Size: px
Start display at page:

Download ""

Transcription

1

2

3

4

5 l t

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 1

34

35 2

36 2 2

37 2 2

38

39 B B

40 m t t m 0 ṁ t = e ref a t m t B e ref a t t t x t a t δ a t0 = 0 ȧ t = x t δa t c(x t ) c x t, c (x t ) 0 c (x t ) 0 c(x t ) 0 c (x t ) c

41 c (x t ) x t t a t c (x t ) x t c(x t ) e ref min x t 0 e rt c(x t ) dt m t B ϕ t ṁ t = e ref a t ȧ t = x t δa t a t e ref µ t ν t λ t a t x t a t ν t µ t λ t e ref

42 B T T e ref t T, m t = B = a t = e ref = x t = δe ref T µ t r t < T, µ t = µe rt µ a t < e ref t < T, (r + δ) c (x t ) dc (x t ) dt = µe rt c (x t ) t c i (x i,t ) dt δ

43 (+) >0 <0 + (r + δ)c (x t ) x t t + dt c i (x i,t) + d dt c i (x i,t)dt r

44 t < T, dc (x t ) dt = (r + δ) c (x t ) µe rt µe rt (r + δ) c t (r + δ) c > µe rt dc (x t )/dt > 0 (r + δ) c < µe rt dc (x t )/dt < 0 µ (r + δ) c (δe ref ) µ (r + δ) c (δe ref ) µ = (r + δ)c (x 0 ) x 0

45 a t e ref c (x t ) t < T, c (x t ) = T t µe rθ e (δ+r)(θ t) dθ + e (δ+r)(t t) c (δe ref ) e (δ+r)(θ t) µe rθ T c (δe ref ) t T x, c (x) = C t µe rt = (r + δ)c

46 T T c (x t ) 2 / c (x t ) 2 / c (x t ) x t dt 2

47 l t l t = (r + δ) c (x t ) t $ 2 / 1/δ = 10 5%/ r + δ = 15%/ 2 l t = (r + δ) c (x t ) = µe rt + dc (x t ) dt $/( / ) = $ 2 / $ 2 /= x t l t x t = c 1 ( l t r+δ ).

48 l t µe rt dc (x t) ( dt ) dc (x t) > 0 dt i ā i i āi = e ref δ i c i min e rt (c i (x i,t )) dt x i,t 0 i ȧ i,t = x i,t δ i a i,t ν i,t a i,t ā i ṁ t = i λ i,t (ā i a i,t ) µ t m t B ϕ t ν i,t λ i,t i µ t

49 i, t < T i, (r + δ i ) c i (x i,t ) dc i (x i,t ) dt = µe rt i T i i, t < T i, c i (x i,t ) = Ti t µe rθ e (δ i+r)(θ t) dθ + +e (δ+r)(t i t) c i (δ i ā i ) ( δi = δ j, ā i > ā j y, c i(y) = c j(y) ) = t, c i (x i,t ) > c j (x j,t ) ( δi = δ j, ā i = ā j y, c i(y) > c j(y) ) = t, c i (x i,t ) > c j (x j,t )

50 ā i c i

51 γ i i, a i,t [0, ā i ] γ i (a i,t ) = 1 2 γm i a 2 i,t γ i (a i,t ) = γ m i a γi m 2 ā i 2

52 [ ] [ ] ā i 2 γi m 2 2 δ / i [%/ ] c m 2 i 2 3 i, x i,t 0, c i (x i,t ) = 1 2 cm i x 2 i,t c i (x i,t ) = c m i x i,t c m i (i, j), c m i c m j = γm i γ m j c m i T = 23 r = 4%

53 T 0 (ā i a i,t ) B i B 2 i āi B = δ i 2 2

54 δ i x i,t 2 x i,t x i,t a i,t

55

56 2 2

57 2 2

58 H(x t, a t, m t ) = e (c(x rt t ) + λ t (a t e ref ) + ν t (δa t x t ) ) + µ t (e ref a t ) + ϕ t (m t B) H = 0 x t c (x t ) = ν t H d (e rt ν t ) = 0 a t dt ν t (δ + r)ν t = λ t µ t H m + d (e rt µ t ) = 0 dt µ t rµ t = ϕ t ν t µ λ t (r + δ) c (x t ) dc (x t ) dt = (µ t λ t ) e ref e ref

59 t, (m t B)ϕ t = 0 m t B = µ t = µe rt t, (a t e ref )λ t = 0 T T t T, ṁ t = 0 = a t = e ref = x t = δe ref T a t < e ref x t a t e ref T

60 a t < e ref t a t < e ref, dc (x t ) dt = (r + δ) c (x t ) µe rt θ t > θ a t < e ref (r + δ) c (x θ ) < µe rθ (r + δ) c (x t ) e ref θ (r + δ) c (x θ ) = µe rθ dc (x θ ) = 0 c θ dθ θ c a t t < T a t a t t ȧ t = 0 ä t 0 ȧ t = x t δa t ä t = ẋ t δȧ t = ẋ t ẋ t 0 x t a t τ > t ẋ τ 0 m t B a t t < T, a t < e ref T < + c (x t ) = c (x 0 )e (r+δ)t µert ( e δt 1 ) δ + e ref t T t T, a t = e ref a t T e ref,t T

61 T c t < T, a t < e ref λ t = 0 t T, a t = e ref λ t 0 T t < T, (r + δ) c (x t ) dc (x t ) dt = µe rt t < T, T c (x t ) = e (r+δ)t e (r+δ)θ µe rθ dθ + e (r+δ)t C t C C T T a t x t c (x T ) = c (δe ref ) t < T, T c (x t ) = µe rt e δ(θ t) dθ + e (δ+r)(t t) c (δe ref ) t

62 c (x t ) = T t µe rθ e (δ+r)(θ t) dθ + T (r + δ) c (δe ref ) e (δ+r)(θ t) dθ T c (δe ref ) T c (x t ) E O K t < T, c (x t ) = µe rt e δ(θ t) dθ t }{{} E µe rt e δ(θ t) dθ T }{{} O + e (r+δ)(t t) c (δe ref ) } {{ } K O e ref T O T K c (δe ref ) T (r+δ)c (δe ref ) dc (x t )/dt = 0 T

63 min x t 0 ) e (c(x rt t ) + d(m t ) dt ṁ t = e ref a t µ t ȧ t = x t δa t a t e ref ν t λ t d(m t ) H(x t, a t, m t ) = e (c(x rt t ) + d(m t ) + λ t (a t e ref ) + ν t (δa t x t ) ) + µ t (e ref a t ) H = 0 x t c (x t ) = ν t H d (e rt ν t ) = 0 a t dt ν t (δ + r)ν t = λ t µ t H m + d (e rt µ t ) = 0 dt µ t = rµ t d (m t )

64 B λ t = 0 µ t t T, c (x t ) = T t µ θ e (δ+r)(θ t) dθ + T (r + δ) c (δe ref ) e (δ+r)(θ t) dθ µ t min x t 0 ) e (c(x rt t ) + µ t (e ref a t ) dt ȧ t = x t δa t ν t a t e ref λ t l t h t i 2 / h t δ i A 2 A = θ=t e r(θ t) h e δ i(θ t) dθ = h r + δ

65 h x t (x t + h) C $ C = c(x t + h) c(x t ) = h 0 h c (x t ) l t l t = C A l t = (r + δ) c (x t ) (x t ) (a t ) θ 1 δ dθ θ + dθ ( x t ) (ã t ) θ θ + dθ (x t ) ( x t ) P = 1 dθ [ ] c (1 δ dθ) (x θ ) (1 + r dθ) c (x θ+ dθ ) P dθ 0 (r + δ) c (x θ ) dc (x θ ) dθ P θ

66 (x t ) (a t ) θ e ref T T θ (ã t ) θ (1 δ dθ) θ + dθ ( x t ) H(x i,t, a i,t, m t ) = e rt ( i c i (x i,t ) + λ i,t (a i,t ā i ) + ν i,t (δ i a i,t x t ) i i ) +µ t (ā i a i,t ) + ϕ t (m t B) i

67 (i, t) c i (x i,t ) = ν i,t ( x i,t ) ν i,t (δ i + r)ν i,t = λ i,t µ t ( a i,t ) µ t rµ t = ϕ t ( m t ) ν i,t µ λ i,t T m ṁ t = 0 = i, a i,t = ā i = x i,t = δ i ā i T i i i T i, a i,t = ā i T m = max i (T i ) t < T m, m t < B ϕ t = 0 = µ t = µe rt T i t < T i, a i,t < ā i λ i,t = 0 (i, t), (r + δ i ) c i (x i,t ) dc i (x i,t ) dt = µe rt λ i,t

68 Ti c i (x i,t ) = µe rt e δi(θ t) dθ + e (δ+r)(ti t) c i (δ i ā i ) = Ti t t µe rθ e (δ i+r)(θ t) dθ + T i (r + δ i ) c i (δ i ā i ) e (δ i+r)(θ t) dθ T i i, t < T i, dc i (x i,t ) dt = (r + δ i )c i (x i,t ) µe rt δ i (i, j), δ i = δ j t min(t i, T j ) c i(x i,t ) = c j(x j,t ) = t min(t i, T j ), c i(x i,t ) = c j(x j,t ) {1, 2}

69 (+) (+) 1 ( ) ( ) x > 0, c 1(x) = c 2(x), δ 1 = δ 2 = δ, ā 1 > ā 2 t max(t 1, T 2 ), (r + δ)c 1(δā 1 ) > (r + δ)c 2(δā 2 ) t [T 1, T 2 ] { t < t, c 1(x 1,t ) c 2(x 2,t ) t > t, c 1(x 1,t ) > c 2(x 2,t ) = t < T 1, x 1,t x 2,t = T1 0 x 1,t e δ(t 2 t) dt = ā 1 < T1 0 x 2,t e δ(t 2 t) dt = a 2,T1 a 2,T2 ā 2 ā 1 < ā 2 c 1(x 1,t ) c 2(x 2,t ) t, c 1(x 1,t ) > c 2(x 2,t ) dci (x i,t) dt < 0 T i T 1 > T 2

70 x > 0, c 1(x) < c 2(x) ( ā 1 = ā 2 δ 1 = δ 2 ) ā 2 = a 2,T2 > ā 1 = ā 2 c 1 > c 2 ā 1 < ā 2 δ 1 δ 2 i µe rt i T i τ τ τ c i(x i,τ ) t τ δ i c i(x i,t ) V i (τ) V i (τ) = µτ + e rτ c i(x i,τ ) + τ e rt δ i c i(x i,t )dt

71 V τ ( V i (τ) = µ + e rτ c i(x i,τ ) r d ) dτ c i(x i,τ ) e rτ δ i c i(x i,τ ) = (r + δ i ) c i(x i,τ ) d dτ c i(x i,τ ) µe rτ V i (τ) = λ i,τ V i (τ) τ T i µe rt t a t γ γ a t, γ (a t ) > 0 γ (a t ) > 0 γ(a t ) > 0 γ (a t ) a t γ(a t )

72 t 0 r min a t 0 e rt γ (a t ) dt a t e ref λ t ṁ t = e ref a t m t B µ t ϕ t µe rt e ref T 0 t t 0 γ (a t ) = µe rt t 0 < t < T γ (e ref ) t T t 0

73 γ(a t ) a t µe rt γ ) H(a t, m t ) = e (γ(a rt t ) + λ t (a t e ref ) + µ t (e ref a t ) + ϕ t (m t B) ( a t ) γ (a t ) = (µ t λ t ) ( m t ) µ t rµ t = ϕ t

74 T ṁ t = 0 e ref t < T, a t < e ref m t < B t T, a t = e ref m t = B ϕ t t, ϕ t (m t B) = 0 = t < T, ϕ t = 0 µ t t < T, µ t = µe rt λ t t, λ t (a t e ref ) = 0 = t < T, λ t = 0

75 2

76

77

78

79 h l z t x i,t i k t δ eq

80 k i,t = x i,t δk t, i x i,t 0 k l,t0 = k z,t0 = 0 c i c i (x) > 0, c i(x) > 0, c i (x) > 0, x

81 c l(x) < c z(x), x c i(0) = 0 c i(0) i c i (x i,t ) i k t 0 c i (x i,t ), i c i (x i,t ) k t F i i c (x) c (0) c (x) c (0)

82 F h > F l > F z = 0 B m t B, t m t F i q j,t ṁ t = i F i q j,t S i,t S i,t0 Ṡ i,t = c i (x i,t ) S i,t 0 S z,t0 = i S h,t0 = u ( i c i (x i,t )) u x i,t c i (x i,t )

83 B ( ) max e [u rt c i (x i,t ) ] c i (x i,t ) dt x i,t,c i (x i,t ) 0 i i ki,t = x i,t δk t (ν t ) q j,t k j,t (γ i,t ) q j,t 0 (λ i,t ) x i,t 0 (ξ i,t ) ṁ t = F i q j,t i (µ t ) m t B (η t ) Ṡ i,t = c i (x i,t ) (α i,t ) S i,t 0 (β i,t ) r ν t γ i,t µ t α i,t i α h,t α l,t µ t

84 α h,t = α h e rt, α l,t = α l e rt, µ t = µe rt α h,t α l,t µ t α h = 0 α l,t = 0 α h,t α l,t α h,t α l,t α h,t α l,t γ i,t ν t c i (x i,t ) c i (x i,t ) ν t ξ i,t c i (x i,t ) = ν t + ξ i,t ν t c i(0) ξ i,t = 0 ν t > c i(0) c i (x i,t ) = ν t x i,t > 0 ν t c i(0) ν t γ i,t γ i,t = (δ + r) ν t ν t, t

85 γ i,t ν t γ i,t t ν t dt γ i,t δ t + dt ν t + ν t dt r ν t γ i,t ν t x i,t > 0 γ i,t = (δ + r) c i (x i,t ) d dt c i (x i,t ) r c i (x i,t ) = e (r+δ)t γ i,t dt γ i,t c i (x i,t ) > 0 u t = γ i,t + α i,t + µ t F i u t u t u ( i c i (x i,t )) γ i,t α i,t F i i µ t t

86 γ i,t i c i (x i,t ) < k t = γ i,t = 0 i j t 0 < c i (x i,t ) < k t & 0 < q j,t < k j,t = u t = α i,t + F i µ t = α j,t + F j µ t i α i,t + F i µ t t t t u t 0 < q h,t < k h,t = u t = α h,t + F h µ t

87 0 < q l,t < k l,t = u t = α l,t + F l µ t c i (x i,t ) = k t = γ i,t > 0 u t = γ i,t + α i,t + µ t F i t γ i

88 $/ $/ + = + l + l 0 l + l + l + / l + l 0 l / = + l + l + $/ $/ + l + l = l + l 0 + l / 0 = + ( ) = / z l h α i µf i p q u γ i = p α i µf i

89

90 γ i,t ν t ν t > c i(0) i

91 γ z,t = u t ν z,t = t e (r+δ)(θ t) u θ dθ, t (u θ ) (e (r+δ)(t θ) ) τ z + c z(x z,t ) = t e (r+δ)(θ t) u θ dθ, t τ + z T γ t > T γ = γ l,t = 0 ν l,t = Tγ t e (r+δ)(θ t) (u θ µ θ F l α l,θ )dθ ν l,t > c l (0) τl Tγ τ l e (r+δ)(θ τ l ) (u θ µ θ F i α i,θ )dθ = c l(0)

92 Tγ ν z,t ν l,t = e (r+δ)(θ t) (µ θ F l + α l,θ ) dθ + c z(x z,tγ )e (r+δ)(t Tγ) 0 t } {{ } } {{ } γ ν γ t τl ν T γ T γ ν z,t = c z(x z,tγ ) τ z + τ + l Th Th < τ z + τ + l Th < τ + l τ z + Th c l (0) = 0 τ l = T γ

93 τ + l Th < τ z + τ + l τ z + Th τ z + τ + l Th τ z + Th τ + l ( c i (x i,t ) = C i (1 A) x i,t + 1 ) 2 Ax2 i,t = c i (x i,t ) = C i ((1 A) + Ax i,t ) A (0, 1) C i C z > C l A = 0 A = 1 lim xi,t 0;A=0 c i (x i,t ) = 0 A (0, 1)

94

95 T hl = Th = τ + l T lz = T γ = τ z + τ z + = τ + l = t 0 Th

96 α i,t α h,t ( ) max e [u rt c i (x i,t ) ] (c i (x i,t ) + c i (x i,t )α i,t ) dt x i,t,c i (x i,t ) 0 i i ki,t = x i,t δk t (ν t ) q j,t k j,t (γ i,t ) q j,t 0 (λ i,t ) x i,t 0 (ξ i,t ) ṁ t = F i q j,t i (µ t ) m t B (η t ) T hl T lz T lz T hl

97 Ci m X i H i F i 2

98 r B D 0 G P e 2 δ A 1

99 D t P P = 90 e =.1 D t q(p) = D t e (p P ) p u t(q) ( u(q) = P + D ) t q q2 e 2e D 0 D 0 = G = D t = D 0 + t G k t c i (x i,t ) H i

100 D 0 k z,0 = k l,0 = 0; k h,0 = D 0 H h (X i ) Ci m c i (x i,t ) = C m i X i ( (1 A) x i,t X i + A 2 ( xi,t X i ) 2 ) = c i (X i ) = C m i e ref,t = F h = B = 22 2 B F l = r = 5 % δ δ = 1/

101

102 2 A B 2 A > 0.5 $/ A =.125 4$/

103

104

105 ( ) H = e [u rt c i (x i,t ) c i (x i,t ) ν t (δ k t x i,t ) i i i µ t F i q j,t η t (m t B) (α i,t c i (x i,t ) β i,t S i,t ) i i γ i,t (q j,t k j,t ) + λ i,t q j,t + ] ξ i,t x i,t i i i H = 0 x i c i (x i,t ) = ν t + ξ i,t H = 0 q i λ i,t µ t R i α i,t + u t = γ i,t H = d (e rt ν t ) k i dt (δ + r) ν t ν t = γ i,t H = d (e rt µ t ) m t dt µ t r µ t = η t H = d (e rt α i,t ) S i dt α i r α i,t = β i,t i, t, ξ i,t 0, x i,t 0 ξ i,t x i,t = 0 i, t, λ i,t 0, c i (x i,t ) 0 λ i,t c i (x i,t ) = 0 i, t, η t 0, B m t 0 η t (B m t ) = 0 i, t, β i,t 0, S i,t 0 β i,t S i,t = 0 i, t, γ i,t 0, k t c i (x i,t ) 0 γ i,t (k t c i (x i,t )) = 0

106 η t β i,t α h,t = α h e rt α l,t = α l e rt µ t = µe rt

107 i h l z h l z k t i t c i (x i,t ) i t x i,t i t c i (x i,t ) i t ν t k t µ t 2 α i,t i γ i,t i u t m t 2 δ 1 r 1 F i i 2 D t t B 2 u ( i c i (x i,t ))

108

109 3 12 2

110

111

112 2

113 2 2 2

114 2 / 2 / 2 2 2

115

116 2 2

117 2

118 2 2

119

120

121

122

123

124

125 4

126 Marginal cost $/tco 2 Y N-1 N c i A i 4 X 5 Abatement potential MtCO 2 /yr N i A i c i 1 4

127

128

129 2 2 2

130 N i t t E ref t a i,t i t e t = E ref t N i=1 a i,t M t M t = e t t + M t t i A i 2

131 a i,t A i i c i a i,t i t I i,t I i,t = a i,t c i v i 2 t t t a i,t a i,t t + v i t 2 a i,0 = 0) A i A i = A i a i,0

132 T Ãi A i v i à i = min (v i T, A i ) A i /v i C r C = T t=t 0 N i=1 I i,t (1 + r) t t M t M obj M t M obj

133 c 2 A 2 v 2 2 m e tm E obj m N = 2 v r = 5% = 5 2 E ref t

134 2 M obj 2

135

136 2 2 m {1}, t 1 = 2050 E obj 1

137

138

139 Marginal abatement cost $/tco Marginal abatement cost $/tco GtCO 2 /yr GtCO2 /yr t 1 Ã 2 t 2 Ã 2

140 E obj 1 = E(2020) =

141 E obj 1 = E(2020) = E obj 2 = E(2050) =

142

143

144

145 5

146 Marginal cost $/tco 2 Y 5 c A X Abatement potential at T MtCO 2 /yr

147

148 Emissions GtCO 2 /yr Marginal cost $/tco 2 T Wedge curve time Potential at T MtCO 2 /yr Flipped MAC curve

149

150

151

152

153

154 2 2

155

156 +

157

158 2

159

160 MtCO Emission reductions in Metro Rail and Waterways In the 2030 strategy Bullet train Refineries Heat Integration In the 2020 strategy New processes Marginal cost $/tco Marginal cost $/tco Potential MtCO 2 /yr in Potential MtCO 2 /yr in 2030 D 2020 D 2030 D 2020 D 2030

161

162

163 i A i,t c i v i a T T r a i,t i t min e rt c i a i,t a i,t i,t (i, t), a i,t A i,t v i a i,t+1 a i,t + v i a i,t a T i

164 2 2

165

166

167 6

168

169

170

171

172

173 r t c(x t ) ȧ t = r t a t c(x t ) t c(x t ) u (c(x t )) u > 0 u < 0 W W = ρ 0 e ρt u(c(x t )) dt y t k p k c c(x t ) i p,t i c,t y t = c(x t ) + i p,t + i c,t i p,t i c,t δ k p,t = i p,t δ k p,t k c,t = i c,t δ k c,t

174 i p,t 0 i c,t 0 q t k t y t y t = F (A t, q p,t, q c,t ) q p,t k p,t q c,t k c,t A t q t k t t G q p,t m t ε ṁ t = G q p,t εm t t, q c,t = k c,t

175 ċ c = u (c) c u (c) (r t ρ) u (c) cu (c) > 0 r t ρ R p,t R c,t Π t = F (A t, q p,t, q c,t ) R c,t k c,t R p,t k p,t R c,t R p,t t qb F (q p,t, q c,t ) = R p,t qg F (q p,t, q c,t ) = R c,t R p,t = R c,t = r t + δ

176 m t m m t m max c,i,k 0 e ρt u(c(x t )) dt F (q p, k c ) c(x t ) i p,t i c,t = 0 k p,t = i p,t δk p,t k c,t = i c,t δk c,t ṁ t = G q p,t εm t m t m i p,t 0 q p,t k p,t λ t ν t χ t µ t d(m t ) ψ t β t λ t ν t χ t µ t t

177 u (c t ) = λ t = ν t + ψ t = χ t kc F = 1 λ ((δ + ρ)χ t χ t ) β t = 1 λ ((δ + ρ)ν t ν t ) qp F = β t + τ t G τ τ t = µ t λ t r t t, m t < m = τ t = τ t (r t + ε) m t = m k p,t = m ε/g ṁ t = 0 A t R c,t R p,t R c,t := 1 λ [(δ + ρ)χ t χ t ] R p,t := 1 λ [(δ + ρ)ν t ν t ] χ t ν t (R c,t, R p,t ) (χ t, ν t ) δ ρ χ t ν t

178 kc F = R c,t qp F = R p,t + τ t G β t R p,t r t r t = R c,t δ R p,t = R c,t l t l t l t = 1 λ t ((ρ + δ)ψ t ψ t ) [0, R c,t ] ψ t ν t χ t ψ t R p,t = β t 0 l t = R c,t R p,t R c,t

179 l t τ t τ t }{{} = q p F kc F G } {{ } l t [0, kc F ] + l t G }{{} 0 < l t R c,t R p,t < R c,t i p,t = 0

180 t 0 t 0 t i t (t 0, t i ), i b = 0 q p,t < k p,t k p,t q p,t t ss l t = 0 R p,t = R c,t i p,t > 0 l t kc F (= R c,t ) t 0

181 l t = R c,t R τ t G > kp F (k p,t, k c,t ) = p,t = 0 q p,t < k p,t qp F (q p, k c ) = τ t G R p,t R p,t β t m k b,t0 F u δ ρ τ t G

182 k b,0 m

183 θ c,t > 0 θ p,t > 0 π t t π t = F (q p,t, q c,t ) (λ t θ c,t ) i c,t (λ t + θ p,t ) i p,t λ t θ c,t θ p,t t ss,2 t ss,1 q p,1,t0 < k p,t0 q p,2,t0 = k p,t0 t 0 F (q p,2,t0, k c,t0 ) F (q p,1,t0, k c,t0 )

184 qp F = kc F 1 ((ρ + δ)ψ t λ ) ψ t + 1 ((δ + ρ)(θ c,t + θ p,t ) ( θ } t λ c,t + ) θ p,t ) {{}} t {{} l t τ t,2 G l t τ t,2 τ t,2 }{{} = q p F kc F G } {{ } + l t G }{{} l t τ t,2 t

185 y c y t ss t ss,2 < t ss,1

186 t > t 0, ν t = χ t + θ c,t + θ p,t ψ t ν t χ t (θ c,t + θ p,t ψ t 0)

187

188

189 k b,t0 m m t0 ρ δ

190 δ ε m 0 k 0 m < m 0 + G k 0 δ

191 H h (c t, a t ) = e ρt {u(c t ) + λ t [r t a t + y t c t ]} λ t t W t, c H h = 0 λ t = u (c t ) t, a H h + d(e ρt λ t ) dt = 0 λ t = (ρ r t )λ t λ

192 c t = u (c t ) c t c t u (c t ) (r t ρ) H t = e ρt { u(c(x t )) + λ t [F (q p, k c ) c(x t ) i p,t i c,t ] + ν t [i p,t δk p,t ] +χ t [i c,t δk c,t ] µ t [G q p,t εm t ] + d(m t ) [ m m t ] } + ψ t i p,t + β t [k p,t q p,t ] t ψ t 0 ψ t i p,t = 0 t β t 0 β t (k p,t q p,t ) = 0 t d(m t ) 0 d(m t ) ( m m t ) = 0 H t = 0 c t u (c t ) = λ t H t = 0 i p,t λ t = ν t + ψ t H t = 0 i c,t λ t = χ t H t = d(e ρt ν t ) k p,t dt ν t δ + β t = ν t + ρν t H t = d(e ρt χ t ) k c,t dt λ t kc F (k p,t, k c,t ) χ t δ = χ t + ρχ t

193 H t = 0 q p,t λ t qp F (q p,t, k c,t ) µ t G = β t H t = d(e ρt µ t ) m t dt d(m t ) + εµ t = µ t ρµ t λ t λ t c t u (c t ) u (c t ) c t = (ρ + δ R c,t ) c t r t r t := R c,t δ µ t µ t = ( λ t τ t + λ t τ t ) τ t = τ t [ε + r t ] d(m t) λ t t ss t t ss, m t = m ṁ t = 0 = G q p,t = ε m k p,t = m ε/g t ss d(m t ) = 0 τ t = τ t [ε + r t ]

194 r t + ε t 0 lim t t 0 lim t t 0 q p,t = k p,t qp F (q p,t, q c,t ) = kc F (q p,t, q c,t ) t + 0 ψ t = 0 lim qp F (q p,t, q c,t ) = kc F (q p,t, q c,t ) + τ t0 G t t + 0 lim q p,t = k p,t t t + 0 τ t0 > 0 lim qp F (q p,t, q c,t ) lim qp F (q p,t, q c,t ) t t + 0 t t + 0 qp F q p,t lim t t + q p,t 0 lim t t + q p,t 0

195 t Π t = F (q p,t, k c,t ) R c,t k c,t R p,t k p,t τ t G q p,t R p,t R c,t τ t ȧ t = r t a t + y t c(x t ) + τ t G q p,t L(t) = Π t + β t (k p,t q p,t ) + γ t (k c,t q c,t ) qg L = 0 qc F (q p,t, q c,t ) = γ t qb L = 0 qp F (q p,t, q c,t ) = β t + τ t G kg L = 0 γ t = R c,t kb L = 0 β t = R p,t t γ t 0 γ t (k c,t q c,t ) = 0 β t 0 β t (k p,t q p,t ) = 0 γ t = qc F (q p,t, q c,t ) > 0 q c,t = k c,t t kc F (q p,t, k c,t ) = R c,t qp F (q p,t, k c,t ) = R p,t + τ t G

196 R c,t = r t + δ R p,t = R c,t = r t + δ t 0 H t = e ρt {F (q p,t, q c,t ) (λ t θ c,t ) i c,t (λ t + θ p,t ) i p,t +ν t [i p,t δk p,t ] + χ t [i c,t δk c,t ] + ψ t i p,t + β t [k p,t q p,t ]} H t = 0 i p,t λ t + θ p,t = ν t + ψ t H t = 0 i c,t λ t θ c,t = χ t H t = d(e ρt ν t ) k p,t dt ν t δ + β t = ν t + ρν t H t = d(e ρt χ t ) k c,t dt ρχ t χ t = λ t kc F (k p,t, k c,t ) χ t δ H t = 0 q p,t λ t qp F (q p,t, k c,t ) = β t t, β t [k p,t q p,t ] = 0

197 F t, k p,t = q p,t ν t + ψ t = χ t + θ c,t + θ p,t kc F = 1 λ ((δ + ρ)χ t χ t ) qp F = 1 λ ((δ + ρ)ν t ν t ) qp F = kc F + 1 ((δ + ρ)(θ c,t + θ p,t ) ( θ λ c,t + ) θ p,t ) } t {{} θ t 1 ((ρ + δ)ψ t λ ) ψ t } t {{} l t l t θ t (θ c,t + θ p,t ) θ t = τ t,2 G τ t,2 θ t G θ c,t + θ p,t ψ t kc F qp F l t θ t (= τ t,2 ) ψ t θ c,t + θ p,t

198 l t = 0 θ t θ t t t ss, θ t = τ t G t ss τ t,2 τ t,2 }{{} = q p F kc F G } {{ } l t [0, τ t,2 ] + l t G }{{} l t τ t,2 i p,t σ t

199 t, i p,t = sd t σ t sd t sd t = 0 H t = e ρt {u(c(x t )) + λ t [F (q p, k c ) c(x t ) i p,t i c,t ] + ν t [i p,t δk p,t ] +χ t [i c,t δk c,t ] + σ t (sd t i p,t ) + β t [k p,t q p,t ]} λ t ν t χ t u (c t ) = λ t = ν t σ t = χ t λ t kc F = (δ + ρ)χ t χ t λ t qp F = β t β t = (δ + ρ)ν t ν t σ t (θ c,t + θ p,t ψ t ) R p,t = R c,t + n t n t = 1 ((ρ + δ)σ t σ t ) λ t n t = θ t l t n t

200 max c,i,k 0 e ρt u(c(x t )) dt F (q p, k c ) c(x t ) i p,t i c,t = 0 k p,t = i p,t δk p,t k c,t = i c,t δk c,t ṁ t = G q p,t εm t m t m i p,t 0 q p,t k p,t q p,t = k p,t λ t ν t χ t µ t d(m t ) ψ t β t α t H t = e ρt {u(c(x t )) + λ t [F (q p, k c ) c(x t ) i p,t i c,t ] + ν t [i p,t δk p,t ] +χ t [i c,t δk c,t ] µ t [G q p,t εm t ] + d(m t ) [ m m t ] + ψ t i p,t + β t [k p,t q p,t ] + α t [q p,t k p,t ]}

201 β t α t = 1 λ ((δ + ρ)ν t ν t ) qp F = β t α t + τ t G β t α t qp F = β t α t + τ t G β t > 0 α t = 0 α t > 0 β t = 0 β t = 0 qp F = α t + τ t G α t qp F = kc F l t + τ t G 0 < l t < τ t G l t > 0 l t = 0 i b > 0 i b = 0 ψ t > 0 R p,t < R c,t R p,t

202 k p,t = k 0 e δt ṁ = k 0 e δt ε m m t = G k 0 δ ε e δt + ( m 0 + G k 0 δ ε ) e εt m max = G k 0 δ t max = 1 δ ln(m max ε G k 0 ) e δt m m max = m m = G k ( m ε 0 δ ε eln( G k ) 0 + m 0 + G k ) 0 e ε m ε ln( ) δ G k 0 δ ε m = [ ( m 0 + G k ) ( ) ε 0 ε δ ε G k 0 δ ( δ ε δ ) ] δ δ ϵ

203

204

205

206

207

208

209

210

211 2

212

213

214

215 2

216

217

218

219

220

221

222

223

224

225 2

226

227

228

Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios

Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios Downloaded from orbit.dtu.dk on: Jan 22, 2019 Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios Nystrup, Peter Publication date: 2018 Document Version

More information

R k. t + 1. n E t+1 = ( 1 χ E) W E t+1. c E t+1 = χ E Wt+1 E. Γ E t+1. ) R E t+1q t K t. W E t+1 = ( 1 Γ E t+1. Π t+1 = P t+1 /P t

R k. t + 1. n E t+1 = ( 1 χ E) W E t+1. c E t+1 = χ E Wt+1 E. Γ E t+1. ) R E t+1q t K t. W E t+1 = ( 1 Γ E t+1. Π t+1 = P t+1 /P t R k E 1 χ E Wt E n E t+1 t t + 1 n E t+1 = ( 1 χ E) W E t+1 c E t+1 = χ E Wt+1 E t + 1 q t K t Rt+1 E 1 Γ E t+1 Π t+1 = P t+1 /P t W E t+1 = ( 1 Γ E t+1 ) R E t+1q t K t Π t+1 Γ E t+1 K t q t q t K t j

More information

Economic Growth (Continued) The Ramsey-Cass-Koopmans Model. 1 Literature. Ramsey (1928) Cass (1965) and Koopmans (1965) 2 Households (Preferences)

Economic Growth (Continued) The Ramsey-Cass-Koopmans Model. 1 Literature. Ramsey (1928) Cass (1965) and Koopmans (1965) 2 Households (Preferences) III C Economic Growth (Continued) The Ramsey-Cass-Koopmans Model 1 Literature Ramsey (1928) Cass (1965) and Koopmans (1965) 2 Households (Preferences) Population growth: L(0) = 1, L(t) = e nt (n > 0 is

More information

5 n N := {1, 2,...} N 0 := {0} N R ++ := (0, ) R + := [0, ) a, b R a b := max{a, b} f g (f g)(x) := f(x) g(x) (Z, Z ) bz Z Z R f := sup z Z f(z) κ: Z R ++ κ f : Z R f(z) f κ := sup z Z κ(z). f κ < f κ

More information

Nonlinear Systems and Control Lecture # 19 Perturbed Systems & Input-to-State Stability

Nonlinear Systems and Control Lecture # 19 Perturbed Systems & Input-to-State Stability p. 1/1 Nonlinear Systems and Control Lecture # 19 Perturbed Systems & Input-to-State Stability p. 2/1 Perturbed Systems: Nonvanishing Perturbation Nominal System: Perturbed System: ẋ = f(x), f(0) = 0 ẋ

More information

Forchheimer Equations in Porous Media - Part III

Forchheimer Equations in Porous Media - Part III Forchheimer Equations in Porous Media - Part III Luan Hoang, Akif Ibragimov Department of Mathematics and Statistics, Texas Tech niversity http://www.math.umn.edu/ lhoang/ luan.hoang@ttu.edu Applied Mathematics

More information

( U t = jt c ln c t + j t ln h t ϕ ) 1 + η (n t + s t ) 1+η c t h t j c t j t n t s t c t c h t c f t c t = [ ( ) v 1 θ 1 ( θ c h θ t + (1 v) 1 θ c f t ) θ 1 ] θ θ 1 θ. θ v P t p h t P t h P t c t + p

More information

Time-Dependent Conduction :

Time-Dependent Conduction : Time-Dependent Conduction : The Lumped Capacitance Method Chapter Five Sections 5.1 thru 5.3 Transient Conduction A heat transfer process for which the temperature varies with time, as well as location

More information

High-Gain Observers in Nonlinear Feedback Control. Lecture # 3 Regulation

High-Gain Observers in Nonlinear Feedback Control. Lecture # 3 Regulation High-Gain Observers in Nonlinear Feedback Control Lecture # 3 Regulation High-Gain ObserversinNonlinear Feedback ControlLecture # 3Regulation p. 1/5 Internal Model Principle d r Servo- Stabilizing u y

More information

E E I M (E, I) E I 2 E M I I X I Y X Y I X, Y I X > Y x X \ Y Y {x} I B E B M E C E C C M r E X E r (X) X X r (X) = X E B M X E Y E X Y X B E F E F F E E E M M M M M M E B M E \ B M M 0 M M M 0 0 M x M

More information

EDP with strong anisotropy : transport, heat, waves equations

EDP with strong anisotropy : transport, heat, waves equations EDP with strong anisotropy : transport, heat, waves equations Mihaï BOSTAN University of Aix-Marseille, FRANCE mihai.bostan@univ-amu.fr Nachos team INRIA Sophia Antipolis, 3/07/2017 Main goals Effective

More information

Technische Universität Dresden

Technische Universität Dresden Als Manuskript gedruckt Technische Universität Dresden Herausgeber: Der Rektor Modulus semigroups and perturbation classes for linear delay equations in L p H. Vogt, J. Voigt Institut für Analysis MATH-AN-7-2

More information

and in each case give the range of values of x for which the expansion is valid.

and in each case give the range of values of x for which the expansion is valid. α β γ δ ε ζ η θ ι κ λ µ ν ξ ο π ρ σ τ υ ϕ χ ψ ω Mathematics is indeed dangerous in that it absorbs students to such a degree that it dulls their senses to everything else P Kraft Further Maths A (MFPD)

More information

MA5206 Homework 4. Group 4. April 26, ϕ 1 = 1, ϕ n (x) = 1 n 2 ϕ 1(n 2 x). = 1 and h n C 0. For any ξ ( 1 n, 2 n 2 ), n 3, h n (t) ξ t dt

MA5206 Homework 4. Group 4. April 26, ϕ 1 = 1, ϕ n (x) = 1 n 2 ϕ 1(n 2 x). = 1 and h n C 0. For any ξ ( 1 n, 2 n 2 ), n 3, h n (t) ξ t dt MA526 Homework 4 Group 4 April 26, 26 Qn 6.2 Show that H is not bounded as a map: L L. Deduce from this that H is not bounded as a map L L. Let {ϕ n } be an approximation of the identity s.t. ϕ C, sptϕ

More information

EXTREMAL ANALYTICAL CONTROL AND GUIDANCE SOLUTIONS FOR POWERED DESCENT AND PRECISION LANDING. Dilmurat Azimov

EXTREMAL ANALYTICAL CONTROL AND GUIDANCE SOLUTIONS FOR POWERED DESCENT AND PRECISION LANDING. Dilmurat Azimov EXTREMAL ANALYTICAL CONTROL AND GUIDANCE SOLUTIONS FOR POWERED DESCENT AND PRECISION LANDING Dilmurat Azimov University of Hawaii at Manoa 254 Dole Street, Holmes 22A Phone: (88)-956-2863, E-mail: azimov@hawaii.edu

More information

Housing Market Monitor

Housing Market Monitor M O O D Y È S A N A L Y T I C S H o u s i n g M a r k e t M o n i t o r I N C O R P O R A T I N G D A T A A S O F N O V E M B E R İ Ī Ĭ Ĭ E x e c u t i v e S u m m a r y E x e c u t i v e S u m m a r y

More information

Event-triggered stabilization of linear systems under channel blackouts

Event-triggered stabilization of linear systems under channel blackouts Event-triggered stabilization of linear systems under channel blackouts Pavankumar Tallapragada, Massimo Franceschetti & Jorge Cortés Allerton Conference, 30 Sept. 2015 Acknowledgements: National Science

More information

Lienard-Wiechert for constant velocity

Lienard-Wiechert for constant velocity Problem 1. Lienard-Wiechert for constant velocity (a) For a particle moving with constant velocity v along the x axis show using Lorentz transformation that gauge potential from a point particle is A x

More information

Linear-quadratic control problem with a linear term on semiinfinite interval: theory and applications

Linear-quadratic control problem with a linear term on semiinfinite interval: theory and applications Linear-quadratic control problem with a linear term on semiinfinite interval: theory and applications L. Faybusovich T. Mouktonglang Department of Mathematics, University of Notre Dame, Notre Dame, IN

More information

NOTES ON CALCULUS OF VARIATIONS. September 13, 2012

NOTES ON CALCULUS OF VARIATIONS. September 13, 2012 NOTES ON CALCULUS OF VARIATIONS JON JOHNSEN September 13, 212 1. The basic problem In Calculus of Variations one is given a fixed C 2 -function F (t, x, u), where F is defined for t [, t 1 ] and x, u R,

More information

High-Gain Observers in Nonlinear Feedback Control. Lecture # 2 Separation Principle

High-Gain Observers in Nonlinear Feedback Control. Lecture # 2 Separation Principle High-Gain Observers in Nonlinear Feedback Control Lecture # 2 Separation Principle High-Gain ObserversinNonlinear Feedback ControlLecture # 2Separation Principle p. 1/4 The Class of Systems ẋ = Ax + Bφ(x,

More information

Deterministic Dynamic Programming

Deterministic Dynamic Programming Deterministic Dynamic Programming 1 Value Function Consider the following optimal control problem in Mayer s form: V (t 0, x 0 ) = inf u U J(t 1, x(t 1 )) (1) subject to ẋ(t) = f(t, x(t), u(t)), x(t 0

More information

Math 21B - Homework Set 8

Math 21B - Homework Set 8 Math B - Homework Set 8 Section 8.:. t cos t dt Let u t, du t dt and v sin t, dv cos t dt Let u t, du dt and v cos t, dv sin t dt t cos t dt u v v du t sin t t sin t dt [ t sin t u v ] v du [ ] t sin t

More information

The semi-geostrophic equations - a model for large-scale atmospheric flows

The semi-geostrophic equations - a model for large-scale atmospheric flows The semi-geostrophic equations - a model for large-scale atmospheric flows Beatrice Pelloni, University of Reading with M. Cullen (Met Office), D. Gilbert, T. Kuna INI - MFE Dec 2013 Introduction - Motivation

More information

Dynamic and Stochastic Brenier Transport via Hopf-Lax formulae on Was

Dynamic and Stochastic Brenier Transport via Hopf-Lax formulae on Was Dynamic and Stochastic Brenier Transport via Hopf-Lax formulae on Wasserstein Space With many discussions with Yann Brenier and Wilfrid Gangbo Brenierfest, IHP, January 9-13, 2017 ain points of the

More information

Convolution and Linear Systems

Convolution and Linear Systems CS 450: Introduction to Digital Signal and Image Processing Bryan Morse BYU Computer Science Introduction Analyzing Systems Goal: analyze a device that turns one signal into another. Notation: f (t) g(t)

More information

Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains

Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains .. Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains Vladimir M. Stojanović Condensed Matter Theory Group HARVARD UNIVERSITY September 16, 2014 V. M. Stojanović (Harvard)

More information

I. Introduction. A New Method for Inverting Integrals Attenuated Radon Transform (SPECT) D to N map for Moving Boundary Value Problems

I. Introduction. A New Method for Inverting Integrals Attenuated Radon Transform (SPECT) D to N map for Moving Boundary Value Problems I. Introduction A New Method for Inverting Integrals Attenuated Radon Transform (SPECT) D to N map for Moving Boundary Value Problems F(k) = T 0 e k2 t+ikl(t) f (t)dt, k C. Integrable Nonlinear PDEs in

More information

A t = B A F (φ A t K t, N A t X t ) S t = B S F (φ S t K t, N S t X t ) M t + δk + K = B M F (φ M t K t, N M t X t )

A t = B A F (φ A t K t, N A t X t ) S t = B S F (φ S t K t, N S t X t ) M t + δk + K = B M F (φ M t K t, N M t X t ) Notes on Kongsamut et al. (2001) The goal of this model is to be consistent with the Kaldor facts (constancy of growth rates, capital shares, capital-output ratios) and the Kuznets facts (employment in

More information

Joint work with Nguyen Hoang (Univ. Concepción, Chile) Padova, Italy, May 2018

Joint work with Nguyen Hoang (Univ. Concepción, Chile) Padova, Italy, May 2018 EXTENDED EULER-LAGRANGE AND HAMILTONIAN CONDITIONS IN OPTIMAL CONTROL OF SWEEPING PROCESSES WITH CONTROLLED MOVING SETS BORIS MORDUKHOVICH Wayne State University Talk given at the conference Optimization,

More information

I. Relationship with previous work

I. Relationship with previous work x x i t j J t = {0, 1,...J t } j t (p jt, x jt, ξ jt ) p jt R + x jt R k k ξ jt R ξ t T j = 0 t (z i, ζ i, G i ), ζ i z i R m G i G i (p j, x j ) i j U(z i, ζ i, x j, p j, ξ j ; G i ) = u(ζ i, x j,

More information

Aero III/IV Conformal Mapping

Aero III/IV Conformal Mapping Aero III/IV Conformal Mapping View complex function as a mapping Unlike a real function, a complex function w = f(z) cannot be represented by a curve. Instead it is useful to view it as a mapping. Write

More information

Modelling and Mathematical Methods in Process and Chemical Engineering

Modelling and Mathematical Methods in Process and Chemical Engineering Modelling and Mathematical Methods in Process and Chemical Engineering Solution Series 3 1. Population dynamics: Gendercide The system admits two steady states The Jacobi matrix is ẋ = (1 p)xy k 1 x ẏ

More information

Observer design for a general class of triangular systems

Observer design for a general class of triangular systems 1st International Symposium on Mathematical Theory of Networks and Systems July 7-11, 014. Observer design for a general class of triangular systems Dimitris Boskos 1 John Tsinias Abstract The paper deals

More information

OPTIMAL CONTROL SYSTEMS

OPTIMAL CONTROL SYSTEMS SYSTEMS MIN-MAX Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University OUTLINE MIN-MAX CONTROL Problem Definition HJB Equation Example GAME THEORY Differential Games Isaacs

More information

Phase Synchronization

Phase Synchronization Phase Synchronization Lecture by: Zhibin Guo Notes by: Xiang Fan May 10, 2016 1 Introduction For any mode or fluctuation, we always have where S(x, t) is phase. If a mode amplitude satisfies ϕ k = ϕ k

More information

Deterministic Kalman Filtering on Semi-infinite Interval

Deterministic Kalman Filtering on Semi-infinite Interval Deterministic Kalman Filtering on Semi-infinite Interval L. Faybusovich and T. Mouktonglang Abstract We relate a deterministic Kalman filter on semi-infinite interval to linear-quadratic tracking control

More information

06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 1

06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 1 IV. Continuous-Time Signals & LTI Systems [p. 3] Analog signal definition [p. 4] Periodic signal [p. 5] One-sided signal [p. 6] Finite length signal [p. 7] Impulse function [p. 9] Sampling property [p.11]

More information

Introduction to tensor calculus

Introduction to tensor calculus Introduction to tensor calculus Dr. J. Alexandre King s College These lecture notes give an introduction to the formalism used in Special and General Relativity, at an undergraduate level. Contents 1 Tensor

More information

EEE 184: Introduction to feedback systems

EEE 184: Introduction to feedback systems EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)

More information

What can be expressed via Conic Quadratic and Semidefinite Programming?

What can be expressed via Conic Quadratic and Semidefinite Programming? What can be expressed via Conic Quadratic and Semidefinite Programming? A. Nemirovski Faculty of Industrial Engineering and Management Technion Israel Institute of Technology Abstract Tremendous recent

More information

WEYL S LEMMA, ONE OF MANY. Daniel W. Stroock

WEYL S LEMMA, ONE OF MANY. Daniel W. Stroock WEYL S LEMMA, ONE OF MANY Daniel W Stroock Abstract This note is a brief, and somewhat biased, account of the evolution of what people working in PDE s call Weyl s Lemma about the regularity of solutions

More information

Stochastic optimal control theory

Stochastic optimal control theory Stochastic optimal control theory Bert Kappen SNN Radboud University Nijmegen the Netherlands July 5, 2008 Bert Kappen Introduction Optimal control theory: Optimize sum of a path cost and end cost. Result

More information

Roots of Polynomials in Subgroups of F p and Applications to Congruences

Roots of Polynomials in Subgroups of F p and Applications to Congruences Roots of Polynomials in Subgroups of F p and Applications to Congruences Enrico Bombieri, Jean Bourgain, Sergei Konyagin IAS, Princeton, IAS Princeton, Moscow State University The decimation problem Let

More information

Lesson Rigid Body Dynamics

Lesson Rigid Body Dynamics Lesson 8 Rigid Body Dynamics Lesson 8 Outline Problem definition and motivations Dynamics of rigid bodies The equation of unconstrained motion (ODE) User and time control Demos / tools / libs Rigid Body

More information

On the consistent discretization in time of nonlinear thermo-elastodynamics

On the consistent discretization in time of nonlinear thermo-elastodynamics of nonlinear thermo-elastodynamics Chair of Computational Mechanics University of Siegen GAMM Annual Meeting, 3.03.00 0000 0000 Thermodynamic double pendulum Structure preserving integrators Great interest

More information

Trajectory Smoothing as a Linear Optimal Control Problem

Trajectory Smoothing as a Linear Optimal Control Problem Trajectory Smoothing as a Linear Optimal Control Problem Biswadip Dey & P. S. Krishnaprasad Allerton Conference - 212 Monticello, IL, USA. October 4, 212 Background and Motivation 1 Background and Motivation

More information

Mikyoung LIM(KAIST) Optimization algorithm for the reconstruction of a conductivity in

Mikyoung LIM(KAIST) Optimization algorithm for the reconstruction of a conductivity in Optimization algorithm for the reconstruction of a conductivity inclusion Mikyoung LIM (KAIST) Inclusion Ω in R d For a given entire harmonic function H, consider { (χ(r d \ Ω) + kχ(ω)) u = in R d, u(x)

More information

3.3 Unsteady State Heat Conduction

3.3 Unsteady State Heat Conduction 3.3 Unsteady State Heat Conduction For many applications, it is necessary to consider the variation of temperature with time. In this case, the energy equation for classical heat conduction, eq. (3.8),

More information

= m(0) + 4e 2 ( 3e 2 ) 2e 2, 1 (2k + k 2 ) dt. m(0) = u + R 1 B T P x 2 R dt. u + R 1 B T P y 2 R dt +

= m(0) + 4e 2 ( 3e 2 ) 2e 2, 1 (2k + k 2 ) dt. m(0) = u + R 1 B T P x 2 R dt. u + R 1 B T P y 2 R dt + ECE 553, Spring 8 Posted: May nd, 8 Problem Set #7 Solution Solutions: 1. The optimal controller is still the one given in the solution to the Problem 6 in Homework #5: u (x, t) = p(t)x k(t), t. The minimum

More information

Reconstruction Scheme for Active Thermography

Reconstruction Scheme for Active Thermography Reconstruction Scheme for Active Thermography Gen Nakamura gnaka@math.sci.hokudai.ac.jp Department of Mathematics, Hokkaido University, Japan Newton Institute, Cambridge, Sept. 20, 2011 Contents.1.. Important

More information

Dynamical Domain Wall and Localization

Dynamical Domain Wall and Localization Dynamical Domain Wall and Localization Shin ichi Nojiri Department of Physics & Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya Univ. Typeset by FoilTEX 1 Based on

More information

Approximation around the risky steady state

Approximation around the risky steady state Approximation around the risky steady state Centre for International Macroeconomic Studies Conference University of Surrey Michel Juillard, Bank of France September 14, 2012 The views expressed herein

More information

STAT 512 sp 2018 Summary Sheet

STAT 512 sp 2018 Summary Sheet STAT 5 sp 08 Summary Sheet Karl B. Gregory Spring 08. Transformations of a random variable Let X be a rv with support X and let g be a function mapping X to Y with inverse mapping g (A = {x X : g(x A}

More information

Solution: It could be discontinuous, or have a vertical tangent like y = x 1/3, or have a corner like y = x.

Solution: It could be discontinuous, or have a vertical tangent like y = x 1/3, or have a corner like y = x. 1. Name three different reasons that a function can fail to be differentiable at a point. Give an example for each reason, and explain why your examples are valid. It could be discontinuous, or have a

More information

Simplified Numerical Model for the Study of Wave Energy Convertes (WECs)

Simplified Numerical Model for the Study of Wave Energy Convertes (WECs) Simplified Numerical Model for the Study of Wave Energy Convertes (WECs) J. A. Armesto, R. Guanche, A. Iturrioz and A. D. de Andres Ocean Energy and Engineering Group IH Cantabria, Universidad de Cantabria

More information

Critical Region of the QCD Phase Transition

Critical Region of the QCD Phase Transition Critical Region of the QCD Phase Transition Mean field vs. Renormalization group B.-J. Schaefer 1 and J. Wambach 1,2 1 Institut für Kernphysik TU Darmstadt 2 GSI Darmstadt 18th August 25 Uni. Graz B.-J.

More information

Polynomial Jacobi Davidson Method for Large/Sparse Eigenvalue Problems

Polynomial Jacobi Davidson Method for Large/Sparse Eigenvalue Problems Polynomial Jacobi Davidson Method for Large/Sparse Eigenvalue Problems Tsung-Ming Huang Department of Mathematics National Taiwan Normal University, Taiwan April 28, 2011 T.M. Huang (Taiwan Normal Univ.)

More information

Energy-consistent time-integration for dynamic finite deformation. thermoviscoelasticity. GAMM Annual Meeting,

Energy-consistent time-integration for dynamic finite deformation. thermoviscoelasticity. GAMM Annual Meeting, for dynamic finite thermo-viscoelasticity Chair of Computational Mechanics University of Siegen GAMM Annual Meeting, 9.04.0 Thermo-viscoelastic double pendulum (closed system) Thermodynamically Consistent

More information

Exercise 5: Exact Solutions to the Navier-Stokes Equations I

Exercise 5: Exact Solutions to the Navier-Stokes Equations I Fluid Mechanics, SG4, HT009 September 5, 009 Exercise 5: Exact Solutions to the Navier-Stokes Equations I Example : Plane Couette Flow Consider the flow of a viscous Newtonian fluid between two parallel

More information

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor. Übungen zu RT2 SS 2010 (1) Show that the tensor field g µν (x) = η µν is invariant under Poincaré transformations, i.e. x µ x µ = L µ νx ν + c µ, where L µ ν is a constant matrix subject to L µ ρl ν ση

More information

Double resonance with Landesman-Lazer conditions for planar systems of ordinary differential equations

Double resonance with Landesman-Lazer conditions for planar systems of ordinary differential equations Double resonance with Lesman-Lazer conditions for planar systems of ordinary differential equations Alessro Fonda Maurizio Garrione Dedicated to Alan Lazer Abstract We prove the existence of periodic solutions

More information

EXISTENCE AND UNIQUENESS FOR A THREE DIMENSIONAL MODEL OF FERROMAGNETISM

EXISTENCE AND UNIQUENESS FOR A THREE DIMENSIONAL MODEL OF FERROMAGNETISM 1 EXISTENCE AND UNIQUENESS FOR A THREE DIMENSIONAL MODEL OF FERROMAGNETISM V. BERTI and M. FABRIZIO Dipartimento di Matematica, Università degli Studi di Bologna, P.zza di Porta S. Donato 5, I-4126, Bologna,

More information

EE2007 Tutorial 7 Complex Numbers, Complex Functions, Limits and Continuity

EE2007 Tutorial 7 Complex Numbers, Complex Functions, Limits and Continuity EE27 Tutorial 7 omplex Numbers, omplex Functions, Limits and ontinuity Exercise 1. These are elementary exercises designed as a self-test for you to determine if you if have the necessary pre-requisite

More information

LINEAR RESPONSE THEORY

LINEAR RESPONSE THEORY MIT Department of Chemistry 5.74, Spring 5: Introductory Quantum Mechanics II Instructor: Professor Andrei Tokmakoff p. 8 LINEAR RESPONSE THEORY We have statistically described the time-dependent behavior

More information

u =0with u(0,x)=f(x), (x) =

u =0with u(0,x)=f(x), (x) = PDE LECTURE NOTES, MATH 37A-B 69. Heat Equation The heat equation for a function u : R + R n C is the partial differential equation (.) µ t u =0with u(0,x)=f(x), where f is a given function on R n. By

More information

Dimensional Analysis - Concepts

Dimensional Analysis - Concepts Dimensional Analysis - Concepts Physical quantities: R j = v(r j )[R j ] = value unit, j = 1,..., m. Units: Dimension matrix of R 1,, R m : A = Change of units change of values: [R j ] = F a 1j 1 F a nj

More information

Complex Inversion Formula for Stieltjes and Widder Transforms with Applications

Complex Inversion Formula for Stieltjes and Widder Transforms with Applications Int. J. Contemp. Math. Sciences, Vol. 3, 8, no. 16, 761-77 Complex Inversion Formula for Stieltjes and Widder Transforms with Applications A. Aghili and A. Ansari Department of Mathematics, Faculty of

More information

Cointegration and the Ramsey Model

Cointegration and the Ramsey Model RamseyCointegration, March 1, 2004 Cointegration and the Ramsey Model This handout examines implications of the Ramsey model for cointegration between consumption, income, and capital. Consider the following

More information

Towards a Search for Stochastic Gravitational-Wave Backgrounds from Ultra-light Bosons

Towards a Search for Stochastic Gravitational-Wave Backgrounds from Ultra-light Bosons Towards a Search for Stochastic Gravitational-Wave Backgrounds from Ultra-light Bosons Leo Tsukada RESCEU, Univ. of Tokyo The first annual symposium "Gravitational Wave Physics and Astronomy: Genesis"

More information

Figure 1: Surface waves

Figure 1: Surface waves 4 Surface Waves on Liquids 1 4 Surface Waves on Liquids 4.1 Introduction We consider waves on the surface of liquids, e.g. waves on the sea or a lake or a river. These can be generated by the wind, by

More information

K(ζ) = 4ζ 2 x = 20 Θ = {θ i } Θ i=1 M = {m i} M i=1 A = {a i } A i=1 M A π = (π i ) n i=1 (Θ) n := Θ Θ (a, θ) u(a, θ) E γq [ E π m [u(a, θ)] ] C(π, Q) Q γ Q π m m Q m π m a Π = (π) U M A Θ

More information

Z i Q ij Z j. J(x, φ; U) = X T φ(t ) 2 h + where h k k, H(t) k k and R(t) r r are nonnegative definite matrices (R(t) is uniformly in t nonsingular).

Z i Q ij Z j. J(x, φ; U) = X T φ(t ) 2 h + where h k k, H(t) k k and R(t) r r are nonnegative definite matrices (R(t) is uniformly in t nonsingular). 2. LINEAR QUADRATIC DETERMINISTIC PROBLEM Notations: For a vector Z, Z = Z, Z is the Euclidean norm here Z, Z = i Z2 i is the inner product; For a vector Z and nonnegative definite matrix Q, Z Q = Z, QZ

More information

Brownian Motion: Fokker-Planck Equation

Brownian Motion: Fokker-Planck Equation Chapter 7 Brownian Motion: Fokker-Planck Equation The Fokker-Planck equation is the equation governing the time evolution of the probability density of the Brownian particla. It is a second order differential

More information

z 0 > 0 z = 0 h; (x, 0)

z 0 > 0 z = 0 h; (x, 0) n = (q 1,..., q n ) T (,, t) V (,, t) L(,, t) = T V d dt ( ) L q i L q i = 0, i = 1,..., n. l l 0 l l 0 l > l 0 {x} + = max(0, x) x = k{l l 0 } +ˆ, k > 0 ˆ (x, z) x z (0, z 0 ) (0, z 0 ) z 0 > 0 x z =

More information

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3 Review of Fundamental Equations Supplementary notes on Section. and.3 Introduction of the velocity potential: irrotational motion: ω = u = identity in the vector analysis: ϕ u = ϕ Basic conservation principles:

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -33 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -33 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -33 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Regression on Principal components

More information

3 Rigid Spacecraft Attitude Control

3 Rigid Spacecraft Attitude Control 1 3 Rigid Spacecraft Attitude Control Consider a rigid spacecraft with body-fixed frame F b with origin O at the mass centre. Let ω denote the angular velocity of F b with respect to an inertial frame

More information

Contrôle de la dynamique d un bateau

Contrôle de la dynamique d un bateau Contrôle de la dynamique d un bateau Lionel Rosier Université Henri Poincaré Nancy 1 Un peu de contrôle à Clermont-Ferrand... 27-29 Juin 2011 Joint work with Olivier Glass, Université Paris-Dauphine Control

More information

THE ANALYSIS OF AN ECONOMIC GROWTH MODEL WITH TAX EVASION AND DELAY

THE ANALYSIS OF AN ECONOMIC GROWTH MODEL WITH TAX EVASION AND DELAY Key words: delayed differential equations, economic growth, tax evasion In this paper we formulate an economic model with tax evasion, corruption and taxes In the first part the static model is considered,

More information

Suggested solutions, FYS 500 Classical Mechanics and Field Theory 2015 fall

Suggested solutions, FYS 500 Classical Mechanics and Field Theory 2015 fall UNIVERSITETET I STAVANGER Institutt for matematikk og naturvitenskap Suggested solutions, FYS 500 Classical Mecanics and Field Teory 015 fall Set 1 for 16/17. November 015 Problem 68: Te Lagrangian for

More information

Lecturer: Bengt E W Nilsson

Lecturer: Bengt E W Nilsson 2009 05 07 Lecturer: Bengt E W Nilsson From the previous lecture: Example 3 Figure 1. Some x µ s will have ND or DN boundary condition half integer mode expansions! Recall also: Half integer mode expansions

More information

2 Statement of the problem and assumptions

2 Statement of the problem and assumptions Mathematical Notes, 25, vol. 78, no. 4, pp. 466 48. Existence Theorem for Optimal Control Problems on an Infinite Time Interval A.V. Dmitruk and N.V. Kuz kina We consider an optimal control problem on

More information

Free Convolution with A Free Multiplicative Analogue of The Normal Distribution

Free Convolution with A Free Multiplicative Analogue of The Normal Distribution Free Convolution with A Free Multiplicative Analogue of The Normal Distribution Ping Zhong Indiana University Bloomington July 23, 2013 Fields Institute, Toronto Ping Zhong free multiplicative analogue

More information

10 The Finite Element Method for a Parabolic Problem

10 The Finite Element Method for a Parabolic Problem 1 The Finite Element Method for a Parabolic Problem In this chapter we consider the approximation of solutions of the model heat equation in two space dimensions by means of Galerkin s method, using piecewise

More information

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings CERN Accelerator School Intermediate Accelerator Physics Course Chios, Greece, September 2011 Low Emittance Rings Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and

More information

Low Emittance Machines

Low Emittance Machines CERN Accelerator School Advanced Accelerator Physics Course Trondheim, Norway, August 2013 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and

More information

Lipschitz Metrics for a Class of Nonlinear Wave Equations

Lipschitz Metrics for a Class of Nonlinear Wave Equations Lipschitz Metrics for a Class of Nonlinear Wave Equations Alberto Bressan and Geng Chen * Department of Mathematics, Penn State University, University Park, Pa 1680, USA ** School of Mathematics Georgia

More information

Endogenous Growth: AK Model

Endogenous Growth: AK Model Endogenous Growth: AK Model Prof. Lutz Hendricks Econ720 October 24, 2017 1 / 35 Endogenous Growth Why do countries grow? A question with large welfare consequences. We need models where growth is endogenous.

More information

MIT Spring 2016

MIT Spring 2016 MIT 18.655 Dr. Kempthorne Spring 2016 1 MIT 18.655 Outline 1 2 MIT 18.655 Decision Problem: Basic Components P = {P θ : θ Θ} : parametric model. Θ = {θ}: Parameter space. A{a} : Action space. L(θ, a) :

More information

Nonuniform in time state estimation of dynamic systems

Nonuniform in time state estimation of dynamic systems Systems & Control Letters 57 28 714 725 www.elsevier.com/locate/sysconle Nonuniform in time state estimation of dynamic systems Iasson Karafyllis a,, Costas Kravaris b a Department of Environmental Engineering,

More information

Multisolitons for NLS

Multisolitons for NLS Multisolitons for NLS Stefan LE COZ Beijing 2007-07-03 Plan 1 Introduction 2 Existence of multi-solitons 3 (In)stability NLS (NLS) { iut + u + g( u 2 )u = 0 u t=0 = u 0 u : R t R d x C (A0) (regular) g

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 213 Flavour Physics I + II 1 Contents PART I Determination of the CKM Matrix CP Violation in Kaon system CP violation in the B-system PART II Search

More information

Research Article On Existence, Uniform Decay Rates, and Blow-Up for Solutions of a Nonlinear Wave Equation with Dissipative and Source

Research Article On Existence, Uniform Decay Rates, and Blow-Up for Solutions of a Nonlinear Wave Equation with Dissipative and Source Abstract and Applied Analysis Volume, Article ID 65345, 7 pages doi:.55//65345 Research Article On Existence, Uniform Decay Rates, and Blow-Up for Solutions of a Nonlinear Wave Equation with Dissipative

More information

NEW DEVELOPMENTS IN PREDICTIVE CONTROL FOR NONLINEAR SYSTEMS

NEW DEVELOPMENTS IN PREDICTIVE CONTROL FOR NONLINEAR SYSTEMS NEW DEVELOPMENTS IN PREDICTIVE CONTROL FOR NONLINEAR SYSTEMS M. J. Grimble, A. Ordys, A. Dutka, P. Majecki University of Strathclyde Glasgow Scotland, U.K Introduction Model Predictive Control (MPC) is

More information

1 Sectorial operators

1 Sectorial operators 1 1 Sectorial operators Definition 1.1 Let X and A : D(A) X X be a Banach space and a linear closed operator, respectively. If the relationships i) ρ(a) Σ φ = {λ C : arg λ < φ}, where φ (π/2, π); ii) R(λ,

More information

On the Stability of the Best Reply Map for Noncooperative Differential Games

On the Stability of the Best Reply Map for Noncooperative Differential Games On the Stability of the Best Reply Map for Noncooperative Differential Games Alberto Bressan and Zipeng Wang Department of Mathematics, Penn State University, University Park, PA, 68, USA DPMMS, University

More information

First Order Initial Value Problems

First Order Initial Value Problems First Order Initial Value Problems A first order initial value problem is the problem of finding a function xt) which satisfies the conditions x = x,t) x ) = ξ 1) where the initial time,, is a given real

More information

Andrea Marini. Introduction to the Many-Body problem (I): the diagrammatic approach

Andrea Marini. Introduction to the Many-Body problem (I): the diagrammatic approach Introduction to the Many-Body problem (I): the diagrammatic approach Andrea Marini Material Science Institute National Research Council (Monterotondo Stazione, Italy) Zero-Point Motion Many bodies and

More information

Nonlinear representation, backward SDEs, and application to the Principal-Agent problem

Nonlinear representation, backward SDEs, and application to the Principal-Agent problem Nonlinear representation, backward SDEs, and application to the Principal-Agent problem Ecole Polytechnique, France April 4, 218 Outline The Principal-Agent problem Formulation 1 The Principal-Agent problem

More information