Critical Region of the QCD Phase Transition

Size: px
Start display at page:

Download "Critical Region of the QCD Phase Transition"

Transcription

1 Critical Region of the QCD Phase Transition Mean field vs. Renormalization group B.-J. Schaefer 1 and J. Wambach 1,2 1 Institut für Kernphysik TU Darmstadt 2 GSI Darmstadt 18th August 25 Uni. Graz B.-J. Schaefer (TU Darmstadt) 1 / 38

2 Outline 1 QCD phase diagram 2 Mean-Field results 3 Renormalization Group method Introduction to Wilsonian RG Results with Proper-time RG B.-J. Schaefer (TU Darmstadt) 2 / 38

3 Outline 1 QCD phase diagram 2 Mean-Field results 3 Renormalization Group method Introduction to Wilsonian RG Results with Proper-time RG B.-J. Schaefer (TU Darmstadt) 3 / 38

4 QCD Phase Diagram (N f = 3) T, GeV QGP.1 E critical point nuclear vacuum matter quark matter 1 µ B CFL, GeV lattice at µ = : lattice at µ : crossover sign problem eff. models at T = : 1st-order order parameter: qq critical end point E (cf. as in water) Where is the critical point E? What is the size of crit. region around E? B.-J. Schaefer (TU Darmstadt) 4 / 38

5 Lattice Phase Diagram (N f = 3) µ B = T N f =2 χ 175 MeV 2nd order O(4)? N f = 2 1st order Pure Gauge T d 27 MeV T N f =3 χ 155 MeV m tric s m s?? phys. point 1st order crossover 2nd order Z(2) m, m u d N f = 3 N f = 1 B.-J. Schaefer (TU Darmstadt) 5 / 38

6 QCD Phase Diagram (N f = 2) 3D-view (T, µ B, m q) of N f = 2 QCD phase diagram: m q = : O(4)-symmetry 4 modes critical σ, π m q : no symmetry remains only one critical mode σ (Ising) ( π massive) T m q µβ critical line, m q = O(4) universality tricritical point, m q = 3d-Ising universality surface of 1st order transitions triple line, m q = line of end points, m q = / B.-J. Schaefer (TU Darmstadt) 6 / 38

7 QCD Phase Diagram (N f = 2) 3D-view (T, µ B, m q) of N f = 2 QCD phase diagram: m q = : O(4)-symmetry 4 modes critical σ, π m q : no symmetry remains only one critical mode σ (Ising) ( π massive) T m q µβ critical line, m q = O(4) universality tricritical point, m q = 3d-Ising universality surface of 1st order transitions triple line, m q = line of end points, m q = / Landau-Ginzburg potential: order parameter φ = (σ, π) Ω(T, µ; φ) a(t, µ) φ 2 + b(t, µ) φ 4 + c φ 6 +mσ 2nd order line: a(t c, µ c) = O(4) universality ; tricritical point: b(t c, µ c) = B.-J. Schaefer (TU Darmstadt) 6 / 38

8 QCD Phase Diagram (N f = 2) 3D-view (T, µ B, m q) of N f = 2 QCD phase diagram: m q = : O(4)-symmetry 4 modes critical σ, π m q : no symmetry remains only one critical mode σ (Ising) ( π massive) T m q µβ critical line, m q = O(4) universality tricritical point, m q = 3d-Ising universality surface of 1st order transitions triple line, m q = line of end points, m q = / Landau-Ginzburg potential: order parameter φ = (σ, π) Ω(T, µ; φ) a(t, µ) φ 2 + b(t, µ) φ 4 + c φ 6 +mσ 2nd order line: a(t c, µ c) = O(4) universality ; tricritical point: b(t c, µ c) = What are the sizes of the critical regions? B.-J. Schaefer (TU Darmstadt) 6 / 38

9 Ginzburg criterion Ginzburg criterion: size of crit. region break down of mean-field theory Landau-Ginzburg potential for 2nd order phase transition Ω(T, µ; φ) d( φ) 2 + a tφ 2 + bφ 4 ; t = (T T c)/t c Ginzburg-Levanyuk temperature τ GL t T c 2 a d 3 b2 τ GL m 4/5 q B.-J. Schaefer (TU Darmstadt) 7 / 38

10 Ginzburg criterion Ginzburg criterion: size of crit. region break down of mean-field theory Landau-Ginzburg potential for 2nd order phase transition Ω(T, µ; φ) d( φ) 2 + a tφ 2 + bφ 4 ; t = (T T c)/t c Ginzburg-Levanyuk temperature τ GL t T c 2 a d 3 b2 τ GL m 4/5 q size depends on microscopic dynamics universality not applicable He 4 λ-transition: τ GL 1 15 O(2) spin model:τ GL.3 Size of crit. region shrinks as m q (τ GL b 2 ) ; tricritical b B.-J. Schaefer (TU Darmstadt) 7 / 38

11 Outline 1 QCD phase diagram 2 Mean-Field results 3 Renormalization Group method Introduction to Wilsonian RG Results with Proper-time RG B.-J. Schaefer (TU Darmstadt) 8 / 38

12 Mean-field approximation N f = 2 Quark-Meson model L = q (i / g(σ + iγ 5 τ π)) q ( µσ µ σ + µ π µ π) λ 4 (σ2 + π 2 v 2 ) 2 cσ B.-J. Schaefer (TU Darmstadt) 9 / 38

13 Mean-field approximation N f = 2 Quark-Meson model L = q (i / g(σ + iγ 5 τ π)) q ( µσ µ σ + µ π µ π) λ 4 (σ2 + π 2 v 2 ) 2 cσ partition function: Z(T, µ) = 8 Z >< Z D qdqdσd π exp >: i 1/T 9 >= dtd 3 x (L + µ qγ q) >;. B.-J. Schaefer (TU Darmstadt) 9 / 38

14 Mean-field approximation N f = 2 Quark-Meson model L = q (i / g(σ + iγ 5 τ π)) q ( µσ µ σ + µ π µ π) λ 4 (σ2 + π 2 v 2 ) 2 cσ partition function: Z(T, µ) = 8 Z >< Z D qdqdσd π exp >: i 1/T 9 >= dtd 3 x (L + µ qγ q) >;. Mean field approx.: σ σ φ, π π =, integrate quark/antiquarks with Grand canonical potential Ω(T, µ) = T ln Z V = λ 4 ( σ 2 v 2 ) 2 c σ + Ω qq(t, µ) Z d 3 k n o Ω qq(t, µ) = 2N cn f T ln(1 + e (Eq µ)/t ) + ln(1 + e (Eq+µ)/T ) (2π) 3 B.-J. Schaefer (TU Darmstadt) 9 / 38

15 Phase Diagram in MF Approximation st order crossover CEP m π =138 MeV T [MeV] µ [MeV] B.-J. Schaefer (TU Darmstadt) 1 / 38

16 Phase Diagram in MF Approximation st order crossover CEP 1 m π =1 MeV m π =138 MeV T [MeV] µ [MeV] B.-J. Schaefer (TU Darmstadt) 1 / 38

17 Phase Diagram in MF Approximation m π =69 MeV 1st order crossover CEP 1 m π =1 MeV m π =138 MeV T [MeV] µ [MeV] B.-J. Schaefer (TU Darmstadt) 1 / 38

18 Meson Masses (m π = 138 MeV) CEP location: T c 91 MeV, µ c 223 MeV T -dependence mass [MeV] 8 m 7 σ m π µ= T [MeV] B.-J. Schaefer (TU Darmstadt) 11 / 38

19 Meson Masses (m π = 138 MeV) CEP location: T c 91 MeV, µ c 223 MeV T -dependence mass [MeV] 8 m 7 σ m π µ= 1 µ=223 MeV T [MeV] B.-J. Schaefer (TU Darmstadt) 11 / 38

20 Meson Masses (m π = 138 MeV) CEP location: T c 91 MeV, µ c 223 MeV T -dependence mass [MeV] 8 m 7 σ m π µ=3 MeV 2 µ= 1 µ=223 MeV T [MeV] B.-J. Schaefer (TU Darmstadt) 11 / 38

21 Meson Masses (m π = 138 MeV) CEP location: T c 91 MeV, µ c 223 MeV T -dependence µ-dependence mass [MeV] 8 8 m σ m 7 7 σ m π m π µ=3 MeV 3 T= 2 µ= 2 1 µ=223 MeV T [MeV] µ [MeV] B.-J. Schaefer (TU Darmstadt) 11 / 38

22 Meson Masses (m π = 138 MeV) CEP location: T c 91 MeV, µ c 223 MeV T -dependence µ-dependence mass [MeV] m σ m 7 σ m π m π µ=3 MeV 3 T= 2 µ= 2 1 µ=223 MeV 1 T=91 MeV T [MeV] µ [MeV] B.-J. Schaefer (TU Darmstadt) 11 / 38

23 Meson Masses (m π = 138 MeV) CEP location: T c 91 MeV, µ c 223 MeV T -dependence µ-dependence mass [MeV] 8 m 7 σ m π m 7 σ m π T=15 MeV 3 µ=3 MeV 3 T= 2 µ= 2 1 µ=223 MeV 1 T=91 MeV T [MeV] µ [MeV] B.-J. Schaefer (TU Darmstadt) 11 / 38

24 Quark-number density n q (T, µ) (MF) st order crossover CEP m π =138 MeV T [MeV] µ [MeV] Ω(T, µ) n q(t, µ) = µ χ q(t, µ) = 2 Ω(T, µ) ( µ) 2 B.-J. Schaefer (TU Darmstadt) 12 / 38

25 Quark-number density n q (T, µ) (MF) n q [fm -3 ] CEP: T c 91 MeV T = T c ± 5 MeV T>T c µ [MeV] T=T c T<T c T [MeV] st order crossover CEP m π =138 MeV µ [MeV] Ω(T, µ) n q(t, µ) = µ χ q(t, µ) = 2 Ω(T, µ) ( µ) 2 B.-J. Schaefer (TU Darmstadt) 12 / 38

26 Quark-number susceptibility χ q (MF) 3 25 T=T c χ q [fm -2 ] T>T c T<T c µ [MeV] B.-J. Schaefer (TU Darmstadt) 13 / 38

27 Quark-number susceptibility χ q (MF) (isothermal) compressibility κ T V 1 V = P T χq,n nq 2 if χ q large easy to compress interaction attractive (or weakly repulsive) (similar conclusion in Walecka model if m σ ) 3 25 T=T c χ q [fm -2 ] T>T c T<T c µ [MeV] B.-J. Schaefer (TU Darmstadt) 13 / 38

28 Quark-number susceptibility χ q (MF) χ q [fm -2 ] χ q g g c ɛ ; g = T, µ (isothermal) compressibility κ T V 1 V = P T χq,n nq T>T c µ [MeV] T=T c T<T c if χ q large easy to compress interaction attractive (or weakly repulsive) (similar conclusion in Walecka model if m σ ) crit. exp. ɛ = 2/3 (mean field) log (χ q /[fm -2 ]) ε= log ( µ-µ c /[MeV]) B.-J. Schaefer (TU Darmstadt) 13 / 38

29 Critical Region (MF) R q = χ q(t, µ)/χ free q (T, µ) χ free µ 2 q (T, µ) = N cn f π 2 + T «2 3 T [MeV] st order R q = 3 R q = 5 CEP µ [MeV] B.-J. Schaefer (TU Darmstadt) 14 / 38

30 Critical Region w/ scalar susceptibility χ σ (MF) χ σ = 1/m 2 σ R s = m 2 σ(, )/m 2 σ(t, µ) T [MeV] µ [MeV] R s =1 R s =15 R s =2 R s =25 1st order B.-J. Schaefer (TU Darmstadt) 15 / 38

31 Outline 1 QCD phase diagram 2 Mean-Field results 3 Renormalization Group method Introduction to Wilsonian RG Results with Proper-time RG B.-J. Schaefer (TU Darmstadt) 16 / 38

32 Why non-perturbative Renormalization Group? Second-order phase transition long-wavelength fluctuations (ξ ) in systems with many d.o.f large-scale (macroscopic) physical predictions should not depend on microscopic length scale ( Universality ) critical behavior (phase boundaries) best described by renormalization group methods R for quantum fields: Z[J] = 1 N Dφe S[φ,J] ; N = Z[] ill-defined path integral functional diff. equation (FDE) FDE well-defined since original divergences are relegated to the boundary values of its solution (Wilsonian) RG s describe very efficiently universal and non-universal aspects of phase transitions (1st/2nd) B.-J. Schaefer (TU Darmstadt) 17 / 38

33 Wilsonian Renormalization Group split field: Φ(p) = Φ low (p) + Φ high (p) p <k integrate high modes: Z[J] = R DΦ e S[Φ,J] k p Λ = R DΦ low DΦ high e S[Φ low,φ high,j] {z } = R DΦ low e S eff [Φ low,k] high low p Λ k k- k Z k,low = e S eff [Φ low,k] coarse graining (block spin transformation) integrate from micro macro lim k Z k,low = Z direction unique due to relativistic causality of theory B.-J. Schaefer (TU Darmstadt) 18 / 38

34 Flow of effective action S eff for flow of S eff decrease boundary cutoff k Φ S P y Λ k δk change of eff. action S eff when k k δk e S eff [Φ low, k δk] = Z DΦ S e S eff [Φ low + Φ S, k] = e S eff [Φ low, k] Z DΦ S e Z p P x 1 2 Φ 2 S eff S Φ Φ Φ S + O(δk 2 ) {z } 1 «e 2 Tr 2 S eff ln Φ Φ only first order δk needs to be kept to find flow: S eff [Φ low, k] k = 1 «2 Tr 2 S eff ln Φ Φ B.-J. Schaefer (TU Darmstadt) 19 / 38

35 Proper-time Renormalization Group Wilsonian effective action Γ k via Legendre tramsform: Z Γ k [φ] = ln Z k [J] d 4 x J(x)φ(x) ; φ(x) = δ ln Z k δj(x) Γ k [φ] = S eff 1 Tr ln S(2) eff ; 2 Schwinger proper-time representation: (one-loop structure) tγ k [φ] = 1 2 Z dτ τ h i tf k (Λ 2 τ) Tr exp τs (2) eff important ingredient: blocking function f k Γ(d/2, τk 2 ) RG improvement: tγ k [φ] = 1 2 Z dτ τ h i tf k (Λ 2 τ) Tr exp S (2) eff = δ2 S eff δφδφ τγ (2) k ; t = ln «k Λ B.-J. Schaefer (TU Darmstadt) 2 / 38

36 Renormalization Group approaches different realizations: 1 exact RG ERG (averaged action) "!# tγ k [φ] = 1 2 tr 1 tr k + R k Γ (2) k ; Γ (2) k = δ2 Γ k δφδφ 2 proper-time RG PTRG 3 many other tγ k [φ] = 1 2 Z dτ τ h i tf k (Λ 2 τ) tr exp τγ (2) k B.-J. Schaefer (TU Darmstadt) 21 / 38

37 RG Flow Equations N f = 2 Quark-Meson model Z Γ k=λ = d 4 x j q[ /+g(σ+i τ πγ 5)]q ( µσ) ( µ π)2 + V (σ 2 + π 2 ) ff B.-J. Schaefer (TU Darmstadt) 22 / 38

38 RG Flow Equations N f = 2 Quark-Meson model Z Γ k=λ = d 4 x j q[ /+g(σ+i τ πγ 5)]q ( µσ) ( µ π)2 + V (σ 2 + π 2 ) ff flow for grand canonical potential tω k (T, µ) =» k 4 3 coth 12π 2 E π 2NcN f E q «+ 1 coth 2T E σ Eq µ Eπ j tanh 2T «Eσ 2T «+ tanh «ff Eq + µ 2T E 2 π = 1 + 2Ω k/k 2, E 2 σ = 1 + 2Ω k/k 2 + 4φ 2 Ω k /k 2, E 2 q = 1 + g 2 φ 2 /k 2 φ qq quark fluctuations: chiral symmetry breaking meson fluctuations: chiral symmetry restoration B.-J. Schaefer (TU Darmstadt) 22 / 38

39 Solving Flow Equations Two possibilities 1.) Solve coupled flow eqs on φ 2 grid: Ω(φ 2 ) t Ω(φ 2 i+1 ) 2.) Taylor expansion around φ 2 : NX Ω(φ 2 ) = a n(φ 2 φ 2 ) n n= φ 2 φ 2 i φ 2 i+1 Initial condition at e.g. Λ = 5 MeV tree-level parameterization V Λ = 1 4 λ Λ(φ 2 ) 2 symmetric potential Fixed UV parameterization (λ Λ ) to reproduce φ f π 93 MeV in the IR (m q = gf π) B.-J. Schaefer (TU Darmstadt) 23 / 38

40 Scale Evolution of the Potential V UV φ B.-J. Schaefer (TU Darmstadt) 24 / 38

41 Scale Evolution of the Potential V UV scale k φ IR B.-J. Schaefer (TU Darmstadt) 24 / 38

42 Scale Evolution of the Potential V UV scale k φ IR B.-J. Schaefer (TU Darmstadt) 24 / 38

43 Scale Evolution of the Potential V UV scale k φ IR B.-J. Schaefer (TU Darmstadt) 24 / 38

44 Scale Evolution of the Potential V UV scale k φ IR B.-J. Schaefer (TU Darmstadt) 24 / 38

45 V_k [a.u.] Scale Evolution of the Potential V UV scale k φ φ [MeV] IR B.-J. Schaefer (TU Darmstadt) 24 / 38

46 V_k [a.u.] Scale Evolution of the Potential V UV scale k φ V_k [a.u.] φ [MeV] φ [MeV] IR B.-J. Schaefer (TU Darmstadt) 24 / 38

47 The Chiral Phase Transition Finite T, µ = V [MeV/fm 3 ] Evolved potential for different temperatures: Φ = Φ = f π T>T c T=T c T= Φ [MeV] f π [MeV] 1 compare to chiral perturbation theory expansion: scaling ~ 1 (T-T c ) β T [MeV] chiral PT O(T 8 ) RG qq T = 1 T 2 T 4 T 6 ln Λq qq 8fπ 2 384fπ 4 288fπ 6 T + O(T 8 ) Λ q = (47 ± 11) MeV B.-J. Schaefer (TU Darmstadt) 25 / 38

48 Critical exponents parameterize singular behavior of Ω near the phase transition depend only on internal symmetries and dimension of the system φ (k ) Tc T β ; ξ = (T T c) ν ;... altogether 6 exponents but 4 scaling relations T c η δ ν β lattice.254(38) 4.851(22).7479(9).3836(46) N = 4 ɛ.3(1) 4.82(6).73(2).38(1) RG N = 1 RG large-n B.-J. Schaefer (TU Darmstadt) 26 / 38

49 Critical exponents exponent ν for arbitrary N (here for O(N)-model) comparison with 1/N-expansion in N 2 LO «« π2 8 1 ν = O(1/N 3 ) 3π 2 N 6 3π 2 N 1.8 LPA PTRG lattice O(1/N) O(1/N 2 ).6 ν /N B.-J. Schaefer (TU Darmstadt) 27 / 38

50 Chiral Phase Diagram N f = 2: m q 28 MeV nd order 1st order 12 1 O(4) universality class T c [MeV] tricritical point µ [MeV] B.-J. Schaefer (TU Darmstadt) 28 / 38

51 Chiral Phase Diagram N f = 2: m q 28 MeV nd order 1st order 12 1 T c [MeV] Φ Φ = Φ µ [MeV] B.-J. Schaefer (TU Darmstadt) 28 / 38

52 A Second Phase Transition here e.g. V_k [a.u.] T = 6 MeV, µ q = MeV k convex potential φ [MeV] first-order phase transition second-order phase transition V_k [a.u.] V_k [a.u.] φ [MeV] φ [MeV] B.-J. Schaefer (TU Darmstadt) 29 / 38

53 A Second Phase Transition φ [MeV] µ [MeV] T = 1 MeV T = 8 MeV T = 15 MeV tricritical point: T t 52 MeV, µ t 251 MeV splitting point: T 17 MeV µ q 263 MeV gap larger if m q,vac larger V µ = 251 MeV ( µ=1) T=6 MeV IR evolved potential here e.g. T = 6 MeV fixed, µ q 251 MeV φ [MeV] B.-J. Schaefer (TU Darmstadt) 3 / 38

54 Phase diagram: m q 37 MeV (RG) TCP: T c 8.2 MeV TCP : T c 8 MeV TCP 2nd TCP T [MeV] 1 5 [BJS,J.Wambach NPA (25)] µ [MeV] B.-J. Schaefer (TU Darmstadt) 31 / 38

55 Phase diagram: m q 37 MeV (RG) TCP: T c 8.2 MeV 2. TCP : T c 8 MeV CEP: T c 61.5 MeV 2 15 TCP 2nd TCP CEP T [MeV] 1 5 [BJS,J.Wambach NPA (25)] µ [MeV] B.-J. Schaefer (TU Darmstadt) 31 / 38

56 Quark-number density n q (T, µ) (RG) TCP: T c 8.2 MeV T = T c ± 5 MeV.4.35 n q [fm -3 ] T>T c T=T c T<T c µ [MeV] B.-J. Schaefer (TU Darmstadt) 32 / 38

57 Quark-number density n q (T, µ) (RG) TCP: T c 8.2 MeV T = T c ± 5 MeV CEP: T c 61.5 MeV T = T c ± 5 MeV n q [fm -3 ].4.35 T>T c.3.25 T=T c.2 T<T c µ [MeV] T>T c.2.15 T=T c T<T c µ [MeV] B.-J. Schaefer (TU Darmstadt) 32 / 38

58 Quark-number susceptibility χ q (RG) TCP: T c 8.2 MeV T = T c ± 5 MeV CEP: T c 61.5 MeV T = T c ± 5 MeV χ q [fm -2 ] 4 35 T=T c T>T c T<T c µ [MeV] B.-J. Schaefer (TU Darmstadt) 33 / 38

59 Quark-number susceptibility χ q (RG) TCP: T c 8.2 MeV T = T c ± 5 MeV CEP: T c 61.5 MeV T = T c ± 5 MeV χ q [fm -2 ] 4 35 T=T c T>T c T<T c µ [MeV] 4 35 T>T c T=T c T<T c µ [MeV] B.-J. Schaefer (TU Darmstadt) 33 / 38

60 Critical Region (RG) Size of crit. region shrinks as m q (τ GL b 2 ) tricritical b 1 9 R q = 3 R q = 5 T [MeV] µ [MeV] B.-J. Schaefer (TU Darmstadt) 34 / 38

61 Critical Region (RG) Size of crit. region shrinks as m q (τ GL b 2 ) tricritical b 1 9 R q = 3 R q = 5 T [MeV] µ [MeV] B.-J. Schaefer (TU Darmstadt) 34 / 38

62 Critical exponents χ q µ µ c γ TCP: γ =.5 (Gaussian) log (χ q /fm -2 ) γ= TCP log ( µ-µ c /MeV) B.-J. Schaefer (TU Darmstadt) 35 / 38

63 Critical exponents χ q µ µ c γ TCP: γ =.5 (Gaussian) CEP: MF: ɛ = 2/3 3D Ising: ɛ =.78 log (χ q /fm -2 ) γ= TCP log ( µ-µ c /MeV) CEP ε=.74 ε= log ( µ-µ c /MeV) MF: tricritical exponents different from bicritical exponents B.-J. Schaefer (TU Darmstadt) 35 / 38

64 Meson masses (RG) 8 m 7 σ m π 6 5 µ= MeV T [MeV] B.-J. Schaefer (TU Darmstadt) 36 / 38

65 Meson masses (RG) CEP: T c 61.5 MeV 8 m 7 σ m π 6 5 µ= MeV 4 3 µ=313 MeV T [MeV] T [MeV] µ [MeV] B.-J. Schaefer (TU Darmstadt) 36 / 38

66 Meson masses (RG) CEP: T c 61.5 MeV 8 m 7 σ m π 6 5 µ= MeV 4 3 µ=313 MeV T [MeV] 8 m 7 σ m π 6 T=1 MeV µ [MeV] B.-J. Schaefer (TU Darmstadt) 36 / 38

67 Meson masses (RG) CEP: T c 61.5 MeV 8 m 7 σ m π 6 5 µ= MeV 4 3 µ=313 MeV T [MeV] 8 m 7 σ m π 6 T=1 MeV T=61 MeV µ [MeV] B.-J. Schaefer (TU Darmstadt) 36 / 38

68 Meson masses (RG) CEP: T c 61.5 MeV 8 m 7 σ m π 6 5 µ= MeV 4 3 µ=313 MeV T [MeV] 8 m 7 σ m π 6 T=1 MeV T=61 MeV T=15 MeV µ [MeV] B.-J. Schaefer (TU Darmstadt) 36 / 38

69 Scalar susceptibility χ σ (MF) (RG) R s = m 2 σ(, )/m 2 σ(t, µ) RG R s =1 R s =15 R s =2 R s =25 1st order µ [MeV] B.-J. Schaefer (TU Darmstadt) 37 / 38

70 Scalar susceptibility χ σ (MF) (RG) R s = m 2 σ(, )/m 2 σ(t, µ) RG R s =1 R s =15 R s =2 R s =25 1st order (µ-µ c )/µ c B.-J. Schaefer (TU Darmstadt) 37 / 38

71 Scalar susceptibility χ σ (MF) (RG) MF R s = m 2 σ(, )/m 2 σ(t, µ) RG (T-T c )/T c R s =1 R s =15 R s =2 R s =25 1st order (µ-µ c )/µ c R s =1 R s =15 R s =2 R s =25 1st order (µ-µ c )/µ c B.-J. Schaefer (TU Darmstadt) 37 / 38

72 Scalar susceptibility χ σ (MF) (RG) MF R s = m 2 σ(, )/m 2 σ(t, µ) RG (T-T c )/T c R s =1 R s =15 R s =2 R s =25 1st order (µ-µ c )/µ c R s =1 R s =15 R s =2 R s =25 1st order (µ-µ c )/µ c B.-J. Schaefer (TU Darmstadt) 37 / 38

73 Summary nd order 1st order 12 T c [MeV] Φ Φ = Φ µ [MeV] possibility of 2nd TCP (in χ limit) physical interpretation? B.-J. Schaefer (TU Darmstadt) 38 / 38

74 Summary T [MeV] µ [MeV] R s =1 R s =15 R s =2 R s =25 1st order µ [MeV] R s =1 R s =15 R s =2 R s =25 1st order Comparison: MF vs. RG analysis Size of critical region: χ q(t, µ) and χ σ(t, µ) compressed w/ fluctuations Crit. exponents consistent w/ 3d Ising universality class B.-J. Schaefer (TU Darmstadt) 38 / 38

Non-perturbative Study of Chiral Phase Transition

Non-perturbative Study of Chiral Phase Transition Non-perturbative Study of Chiral Phase Transition Ana Juričić Advisor: Bernd-Jochen Schaefer University of Graz Graz, January 9, 2013 Table of Contents Chiral Phase Transition in Low Energy QCD Renormalization

More information

Renormalization Group Study of the Chiral Phase Transition

Renormalization Group Study of the Chiral Phase Transition Renormalization Group Study of the Chiral Phase Transition Ana Juričić, Bernd-Jochen Schaefer University of Graz Graz, May 23, 2013 Table of Contents 1 Proper Time Renormalization Group 2 Quark-Meson Model

More information

Thermodynamics of the Polyakov-Quark-Meson Model

Thermodynamics of the Polyakov-Quark-Meson Model Thermodynamics of the Polyakov-Quark-Meson Model Bernd-Jochen Schaefer 1, Jan Pawlowski and Jochen Wambach 3 1 KFU Graz, Austria U Heidelberg, Germany 3 TU and GSI Darmstadt, Germany Virtual Institute

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

Aspects of Two- and Three-Flavor Chiral Phase Transitions

Aspects of Two- and Three-Flavor Chiral Phase Transitions Aspects of Two- and Three-Flavor Chiral Phase Transitions Mario Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Kyoto, September 6, 211 Table of Contents 1 Motivation

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] 5th International Conference

More information

Mesonic and nucleon fluctuation effects at finite baryon density

Mesonic and nucleon fluctuation effects at finite baryon density Mesonic and nucleon fluctuation effects at finite baryon density Research Center for Nuclear Physics Osaka University Workshop on Strangeness and charm in hadrons and dense matter Yukawa Institute for

More information

Can we locate the QCD critical endpoint with a Taylor expansion?

Can we locate the QCD critical endpoint with a Taylor expansion? Can we locate the QCD critical endpoint with a Taylor expansion? Bernd-Jochen Schaefer Karl-Franzens-Universität Graz, Austria 7 th February - 6 th March, 1 48. Internationale Universitätswochen für Theoretische

More information

With the FRG towards the QCD Phase diagram

With the FRG towards the QCD Phase diagram With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra Cold Atoms to the Hot QGP 22 nd Aug - 9 th Sept, 211 Helmholtz Alliance Extremes of Density

More information

Can we locate the QCD critical endpoint with the Taylor expansion?

Can we locate the QCD critical endpoint with the Taylor expansion? Can we locate the QCD critical endpoint with the Taylor expansion? in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach 23.6.21 Mathias Wagner Institut für Kernphysik TU Darmstadt Outline

More information

Michael Buballa. Theoriezentrum, Institut für Kernphysik, TU Darmstadt

Michael Buballa. Theoriezentrum, Institut für Kernphysik, TU Darmstadt Vacuum-fluctuation effects on inhomogeneous chiral condensates Michael Buballa Theoriezentrum, Institut für Kernphysik, TU Darmstadt International School of Nuclear Physics 38 th Course Nuclear matter

More information

On the role of fluctuations in (2+1)-flavor QCD

On the role of fluctuations in (2+1)-flavor QCD On the role of fluctuations in (2+1)-flavor QCD Bernd-Jochen Schaefer Germany Germany November 29 th, 217 Conjectured QC3D phase diagram Temperature early universe LHC crossover vacuum RHIC SPS =

More information

the renormalization group (RG) idea

the renormalization group (RG) idea the renormalization group (RG) idea Block Spin Partition function Z =Tr s e H. block spin transformation (majority rule) T (s, if s i ; s,...,s 9 )= s i > 0; 0, otherwise. b Block Spin (block-)transformed

More information

Dimensional Reduction in the Renormalisation Group:

Dimensional Reduction in the Renormalisation Group: Dimensional Reduction in the Renormalisation Group: From Scalar Fields to Quantum Einstein Gravity Natália Alkofer Advisor: Daniel Litim Co-advisor: Bernd-Jochen Schaefer 11/01/12 PhD Seminar 1 Outline

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach KFU Graz, January 3, 213 January 3, 213 TU Darmstadt 1 Outline Introduction: QCD phase diagram Dyson-Schwinger

More information

Mesonic and nucleon fluctuation effects in nuclear medium

Mesonic and nucleon fluctuation effects in nuclear medium Mesonic and nucleon fluctuation effects in nuclear medium Research Center for Nuclear Physics Osaka University Workshop of Recent Developments in QCD and Quantum Field Theories National Taiwan University,

More information

QCD-like theories at finite density

QCD-like theories at finite density QCD-like theories at finite density 34 th International School of Nuclear Physics Probing the Extremes of Matter with Heavy Ions Erice, Sicily, 23 September 212 Lorenz von Smekal 23. September 212 Fachbereich

More information

Jochen Wambach. to Gerry Brown

Jochen Wambach. to Gerry Brown Real-Time Spectral Functions from the Functional Renormalization Group Jochen Wambach TU-Darmstadt and GSI Germany to Gerry Brown an inspring physicist and a great human being November 24, 203 TU Darmstadt

More information

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory Renormalization of microscopic Hamiltonians Renormalization Group without Field Theory Alberto Parola Università dell Insubria (Como - Italy) Renormalization Group Universality Only dimensionality and

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach Quark Gluon Plasma meets Cold Atoms Episode III August 3, 212 TU Darmstadt 1 Outline Motivation Dyson-Schwinger

More information

Critical exponents in quantum Einstein gravity

Critical exponents in quantum Einstein gravity Critical exponents in quantum Einstein gravity Sándor Nagy Department of Theoretical physics, University of Debrecen MTA-DE Particle Physics Research Group, Debrecen Leibnitz, 28 June Critical exponents

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

Sarma phase in relativistic and non-relativistic systems

Sarma phase in relativistic and non-relativistic systems phase in relativistic and non-relativistic systems Tina Katharina Herbst In Collaboration with I. Boettcher, J. Braun, J. M. Pawlowski, D. Roscher, N. Strodthoff, L. von Smekal and C. Wetterich arxiv:149.5232

More information

One-loop corrections as the origin of spontaneous chiral symmetry breaking in the massless chiral sigma model

One-loop corrections as the origin of spontaneous chiral symmetry breaking in the massless chiral sigma model One-loop corrections as the origin of spontaneous chiral symmetry breaking in the massless chiral sigma model a S. Tamenaga, a H. Toki, a, b A. Haga, and a Y. Ogawa a RCNP, Osaka University b Nagoya Institute

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg GSI, February 9, 216 M. Mitter (U Heidelberg) χsb in continuum QCD GSI, February 216 1 / 29 fqcd collaboration

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential Jens Braun Theoretisch-Physikalisches Institut Friedrich-Schiller Universität Jena Quarks, Hadrons

More information

arxiv: v1 [hep-ph] 2 Nov 2009

arxiv: v1 [hep-ph] 2 Nov 2009 arxiv:911.296v1 [hep-ph] 2 Nov 29 QCD Thermodynamics: Confronting the Polyakov-Quark-Meson Model with Lattice QCD J. Wambach Institut für Kernphysik, TU Darmstadt, D-64289 Darmstadt, Germany and B.-J.

More information

Phase transitions and critical phenomena

Phase transitions and critical phenomena Phase transitions and critical phenomena Classification of phase transitions. Discontinous (st order) transitions Summary week -5 st derivatives of thermodynamic potentials jump discontinously, e.g. (

More information

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Towards thermodynamics from lattice QCD with dynamical charm Project A4 Towards thermodynamics from lattice QCD with dynamical charm Project A4 Florian Burger Humboldt University Berlin for the tmft Collaboration: E.-M. Ilgenfritz (JINR Dubna), M. Müller-Preussker (HU Berlin),

More information

Physics 212: Statistical mechanics II Lecture XI

Physics 212: Statistical mechanics II Lecture XI Physics 212: Statistical mechanics II Lecture XI The main result of the last lecture was a calculation of the averaged magnetization in mean-field theory in Fourier space when the spin at the origin is

More information

Constraints on the QCD phase diagram from imaginary chemical potential

Constraints on the QCD phase diagram from imaginary chemical potential SM+FT 211 Bari, September 211 Constraints on the QCD phase diagram from imaginary chemical potential Owe Philipsen Introduction: summary on QCD phase diagram Taking imaginary µ more seriously Triple, critical

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

Ising Model and Renormalization Group

Ising Model and Renormalization Group Ising Model and Renormalization Group Felix Johannes Behrens April 24, 2018 Abstract This paper sums up the talk I gave in the Statistical Physics seminar by Prof. A. Mielke. The aim of this paper is to

More information

t Hooft Determinant at Finite Temperature with Fluctuations

t Hooft Determinant at Finite Temperature with Fluctuations t Hooft Determinant at Finite Temperature with Fluctuations Mario Mitter In collaboration with: Bernd-Jochen Schaefer, Nils Strodthoff, Lorenz von Smekal (former) PhD Advisers: Reinhard Alkofer, Bernd-Jochen

More information

Effective theories for QCD at finite temperature and density from strong coupling

Effective theories for QCD at finite temperature and density from strong coupling XQCD 2011 San Carlos, July 2011 Effective theories for QCD at finite temperature and density from strong coupling Owe Philipsen Introduction to strong coupling expansions SCE for finite temperature: free

More information

Pions in the quark matter phase diagram

Pions in the quark matter phase diagram Pions in the quark matter phase diagram Daniel Zabłocki Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Poland Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory of Theoretical

More information

Critical Behavior II: Renormalization Group Theory

Critical Behavior II: Renormalization Group Theory Critical Behavior II: Renormalization Group Theor H. W. Diehl Fachbereich Phsik, Universität Duisburg-Essen, Campus Essen 1 What the Theor should Accomplish Theor should ield & explain: scaling laws #

More information

Heavy-light Flavor Correlations on the QCD Phase Boundary

Heavy-light Flavor Correlations on the QCD Phase Boundary Heavy-light Flavor Correlations on the QCD Phase Boundary Chihiro Sasaki Institute of Theoretical Physics, University of Wroclaw, Poland [1] C.S., Phys. Rev. D 90, no. 11, 114007 (2014). [2] C.S. and K.

More information

QCD phase transition. One of the fundamental challenges in modern physics. Non-perturbative phenomena. No theoretical control at µ > 0 so far...

QCD phase transition. One of the fundamental challenges in modern physics. Non-perturbative phenomena. No theoretical control at µ > 0 so far... QCD phase transition Ø One of the fundamental challenges in modern physics Ø Non-perturbative phenomena Ø No theoretical control at µ > 0 so far... 1 1 Chiral Random Matrix (ChRM) model and U A (1) anomaly

More information

The Ising model Summary of L12

The Ising model Summary of L12 The Ising model Summary of L2 Aim: Study connections between macroscopic phenomena and the underlying microscopic world for a ferromagnet. How: Study the simplest possible model of a ferromagnet containing

More information

The QCD phase diagram at low baryon density from lattice simulations

The QCD phase diagram at low baryon density from lattice simulations ICHEP 2010 Paris, July 2010 The QCD phase diagram at low baryon density from lattice simulations Owe Philipsen Introduction Lattice techniques for finite temperature and density The phase diagram: the

More information

(Inverse) magnetic catalysis and phase transition in QCD

(Inverse) magnetic catalysis and phase transition in QCD (Inverse) magnetic catalysis and phase transition in QCD 1 Theory Seminar ITP Wien, Monday October 6 2014. 1 In collaboration with Anders Tranberg (University of Stavanger), William Naylor and Rashid Khan

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg Graz, April 19, 2016 M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, 2016 1 / 34 fqcd collaboration

More information

arxiv: v2 [hep-ph] 18 Nov 2008

arxiv: v2 [hep-ph] 18 Nov 2008 The three-flavor chiral phase structure in hot and dense QCD matter B.-J. Schaefer, and M. Wagner, Institut für Physik, Karl-Franzens-Universität, A-8 Graz, Austria Institut für Kernphysik, TU Darmstadt,

More information

The QCD phase diagram at real and imaginary chemical potential

The QCD phase diagram at real and imaginary chemical potential Strongnet Meeting Trento, October 211 The QCD phase diagram at real and imaginary chemical potential Owe Philipsen Is there a critical end point in the QCD phase diagram? Is it connected to a chiral phase

More information

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature.

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. N.O. Agasian and I.A. Shushpanov Institute of Theoretical and Experimental Physics 117218 Moscow, Russia Abstract In the first

More information

Probing the QCD phase diagram with higher moments

Probing the QCD phase diagram with higher moments Probing the QCD phase diagram with higher moments in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach Outline Why higher moments? Algorithmic differentiation Lattice Taylor expansion

More information

Analytic continuation of functional renormalization group equations

Analytic continuation of functional renormalization group equations Analytic continuation of functional renormalization group equations Stefan Flörchinger (CERN) Aachen, 07.03.2012 Short outline Quantum effective action and its analytic continuation Functional renormalization

More information

Magnetized QCD phase diagram

Magnetized QCD phase diagram Magnetized QCD phase diagram Márcio Ferreira, Pedro Costa, and Constança Providência CFisUC, University of Coimbra, Portugal New Frontiers in QCD 2018 May 30 - June 29 Yukawa Institute for Theoretical

More information

Effective Field Theory

Effective Field Theory Effective Field Theory Iain Stewart MIT The 19 th Taiwan Spring School on Particles and Fields April, 2006 Physics compartmentalized Quantum Field Theory String Theory? General Relativity short distance

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Linking U(2) U(2) to O(4) via decoupling

Linking U(2) U(2) to O(4) via decoupling Linking U(2) U(2) to O(4) via decoupling Norikazu Yamada (KEK, GUAS) in collaboration with Tomomi Sato (KEK, GUAS) Based on Linking U(2) U(2) to O(4) model via decoupling, PRD91(2015)034025 [arxiv:1412.8026

More information

Thermal dileptons as fireball probes at SIS energies

Thermal dileptons as fireball probes at SIS energies Thermal dileptons as fireball probes at SIS energies Critical Point and Onset of Deconfinement 2016, Wrocław. Florian Seck TU Darmstadt in collaboration with T. Galatyuk, P. M. Hohler, R. Rapp & J. Stroth

More information

!onformali" Los# J.-W. Lee D. T. Son M. Stephanov D.B.K. arxiv: Phys.Rev.D80:125005,2009

!onformali Los# J.-W. Lee D. T. Son M. Stephanov D.B.K. arxiv: Phys.Rev.D80:125005,2009 !onformali" Los# J.-W. Lee D. T. Son M. Stephanov D.B.K arxiv:0905.4752 Phys.Rev.D80:125005,2009 Motivation: QCD at LARGE N c and N f Colors Flavors Motivation: QCD at LARGE N c and N f Colors Flavors

More information

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions Markus Huber 1 R. Alkofer 1 C. S. Fischer 2 K. Schwenzer 1 1 Institut für Physik, Karl-Franzens Universität Graz 2 Institut

More information

8.334: Statistical Mechanics II Spring 2014 Test 2 Review Problems

8.334: Statistical Mechanics II Spring 2014 Test 2 Review Problems 8.334: Statistical Mechanics II Spring 014 Test Review Problems The test is closed book, but if you wish you may bring a one-sided sheet of formulas. The intent of this sheet is as a reminder of important

More information

Phase Transitions and Renormalization:

Phase Transitions and Renormalization: Phase Transitions and Renormalization: Using quantum techniques to understand critical phenomena. Sean Pohorence Department of Applied Mathematics and Theoretical Physics University of Cambridge CAPS 2013

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

The Functional Renormalization Group Method An Introduction

The Functional Renormalization Group Method An Introduction The Functional Renormalization Group Method An Introduction A. Wipf Theoretisch-Physikalisches Institut, FSU Jena La Plata 21. Juli 2014 Andreas Wipf (FSU Jena) The Functional Renormalization Group Method

More information

Chiral Random Matrix Model as a simple model for QCD

Chiral Random Matrix Model as a simple model for QCD Chiral Random Matrix Model as a simple model for QCD Hirotsugu FUJII (University of Tokyo, Komaba), with Takashi Sano T. Sano, HF, M. Ohtani, Phys. Rev. D 80, 034007 (2009) HF, T. Sano, Phys. Rev. D 81,

More information

Fluid dynamics with a critical point

Fluid dynamics with a critical point Fluid dynamics with a critical point Marlene Nahrgang PhD student of Institut für Theoretische Physik, Goethe- Universität Frankfurt am Main. Scientific interests include QCD, quark-gluon plasma, and particle

More information

The QCD phase diagram from the lattice

The QCD phase diagram from the lattice The QCD phase diagram from the lattice Sourendu Gupta ILGTI: TIFR ICPAGQP Student Day Doan Paula, Goa December 5, 2010 Zero baryon density Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

Confinement in Polyakov gauge

Confinement in Polyakov gauge Confinement in Polyakov gauge Florian Marhauser arxiv:812.1144 QCD Phase Diagram chiral vs. deconfinement phase transition finite density critical point... Confinement Order Parameter ( β ) φ( x) = L(

More information

Analytical study of Yang-Mills theory from first principles by a massive expansion

Analytical study of Yang-Mills theory from first principles by a massive expansion Analytical study of Yang-Mills theory from first principles by a massive expansion Department of Physics and Astronomy University of Catania, Italy Infrared QCD APC, Paris Diderot University, 8-10 November

More information

Asymptotically safe Quantum Gravity. Nonperturbative renormalizability and fractal space-times

Asymptotically safe Quantum Gravity. Nonperturbative renormalizability and fractal space-times p. 1/2 Asymptotically safe Quantum Gravity Nonperturbative renormalizability and fractal space-times Frank Saueressig Institute for Theoretical Physics & Spinoza Institute Utrecht University Rapporteur

More information

Van der Waals equation: event-by-event fluctuations, quantum statistics and nuclear matter

Van der Waals equation: event-by-event fluctuations, quantum statistics and nuclear matter Van der Waals equation: event-by-event fluctuations, quantum statistics and nuclear matter Volodymyr Vovchenko In collaboration with Dmitry Anchishkin, Mark Gorenstein, and Roman Poberezhnyuk based on:

More information

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions QCD Green s Functions, Confinement and Phenomenology ECT*, Trento, 1 September 29 SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions Wolfram Weise Modelling the PHASES of QCD in contact

More information

Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature

Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature Hendrik van Hees in collaboration with Jörn Knoll Contents Schwinger-Keldysh real-time formalism

More information

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y.

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y. Calculation of decay constant using gradient flow, towards the Kaon bag parameter University of Tsukuba, A. Suzuki and Y. Taniguchi Contents Goal : Calculation of B K with Wilson fermion using gradient

More information

Fluctuations and Search for the QCD Critical Point

Fluctuations and Search for the QCD Critical Point Fluctuations and Search for the QCD Critical Point Kensuke Homma Hiroshima University. Integrated multiplicity fluctuations. Differential multiplicity fluctuations 3. K to π and p to π fluctuations 4.

More information

CRITICAL SLOWING DOWN AND DEFECT FORMATION M. PIETRONI. INFN - Sezione di Padova, via F. Marzolo 8, Padova, I-35131, ITALY

CRITICAL SLOWING DOWN AND DEFECT FORMATION M. PIETRONI. INFN - Sezione di Padova, via F. Marzolo 8, Padova, I-35131, ITALY CRITICAL SLOWING DOWN AND DEFECT FORMATION M. PIETRONI INFN - Sezione di Padova, via F. Marzolo 8, Padova, I-35131, ITALY E-mail: pietroni@pd.infn.it The formation of topological defects in a second order

More information

Functional renormalization group approach of QCD and its application in RHIC physics

Functional renormalization group approach of QCD and its application in RHIC physics Functional renormalization group approach of QCD and its application in RHIC physics Wei-jie Fu Dalian University of Technology wjfu@dlut.edu.cn The Third Symposium on Theoretical Physics at Peking U.

More information

Functional RG methods in QCD

Functional RG methods in QCD methods in QCD Institute for Theoretical Physics University of Heidelberg LC2006 May 18th, 2006 methods in QCD motivation Strong QCD QCD dynamical symmetry breaking instantons χsb top. dofs link?! deconfinement

More information

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications Kolloquium Universität Innsbruck October 13, 2009 The renormalization group: from the foundations to modern applications Peter Kopietz, Universität Frankfurt 1.) Historical introduction: what is the RG?

More information

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State QCD and Instantons: 12 Years Later Thomas Schaefer North Carolina State 1 ESQGP: A man ahead of his time 2 Instanton Liquid: Pre-History 1975 (Polyakov): The instanton solution r 2 2 E + B A a µ(x) = 2

More information

QCD critical point, fluctuations and hydrodynamics

QCD critical point, fluctuations and hydrodynamics QCD critical point, fluctuations and hydrodynamics M. Stephanov M. Stephanov QCD critical point, fluctuations and hydro Oxford 2017 1 / 32 History Cagniard de la Tour (1822): discovered continuos transition

More information

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 5 POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 1 Institute of Theoretical Physics, University of Wroclaw,

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

Kinetics of the chiral phase transition

Kinetics of the chiral phase transition Kinetics of the chiral phase transition Hendrik van Hees, Christian Wesp, Alex Meistrenko and Carsten Greiner Institut für Theoretische Physik, Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt

More information

QCD chiral phase boundary from RG flows. Holger Gies. Heidelberg U.

QCD chiral phase boundary from RG flows. Holger Gies. Heidelberg U. Heidelberg U. From Micro to Macro DoF From Micro to Macro DoF UV PLM PNJL NJL Quark Meson model Quark models Bag models Skyrmions... IR From Micro to Macro DoF UV PLM PNJL NJL Quark Meson model Quark models

More information

Partial Chiral Symmetry restoration and. QCD Scalar Susceptibilities in Nuclear Matter

Partial Chiral Symmetry restoration and. QCD Scalar Susceptibilities in Nuclear Matter Partial Chiral Symmetry restoration and QCD Scalar Susceptibilities in Nuclear Matter M. Ericson, P. Guichon, M. Martini, D. Davesne, G.C Chiral restoration in hadronic matter Scalar and pseudoscalar susceptibilities

More information

Introduction to Phase Transitions in Statistical Physics and Field Theory

Introduction to Phase Transitions in Statistical Physics and Field Theory Introduction to Phase Transitions in Statistical Physics and Field Theory Motivation Basic Concepts and Facts about Phase Transitions: Phase Transitions in Fluids and Magnets Thermodynamics and Statistical

More information

Interface Profiles in Field Theory

Interface Profiles in Field Theory Florian König Institut für Theoretische Physik Universität Münster January 10, 2011 / Forschungsseminar Quantenfeldtheorie Outline φ 4 -Theory in Statistical Physics Critical Phenomena and Order Parameter

More information

PNJL Model and QCD Phase Transitions

PNJL Model and QCD Phase Transitions PNJL Model and QCD Phase Transitions Hiromichi Nishimura Washington University in St. Louis INT Workshop, Feb. 25, 2010 Phase Transitions in Quantum Chromodynamics This Talk Low Temperature Lattice and

More information

PION DECAY CONSTANT AT FINITE TEMPERATURE IN THE NONLINEAR SIGMA MODEL

PION DECAY CONSTANT AT FINITE TEMPERATURE IN THE NONLINEAR SIGMA MODEL NUC-MINN-96/3-T February 1996 arxiv:hep-ph/9602400v1 26 Feb 1996 PION DECAY CONSTANT AT FINITE TEMPERATURE IN THE NONLINEAR SIGMA MODEL Sangyong Jeon and Joseph Kapusta School of Physics and Astronomy

More information

Fluctuations and observables: volume fluctuations, critical dynamics

Fluctuations and observables: volume fluctuations, critical dynamics Fluctuations and observables: volume fluctuations, critical dynamics Vladimir Skokov (RBRC BNL) September 28, 2016 VSkokov@bnl.gov Fluctuations RHIC/AGS Users meeting 1 / 36 Outline Volume fluctuations:

More information

The QCD phase diagram from the lattice

The QCD phase diagram from the lattice The QCD phase diagram from the lattice Sourendu Gupta ILGTI: TIFR CBM Meeting VECC Kolkata July 31, 2010 Zero baryon density Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry Broken

More information

QCD phase structure from the functional RG

QCD phase structure from the functional RG QCD phase structure from the functional RG Mario Mitter Ruprecht-Karls-Universität Heidelberg Dubna, November 216 M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 1 / 23 fqcd

More information

The Role of the Quark-Gluon Vertex in the QCD Phase Transition

The Role of the Quark-Gluon Vertex in the QCD Phase Transition The Role of the Quark-Gluon Vertex in the QCD Phase Transition PhD Seminar, 05.12.2012 Markus Hopfer University of Graz (A. Windisch, R. Alkofer) Outline 1 Motivation A Physical Motivation Calculations

More information

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Leonard Fister, Jan M. Pawlowski, Universität Heidelberg... work in progress ERG Corfu - September 2 Motivation ultimate goal: computation

More information

On the Landau gauge three-gluon vertex

On the Landau gauge three-gluon vertex On the Landau gauge three-gluon vertex M. Vujinovic, G. Eichmann, R. Williams, R. Alkofer Karl Franzens University, Graz PhD Seminar talk Graz, Austria, 13.11.2013. M. Vujinovic et al. (KFU, Graz) On the

More information

Landau s Fermi Liquid Theory

Landau s Fermi Liquid Theory Thors Hans Hansson Stockholm University Outline 1 Fermi Liquids Why, What, and How? Why Fermi liquids? What is a Fermi liquids? Fermi Liquids How? 2 Landau s Phenomenological Approach The free Fermi gas

More information

arxiv:cond-mat/ v1 4 Aug 2003

arxiv:cond-mat/ v1 4 Aug 2003 Conductivity of thermally fluctuating superconductors in two dimensions Subir Sachdev arxiv:cond-mat/0308063 v1 4 Aug 2003 Abstract Department of Physics, Yale University, P.O. Box 208120, New Haven CT

More information

NATURAL SCIENCES TRIPOS. Past questions. EXPERIMENTAL AND THEORETICAL PHYSICS Minor Topics. (27 February 2010)

NATURAL SCIENCES TRIPOS. Past questions. EXPERIMENTAL AND THEORETICAL PHYSICS Minor Topics. (27 February 2010) NATURAL SCIENCES TRIPOS Part III Past questions EXPERIMENTAL AND THEORETICAL PHYSICS Minor Topics (27 February 21) 1 In one-dimension, the q-state Potts model is defined by the lattice Hamiltonian βh =

More information