PNJL Model and QCD Phase Transitions

Size: px
Start display at page:

Download "PNJL Model and QCD Phase Transitions"

Transcription

1 PNJL Model and QCD Phase Transitions Hiromichi Nishimura Washington University in St. Louis INT Workshop, Feb. 25, 2010

2 Phase Transitions in Quantum Chromodynamics This Talk Low Temperature Lattice and Phenomenology say it is confined. High Temperature Perturbation theory is reliable and shows deconfinement. Want to make a phenomenological model which describe both low and high temperature QCD behavior in a single picture. PNJL

3 Outline Confinement and Chiral Symmetry Breaking Nambu-Jona Lasinio Model (NJL) Polyakov-Nambu-Jona Lasinio Model (PNJL) Fundamental Fermions (Finite-Temperature QCD) Adjoint Fermions - Antiperiodic Boundary Conditions (ABC) - Periodic Boundary Conditions (PBC)

4 Confinement Consider pure gauge theory (i.e. only gauge bosons and no fermions.) Order Parameter: Polyakov Loop P ( x) =Pe i R β 0 dta 0(x) The world line of massive quark at x. T rp ( x) = e βf q β=1/t P ( x) g SU(N c ) z Z(N c ) : P ( x) zp( x) T rp ( x) =0 F q = Confinement T rp ( x) 0 F q = F inite Deconfinement χsb Confinement Deconfinement Condensate of bound quark-antiquark pairs, almost like Cooper pairs in BCS. m 0 ψψ 0 ψψ =0 Order Parameter: ψψ Dynamically generated quark mass (constituent mass) <K. Fukushima, PRD69, 2004>

5 NJL Model (1/2): Effective Lagrangian How does low energy QCD lagrangian look like? L QCD = ψ(iγ µ µ m 0 )ψ 1 4 F a µνf µν a + g ψγ µ A µ ψ 1. Effective Quark Theory. Guess 2. Integrate out high energy degrees of freedom. 3. Chiral Symmetry. L NJL = ψ (iγ m 0 ) ψ + g S 2 <Y. Nambu, and G. Jona-Lasinio, PR122 & PR124, 1961> [ ( ψλ a ψ ) 2 + ( ψiγ5 λ a ψ ) 2 ] + g D [ det ψ (1 γ5 ) ψ + h.c. ] 4 Fermion Interaction U A (1) Breaking - Similar to the microscopic theory of superconductivity. - Non-renormalization theory in three dimension. 2 Flavors: Set g D =0. L NJL ψ (iγ m 0 ) ψ + g S 2 [ ( ψλ a ψ ) 2 + ( ψiγ5 λ a ψ ) 2 ]

6 NJL Model (2/2): Gap Equation ψψ = σ S eff = i N f j=1 ln [det (iγ m 0j +2g S σ j )] + d 4 x N f j=1 g S σj 2 Effective mass: m = m 0 2g s σ V eff =2g S σ 2 4N c Λ d 3 p (2π) 3 p2 + m 2 dv eff m = m 0 +4g S N c Λ d 3 p (2π) 3 dm =0 Gap Equation m p2 + m 2 If g S Λ 2 > π2 8, then σ 0 and chiral symmetry is broken. There is a great deal of work on the model. A downside is NJL model lacks confinement.

7 S eff = i N f j=1 PNJL Model (1/3): Setup ln [det (iγ ( ia) m 0j +2g S σ j )] + d 4 x N f j=1 g S σj 2 - The covariant derivative couples fermions to a background Polyakov loop. A 0 - is constant and diagonal. ( Polyakov Gauge ) - Interplay between Polyakov loop and σ is now easy to see. V P NJL = V cond + V zero + V quark,t + V gluon,t V cond + V zero =2g S σ 2 4N c Λ V quark,t = 2N f Tr R [T d 3 p (2π) 3 p2 + m 2 d 3 p (2π) 3 ln(1 ± Pe ω p/t )+h.c.] = 4m2 T 2 π 2 + Antiperiodic B.C. - Periodic B.C. n=1 ( 1) n Tr R P n n 2 K 2 (nm/t ) <P. Meisinger, and M. Ogilvie, PRD65, 2002> V gluon,t Need a phenomenological model.

8 V pert = 2Tr A [ PNJL Model (2/3): Gluonic Part d 3 p (2π) 3 ln(1 Pe ω p/t )] T 4 Pure Gauge ω p = p Valid at high T m 0 Add subleading term (T 2 ) by hand to get correct behavior at low T. Introduce a mass term, M: ω p = p 2 + M 2 M is just a parameter, not mass of gluon. <P. Meisinger, T. Miller, and M. Ogilvie, PRD65, 2002> V gluon,t = f(p )T 4 + g(p )M 2 T TrP T 3 M = 596 MeV T d = 270 MeV T MeV Pure Gauge

9 PNJL Model (3/3): Results Now we have a whole potential: V P NJL = V cond + V zero + V quark,t + V gluon,t 1.0 m T m 0 m 0 =5.5 MeV 0.8 Λ = 631 MeV 0.6 Confined Deconfined g S = GeV ψψ 0 ψψ =0 <K. Fukushima,PLB59, 2004> 0.2 <HN and M. Ogilvie, PRD81, 2010> 0.0 TrP T T MeV Fundamental Fermions (Nf =2) PNJL model works! m 0 =5.5 MeV m0

10 Why Adjoint QCD? SUSY - N f =1/2 Conformal Theory <E. Poppitz and M. Unsal, JHEP0909, 2009> - 2 <N f <N is in the conformal window. Eguchi Kawai Model - Volume independence of SU(N) gauge theories in the large N limit. Confinement - Confinement at high temperature or small L.

11 Confinement with Small Radius Large β Confined Large L Confined Phase Transitions? Small β Deconfined Small L Confined! <M. Unsal and L. Yaffe, PRD78, 2008> Z E = DA DΨ D Ψ e R β 0 dτ R d 3 xl E = T r e βh ABC: Temporal Component β =1/T PBC: Spatial Component β = L Adjoint Fermions with PBC - Confinement at high T or small radius. <P. Kovtun, M. Unsal, and L. Yaffe, JHEP, 2007> - New confinement is analytically tractable. <M. Unsal, PRD, 2009>

12 Adjoint fermions with ABC (finite T) in PNJL Lattice shows that scale of deconfinement and chiral T χ /T d 7.8 symmetry restoration are different! <J. Engels, S. Holtmann, and T. Schulzel, NPB724, 2005> Choose the parameters; 1.0 m 0 =0 0.8 Λ = GeV 0.6 g S Λ 2 = TrP T 3 m T m 0 such that T χ /T d T MeV <HN and M. Ogilvie, PRD81, 2010>

13 Adjoint fermions with PBC in PNJL (1/2) m L 1 m TrP L 1 3 C D S R - No chiral symmetry restoration up to 10 GeV. - 3 distinct 1st order phase transitions for TrP L 1 MeV <HN and M. Ogilvie, PRD81, 2010> 2.0 m 0 =0 Λ = GeV κ = g S Λ 2 = C = Confined D = Deconfined S = Skewed Phase Κ 1.4 D S 0 C? R = Reconfined L 1

14 Adjoint fermions with PBC in PNJL (2/2) 1800 S 1750 m L D C L 1 MeV <G. Cossu and M. D Elia, JHEP0907, 2009> Remaining Puzzle: Casher s Argument D S C - Unsal s scenario predicts confinement without chiral symmetry breaking at small L. 1.6 Κ We need more lattice results! L 1?

15 Conclusions Two fundamental fermions with ABC. The PNJL model can reproduce two crossover transitions at T 170 MeV. Two adjoint fermions with ABC. The PNJL model can reproduce T χ /T d 7.8. PNJL works for finite-temperature cases very well. Two adjoint fermions with PBC. The PNJL model shows that two confining regions are connected. We need more lattice results.

Complex Saddle Points in Finite Density QCD

Complex Saddle Points in Finite Density QCD Complex Saddle Points in Finite Density QCD Michael C. Ogilvie Washington University in St. Louis in collaboration with Hiromichi Nishimura (Bielefeld) and Kamal Pangeni (WUSTL) XQCD4 June 9th, 24 Outline

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

Magnetized QCD phase diagram

Magnetized QCD phase diagram Magnetized QCD phase diagram Márcio Ferreira, Pedro Costa, and Constança Providência CFisUC, University of Coimbra, Portugal New Frontiers in QCD 2018 May 30 - June 29 Yukawa Institute for Theoretical

More information

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential Jens Braun Theoretisch-Physikalisches Institut Friedrich-Schiller Universität Jena Quarks, Hadrons

More information

Dynamical Locking of the Chiral and the Deconfinement Phase Transition

Dynamical Locking of the Chiral and the Deconfinement Phase Transition Dynamical Locking of the Chiral and the Deconfinement Phase Transition Jens Braun Friedrich-Schiller-University Jena Quarks, Gluons, and Hadronic Matter under Extreme Conditions St. Goar 17/03/2011 J.

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

Pions in the quark matter phase diagram

Pions in the quark matter phase diagram Pions in the quark matter phase diagram Daniel Zabłocki Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Poland Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory of Theoretical

More information

Inverse magnetic catalysis in dense (holographic) matter

Inverse magnetic catalysis in dense (holographic) matter BNL, June 27, 2012 1 Andreas Schmitt Institut für Theoretische Physik Technische Universität Wien 1040 Vienna, Austria Inverse magnetic catalysis in dense (holographic) matter F. Preis, A. Rebhan, A. Schmitt,

More information

Phase diagram of strongly interacting matter under strong magnetic fields.

Phase diagram of strongly interacting matter under strong magnetic fields. Phase diagram of strongly interacting matter under strong magnetic fields. Introduction N. N. Scoccola Tandar Lab -CNEA Buenos Aires The PNJL and the EPNJL models under strong magnetic fields Results PLAN

More information

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model TIT/HEP-38/NP INS-Rep.-3 η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model arxiv:hep-ph/96053v 8 Feb 996 Y.Nemoto, M.Oka Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 5,

More information

Phase transitions in strong QED3

Phase transitions in strong QED3 Phase transitions in strong QED3 Christian S. Fischer Justus Liebig Universität Gießen SFB 634 30. November 2012 Christian Fischer (University of Gießen) Phase transitions in strong QED3 1 / 32 Overview

More information

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis Quark matter and the high-density frontier Mark Alford Washington University in St. Louis Outline I Quarks at high density Confined, quark-gluon plasma, color superconducting II Color superconducting phases

More information

arxiv: v1 [hep-ph] 15 Jul 2013

arxiv: v1 [hep-ph] 15 Jul 2013 Compact Stars in the QCD Phase Diagram III (CSQCD III) December 2-5, 202, Guarujá, SP, Brazil http://www.astro.iag.usp.br/~foton/csqcd3 Phase diagram of strongly interacting matter under strong magnetic

More information

Chiral Symmetry Breaking from Monopoles and Duality

Chiral Symmetry Breaking from Monopoles and Duality Chiral Symmetry Breaking from Monopoles and Duality Thomas Schaefer, North Carolina State University with A. Cherman and M. Unsal, PRL 117 (2016) 081601 Motivation Confinement and chiral symmetry breaking

More information

Studies of large-n reduction with adjoint fermions

Studies of large-n reduction with adjoint fermions Studies of large-n reduction with adjoint fermions Barak Bringoltz University of Washington Non-perturbative volume-reduction of large-n QCD with adjoint fermions BB and S.R.Sharpe, 0906.3538 Large-N volume

More information

Functional RG methods in QCD

Functional RG methods in QCD methods in QCD Institute for Theoretical Physics University of Heidelberg LC2006 May 18th, 2006 methods in QCD motivation Strong QCD QCD dynamical symmetry breaking instantons χsb top. dofs link?! deconfinement

More information

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University 1/N Expansions in String and Gauge Field Theories Adi Armoni Swansea University Oberwoelz, September 2010 1 Motivation It is extremely difficult to carry out reliable calculations in the strongly coupled

More information

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa Bottomonium melting at T >> Tc Pedro Bicudo CFTP, IST, Lisboa Motivation The finite T string tension The quark mass gap equation with finite T and finite quark mass Chiral symmetry and confinement crossovers

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

The phase diagram of two flavour QCD

The phase diagram of two flavour QCD The phase diagram of two flavour QCD Jan M. Pawlowski Universität Heidelberg & ExtreMe Matter Institute Quarks, Gluons and the Phase Diagram of QCD St. Goar, September 2nd 2009 Outline Phase diagram of

More information

Large-N c universality of phases in QCD and QCD-like theories

Large-N c universality of phases in QCD and QCD-like theories Large-N c universality of phases in QCD and QCD-like theories Masanori Hanada Department of Physics University of Washington Seattle, WA 98195-1560, USA 1 Introduction QCD with a finite baryon chemical

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions QCD Green s Functions, Confinement and Phenomenology ECT*, Trento, 1 September 29 SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions Wolfram Weise Modelling the PHASES of QCD in contact

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 5 POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 1 Institute of Theoretical Physics, University of Wroclaw,

More information

(Inverse) magnetic catalysis and phase transition in QCD

(Inverse) magnetic catalysis and phase transition in QCD (Inverse) magnetic catalysis and phase transition in QCD 1 Theory Seminar ITP Wien, Monday October 6 2014. 1 In collaboration with Anders Tranberg (University of Stavanger), William Naylor and Rashid Khan

More information

Confined chirally symmetric dense matter

Confined chirally symmetric dense matter Confined chirally symmetric dense matter L. Ya. Glozman, V. Sazonov, R. Wagenbrunn Institut für Physik, FB Theoretische Physik, Universität Graz 28 June 2013 L. Ya. Glozman, V. Sazonov, R. Wagenbrunn (Institut

More information

Can we locate the QCD critical endpoint with a Taylor expansion?

Can we locate the QCD critical endpoint with a Taylor expansion? Can we locate the QCD critical endpoint with a Taylor expansion? Bernd-Jochen Schaefer Karl-Franzens-Universität Graz, Austria 7 th February - 6 th March, 1 48. Internationale Universitätswochen für Theoretische

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

The phase diagram of neutral quark matter

The phase diagram of neutral quark matter The phase diagram of neutral quark matter Verena Werth 1 Stefan B. Rüster 2 Michael Buballa 1 Igor A. Shovkovy 3 Dirk H. Rischke 2 1 Institut für Kernphysik, Technische Universität Darmstadt 2 Institut

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach KFU Graz, January 3, 213 January 3, 213 TU Darmstadt 1 Outline Introduction: QCD phase diagram Dyson-Schwinger

More information

Fluctuations and QCD phase structure

Fluctuations and QCD phase structure Fluctuations and QCD phase structure Guo-yun Shao ( 邵国运 ) Xi an Jiaotong University Outline: Motivation Methods to describe fluctuations of conserved charges in heavy-ion collisions Numerical results and

More information

QCD in an external magnetic field

QCD in an external magnetic field QCD in an external magnetic field Gunnar Bali Universität Regensburg TIFR Mumbai, 20.2.12 Contents Lattice QCD The QCD phase structure QCD in U(1) magnetic fields The B-T phase diagram Summary and Outlook

More information

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany G2 gauge theories Axel Maas 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany Overview Why G2? Overview Why G2? G2 Yang-Mills theory Running coupling [Olejnik, Maas JHEP'08,

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach Quark Gluon Plasma meets Cold Atoms Episode III August 3, 212 TU Darmstadt 1 Outline Motivation Dyson-Schwinger

More information

QCD chiral phase boundary from RG flows. Holger Gies. Heidelberg U.

QCD chiral phase boundary from RG flows. Holger Gies. Heidelberg U. Heidelberg U. From Micro to Macro DoF From Micro to Macro DoF UV PLM PNJL NJL Quark Meson model Quark models Bag models Skyrmions... IR From Micro to Macro DoF UV PLM PNJL NJL Quark Meson model Quark models

More information

Investigation of QCD phase diagram from imaginary chemical potential

Investigation of QCD phase diagram from imaginary chemical potential Investigation of QCD phase diagram from imaginary chemical potential Kouji Kashiwa Collaborators of related studies Masanobu Yahiro (Kyushu Univ.) Hiroaki Kouno (Kyushu Univ.) Yuji Sakai (RIKEN) Wolfram

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

The Quark-Gluon Plasma in Equilibrium

The Quark-Gluon Plasma in Equilibrium The Quark-Gluon Plasma in Equilibrium Dirk H. Rischke arxiv:nucl-th/0305030v2 13 Aug 2003 Institut für Theoretische Physik Johann Wolfgang Goethe-Universität Frankfurt am Main Germany February 4, 2008

More information

Confinement in Polyakov gauge

Confinement in Polyakov gauge Confinement in Polyakov gauge Florian Marhauser arxiv:812.1144 QCD Phase Diagram chiral vs. deconfinement phase transition finite density critical point... Confinement Order Parameter ( β ) φ( x) = L(

More information

Gapless Dirac Spectrum at High Temperature

Gapless Dirac Spectrum at High Temperature Department of Physics, University of Pécs H-7624 Pécs, Ifjúság útja 6. E-mail: kgt@fizika.ttk.pte.hu Using the overlap Dirac operator I show that, contrary to some expectations, even well above the critical

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach)

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) IPM school and workshop on recent developments in Particle Physics (IPP11) 2011, Tehran, Iran Sedigheh Deldar, University

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

Orientifold planar equivalence.

Orientifold planar equivalence. Orientifold planar equivalence. An overview and some hints from the lattice**. Agostino Patella* Scuola Normale Superiore, Pisa INFN, Pisa 21/3/2007 * PhD advisor: Adriano Di Giacomo ** Based on: - A.

More information

Thermodynamics. Quark-Gluon Plasma

Thermodynamics. Quark-Gluon Plasma Thermodynamics of the Quark-Gluon Plasma Claudia Ratti Torino University and INFN, Italy Claudia Ratti 1 Quick review of thermodynamics In lectures I and II we saw... QCD and its symmetries Polyakov loop

More information

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Quantum Hadron Physics Laboratory, Nishina Center, RIKEN Takahiro M. Doi ( 土居孝寛 ) In collaboration with Hideo Suganuma

More information

The Polyakov loop and the Hadron Resonance Gas Model

The Polyakov loop and the Hadron Resonance Gas Model Issues The Polyakov loop and the Hadron Resonance Gas Model 1, E. Ruiz Arriola 2 and L.L. Salcedo 2 1 Grup de Física Teòrica and IFAE, Departament de Física, Universitat Autònoma de Barcelona, Spain 2

More information

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon Melting and freeze-out conditions of hadrons in a thermal medium Juan M. Torres-Rincon Frankfurt Institute for Advanced Studies Frankfurt am Main, Germany in collaboration with J. Aichelin, H. Petersen,

More information

The Meson Loop Effect on the Chiral Phase Transition

The Meson Loop Effect on the Chiral Phase Transition 1 The Meson Loop Effect on the Chiral Phase Transition Tomohiko Sakaguchi, Koji Kashiwa, Masatoshi Hamada, Masanobu Yahiro (Kyushu Univ.) Masayuki Matsuzaki (Fukuoka Univ. of Education, Kyushu Univ.) Hiroaki

More information

QCD and the Nambu Jona-Lasinio Model

QCD and the Nambu Jona-Lasinio Model Lecture 1 QCD and the Nambu Jona-Lasinio Model Ian Cloët The University of Adelaide & Argonne National Laboratory CSSM Summer School Non-perturbative Methods in Quantum Field Theory 11 th 15 th February

More information

Non-Supersymmetric Seiberg duality Beyond the Planar Limit

Non-Supersymmetric Seiberg duality Beyond the Planar Limit Non-Supersymmetric Seiberg duality Beyond the Planar Limit Input from non-critical string theory, IAP Large N@Swansea, July 2009 A. Armoni, D.I., G. Moraitis and V. Niarchos, arxiv:0801.0762 Introduction

More information

arxiv:hep-ph/ v1 7 Sep 2004

arxiv:hep-ph/ v1 7 Sep 2004 Two flavor color superconductivity in nonlocal chiral quark models R. S. Duhau a, A. G. Grunfeld a and N.N. Scoccola a,b,c a Physics Department, Comisión Nacional de Energía Atómica, Av.Libertador 825,

More information

Spontaneous symmetry breaking in particle physics: a case of cross fertilization. Giovanni Jona-Lasinio

Spontaneous symmetry breaking in particle physics: a case of cross fertilization. Giovanni Jona-Lasinio Spontaneous symmetry breaking in particle physics: a case of cross fertilization Giovanni Jona-Lasinio QUARK MATTER ITALIA, 22-24 aprile 2009 1 / 38 Spontaneous (dynamical) symmetry breaking Figure: Elastic

More information

Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt

Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt H. R. & J. Heffner Phys. Lett.B718(2012)672 PRD(in press) arxiv:1304.2980 Phase diagram of QCD non-perturbative continuum approaches

More information

Evaluating the Phase Diagram at finite Isospin and Baryon Chemical Potentials in NJL model

Evaluating the Phase Diagram at finite Isospin and Baryon Chemical Potentials in NJL model Evaluating the Phase Diagram at finite Isospin and Baryon Chemical Potentials in NJL model Chengfu Mu, Peking University Collaborated with Lianyi He, J.W.Goethe University Prof. Yu-xin Liu, Peking University

More information

Axial symmetry in the chiral symmetric phase

Axial symmetry in the chiral symmetric phase Axial symmetry in the chiral symmetric phase Swagato Mukherjee June 2014, Stoney Brook, USA Axial symmetry in QCD massless QCD Lagrangian is invariant under U A (1) : ψ (x) e i α ( x) γ 5 ψ(x) μ J 5 μ

More information

FINAL EXAM PHYS 625 (Fall 2013), 12/10/13

FINAL EXAM PHYS 625 (Fall 2013), 12/10/13 FINAL EXAM PHYS 625 (Fall 2013), 12/10/13 Name: Signature: Duration: 120 minutes Show all your work for full/partial credit Quote your answers in units of MeV (or GeV) and fm, or combinations thereof No.

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

The Affleck Dine Seiberg superpotential

The Affleck Dine Seiberg superpotential The Affleck Dine Seiberg superpotential SUSY QCD Symmetry SUN) with F flavors where F < N SUN) SUF ) SUF ) U1) U1) R Φ, Q 1 1 F N F Φ, Q 1-1 F N F Recall that the auxiliary D a fields: D a = gφ jn T a

More information

Scalar-pseudoscalar meson spectrum in SU(3) PNJL model

Scalar-pseudoscalar meson spectrum in SU(3) PNJL model Scalar-pseudoscalar meson spectrum in SU(3) model E.S.T.G., Instituto Politécnico de Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal E-mail: pcosta@teor.fis.uc.pt M. C. Ruivo E-mail: maria@teor.fis.uc.pt

More information

Phases and facets of 2-colour matter

Phases and facets of 2-colour matter Phases and facets of 2-colour matter Jon-Ivar Skullerud with Tamer Boz, Seamus Cotter, Leonard Fister Pietro Giudice, Simon Hands Maynooth University New Directions in Subatomic Physics, CSSM, 10 March

More information

The phases of hot/dense/magnetized QCD from the lattice. Gergely Endrődi

The phases of hot/dense/magnetized QCD from the lattice. Gergely Endrődi The phases of hot/dense/magnetized QCD from the lattice Gergely Endrődi Goethe University of Frankfurt EMMI NQM Seminar GSI Darmstadt, 27. June 2018 QCD phase diagram 1 / 45 Outline relevance of background

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

Role of fluctuations in detecting the QCD phase transition

Role of fluctuations in detecting the QCD phase transition Role of fluctuations in detecting the QCD phase transition Fluctuations of the Polyakov loop and deconfinement in a pure SU(N) gauge theory and in QCD Fluctuations of conserved charges as probe for the

More information

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Towards thermodynamics from lattice QCD with dynamical charm Project A4 Towards thermodynamics from lattice QCD with dynamical charm Project A4 Florian Burger Humboldt University Berlin for the tmft Collaboration: E.-M. Ilgenfritz (JINR Dubna), M. Müller-Preussker (HU Berlin),

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

Heavy quarks within electroweak multiplet

Heavy quarks within electroweak multiplet Heavy quarks within electroweak multiplet Jaime Besprosvany En colaboración: Ricardo Romero Instituto de Física Universidad Nacional Autónoma de México Instituto de Ciencias Nucleares, UNAM, 15 de marzo

More information

Finite-temperature Field Theory

Finite-temperature Field Theory Finite-temperature Field Theory Aleksi Vuorinen CERN Initial Conditions in Heavy Ion Collisions Goa, India, September 2008 Outline Further tools for equilibrium thermodynamics Gauge symmetry Faddeev-Popov

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016 G 2 QCD Neutron Star Ouraman Hajizadeh in collaboration with Axel Maas November 30, 2016 Motivation Why Neutron Stars? Neutron Stars: Laboratory of Strong Interaction Dense Objects: Study of strong interaction

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] 5th International Conference

More information

Intersecting branes and Nambu Jona-Lasinio model

Intersecting branes and Nambu Jona-Lasinio model Intersecting branes and Nambu Jona-Lasinio model Avinash Dhar Tata Institute of Fundamental Research, Mumbai ISM08, Puducherry December 7, 2008 Nobel for NJL 2008: The Year of Nobel Prize for NJL model

More information

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD Florian Burger Humboldt University Berlin for the tmft Collaboration: E. M. Ilgenfritz, M. Müller-Preussker, M. Kirchner

More information

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 6 8.34 Relativistic Quantum Field Theory II Fall 8.34 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall α(μ) Lecture 6 5.3.3: Beta-Functions of Quantum Electrodynamics

More information

Thermodynamics of the Polyakov-Quark-Meson Model

Thermodynamics of the Polyakov-Quark-Meson Model Thermodynamics of the Polyakov-Quark-Meson Model Bernd-Jochen Schaefer 1, Jan Pawlowski and Jochen Wambach 3 1 KFU Graz, Austria U Heidelberg, Germany 3 TU and GSI Darmstadt, Germany Virtual Institute

More information

Dynamics of heavy quarks in charged N = 4 SYM plasma

Dynamics of heavy quarks in charged N = 4 SYM plasma Dynamics of heavy quarks in charged N = 4 SYM plasma Aleksi Vuorinen University of Washington, Seattle & Technical University of Vienna C. Herzog and AV, arxiv:0708:0609 [hep-th] Outline N = 4 SYM and

More information

PoS(Confinement X)058

PoS(Confinement X)058 Confining gauge theories with adjoint scalars on R 3 S 1 University of Bielefeld E-mail: nishimura@physik.uni-bielefeld.de Michael Ogilvie Washington University, St. Louis E-mail: mco@physics.wustl.edu

More information

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State QCD and Instantons: 12 Years Later Thomas Schaefer North Carolina State 1 ESQGP: A man ahead of his time 2 Instanton Liquid: Pre-History 1975 (Polyakov): The instanton solution r 2 2 E + B A a µ(x) = 2

More information

Dual quark condensate and dressed Polyakov loops

Dual quark condensate and dressed Polyakov loops Dual quark condensate and dressed Polyakov loops Falk Bruckmann (Univ. of Regensburg) Lattice 28, William and Mary with Erek Bilgici, Christian Hagen and Christof Gattringer Phys. Rev. D77 (28) 947, 81.451

More information

Hot and Magnetized Pions

Hot and Magnetized Pions .. Hot and Magnetized Pions Neda Sadooghi Department of Physics, Sharif University of Technology Tehran - Iran 3rd IPM School and Workshop on Applied AdS/CFT February 2014 Neda Sadooghi (Dept. of Physics,

More information

Effective theories for QCD at finite temperature and density from strong coupling

Effective theories for QCD at finite temperature and density from strong coupling XQCD 2011 San Carlos, July 2011 Effective theories for QCD at finite temperature and density from strong coupling Owe Philipsen Introduction to strong coupling expansions SCE for finite temperature: free

More information

Model studies of the chiral and deconfinement transitions in QCD

Model studies of the chiral and deconfinement transitions in QCD William Robb Naylor arxiv:1509.08223v1 [hep-ph] 28 Sep 2015 Model studies of the chiral and deconfinement transitions in QCD Doctoral thesis for the degree of Philosophiae Doctor Trondheim, September 2015

More information

Mesonic and nucleon fluctuation effects in nuclear medium

Mesonic and nucleon fluctuation effects in nuclear medium Mesonic and nucleon fluctuation effects in nuclear medium Research Center for Nuclear Physics Osaka University Workshop of Recent Developments in QCD and Quantum Field Theories National Taiwan University,

More information

Bulk Thermodynamics in SU(3) gauge theory

Bulk Thermodynamics in SU(3) gauge theory Bulk Thermodynamics in SU(3) gauge theory In Monte-Carlo simulations ln Z(T) cannot be determined but only its derivatives computational cost go as large cutoff effects! Boyd et al., Nucl. Phys. B496 (1996)

More information

Renormalization Group Study of the Chiral Phase Transition

Renormalization Group Study of the Chiral Phase Transition Renormalization Group Study of the Chiral Phase Transition Ana Juričić, Bernd-Jochen Schaefer University of Graz Graz, May 23, 2013 Table of Contents 1 Proper Time Renormalization Group 2 Quark-Meson Model

More information

towards a holographic approach to the QCD phase diagram

towards a holographic approach to the QCD phase diagram towards a holographic approach to the QCD phase diagram Pietro Colangelo INFN - Sezione di Bari - Italy in collaboration with F. De Fazio, F. Giannuzzi, F. Jugeau and S. Nicotri Continuous Advances in

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

Topological symmetry and (de)confinement in gauge theories and spin systems

Topological symmetry and (de)confinement in gauge theories and spin systems Topological symmetry and (de)confinement in gauge theories and spin systems Mithat Ünsal, SLAC, Stanford University based on arxiv:0804.4664 QCD* parts with M. Shifman Thanks to Eun-ah Kim, B. Marston,

More information

The instanton and the phases of QCD

The instanton and the phases of QCD The instanton and the phases of QCD Naoki Yamamoto (University of Tokyo) Introduction contents QCD phase structure from QCD symmetries (1) QCD phase structure from instantons (2) Summary & Outlook (1)

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Lecture 2: The QCD Lagrangian, Symmetries and Feynman Rules

More information

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory Continuity of the Deconfinement Transition in (Super) Yang Mills Theory Thomas Schaefer, North Carolina State University 1.0 1.0 1.0 0.5 0.5 0.5 0.0 0.0 0.0 0.5 0.5 0.5 1.0 1.0 1.0 0.5 0.0 0.5 1.0 0.5

More information

Catalytic effects of monopole in QCD

Catalytic effects of monopole in QCD Catalytic effects of monopole in QCD Masayasu Hasegawa Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research Lattice and Functional Techniques for Exploration of Phase Structure

More information

arxiv: v2 [hep-ph] 8 May 2009

arxiv: v2 [hep-ph] 8 May 2009 Pion Superfluidity beyond Mean Field Approximation In Nambu Jona-Lasinio Model Chengfu Mu, Pengfei Zhuang Physics Department, Tsinghua University, Beijing 184, China (Dated: May 11, 29) We investigate

More information

arxiv: v2 [hep-lat] 12 Jul 2007

arxiv: v2 [hep-lat] 12 Jul 2007 New Phases of SU(3) and SU(4) at Finite Temperature Joyce C. Myers and Michael C. Ogilvie Department of Physics, Washington University, St. Louis, MO 63130, USA (Dated: October 29, 2018) Abstract arxiv:0707.1869v2

More information

Holographic study of magnetically induced QCD effects:

Holographic study of magnetically induced QCD effects: Holographic study of magnetically induced QCD effects: split between deconfinement and chiral transition, and evidence for rho meson condensation. Nele Callebaut, David Dudal, Henri Verschelde Ghent University

More information

The Big Picture. Thomas Schaefer. North Carolina State University

The Big Picture. Thomas Schaefer. North Carolina State University The Big Picture Thomas Schaefer North Carolina State University 1 Big Questions What is QCD? What is a Phase of QCD? What is a Plasma? What is a (perfect) Liquid? What is a wqgp/sqgp? 2 What is QCD (Quantum

More information

Thermodynamics of a Nonlocal PNJL Model for Two and Three Flavors

Thermodynamics of a Nonlocal PNJL Model for Two and Three Flavors for Two and Three Flavors Thomas Hell, Simon Rößner, Marco Cristoforetti, and Wolfram Weise Physik Department Technische Universität München INT Workshop The QCD Critical Point July 28 August 22, 2008

More information

Analytical study of Yang-Mills theory from first principles by a massive expansion

Analytical study of Yang-Mills theory from first principles by a massive expansion Analytical study of Yang-Mills theory from first principles by a massive expansion Department of Physics and Astronomy University of Catania, Italy Infrared QCD APC, Paris Diderot University, 8-10 November

More information

String / gauge theory duality and ferromagnetic spin chains

String / gauge theory duality and ferromagnetic spin chains String / gauge theory duality and ferromagnetic spin chains M. Kruczenski Princeton Univ. In collaboration w/ Rob Myers, David Mateos, David Winters Arkady Tseytlin, Anton Ryzhov Summary Introduction mesons,,...

More information