son!

Work changes Energy. Do Work Son! 1 Work changes Energy Do Work Son! 2 Do Work Son! 3 Work Energy Relationship 2 types of energy kinetic : energy of an object in motion potential: stored energy due to position or stored in a spring Work

More information

If you have a conflict, you should have already requested and received permission from Prof. Shapiro to take the make-up exam.

If you have a conflict, you should have already requested and received permission from Prof. Shapiro to take the make-up exam. Reminder: Exam this Sunday Nov. 9. Chapters 5. 5.4, 3.4,.0, 6, 7. Time: 6:0 7:30 PM Look up locations online. Bring calculator and formula sheet. If you have a conflict, you should have already requested

More information

Name: Class: Date: so sliding friction is better so sliding friction is better d. µ k

Name: Class: Date: so sliding friction is better so sliding friction is better d. µ k Name: Class: Date: Exam 2--PHYS 101-F08 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. You put your book on the seat next to you. When the bus stops,

More information

AP Mechanics Summer Assignment

AP Mechanics Summer Assignment 2012-2013 AP Mechanics Summer Assignment To be completed in summer Submit for grade in September Name: Date: Equations: Kinematics (For #1 and #2 questions: use following equations only. Need to show derivation

More information

Topic 2 Revision questions Paper

Topic 2 Revision questions Paper Topic 2 Revision questions Paper 1 3.1.2018 1. [1 mark] The graph shows the variation of the acceleration a of an object with time t. What is the change in speed of the object shown by the graph? A. 0.5

More information

Potential and Kinetic Energy: Roller Coasters Student Advanced Version

Potential and Kinetic Energy: Roller Coasters Student Advanced Version Potential and Kinetic Energy: Roller Coasters Student Advanced Version Key Concepts: Energy is the ability of a system or object to perform work. It exists in various forms. Potential energy is the energy

More information

Slide 1 / 76. Slide 2 / 76. Slide 3 / 76. Work & Energy Multiple Choice Problems A 1,800 B 5,000 E 300,000. A Fdcos θ - μ mgd B Fdcos θ.

Slide 1 / 76. Slide 2 / 76. Slide 3 / 76. Work & Energy Multiple Choice Problems A 1,800 B 5,000 E 300,000. A Fdcos θ - μ mgd B Fdcos θ. Slide 1 / 76 Work & nergy Multiple hoice Problems 1 driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to accelerate the sports

More information