Renormalization Group Study of the Chiral Phase Transition

Size: px
Start display at page:

Download "Renormalization Group Study of the Chiral Phase Transition"

Transcription

1 Renormalization Group Study of the Chiral Phase Transition Ana Juričić, Bernd-Jochen Schaefer University of Graz Graz, May 23, 2013

2 Table of Contents 1 Proper Time Renormalization Group 2 Quark-Meson Model Truncation 3 Solution Strategies Taylor Expansion Potential on a Grid 4 Summary 1

3 Introduction to Renormalization Group The aim: full quantum action Γ Starting point: classical, bare action S at an ultraviolet scale Λ Step by step integration of fluctuations in momentum shells Scale dependent effective action Γ k Flow equation: the change of the average effective action with the scale k 2

4 Wetterich equation Here: one component scalar field ϕ(x) Introduce scale dependence with a regulator term in the generating functional Z k [J] = e W k [J] = Dϕ e S[ϕ] S k [ϕ]+ Jϕ (1) Regulator term is quadratic in fields S k [ϕ] = 1 2 R k (p) satisfies certain criteria (optimized regulator!) d D p (2π) D ϕ( p)r k(p)ϕ(p) (2) [D. F. Litim, J. M. Pawlowski (2002)] [D. F. Litim, J. M. Pawlowski (2002)] 3

5 Wetterich equation Effective average action via modified Legendre transform ( ) Γ k [φ] = sup J Jφ W k [J] S k [φ] Wetterich equation is tγ k = 1 2 Tr { tr k [Γ (2) k [φ] + R k] 1 } (3) (4) IR regularization: lim p 2 /k 2 0 R k (p) > 0 UV regularization: tr k (p) is peaked around p k [H. Gies (2006)] 4

6 Proper-time (PT) flow equation One-loop expression for effective action Γ 1 loop [φ] = S[φ] Tr ln S(2) [φ] (5) Schwinger proper-time representation of the logarithm and regulator function f (Λ, s) Γ 1 loop [φ] = S[φ] 1 ds 2 s f (Λ, s) Tr exp ( ss (2)) (6) scale dependence: f (Λ, s) f k (Λ, s) = f (sλ 2 ) + f (sk 2 ) Last step: RG improvement tγ k = ds s ( tf (sk 2 ) ) ) exp ( sγ (2) k (7) 5

7 PT flow as a approximation to Wetterich flow Class of optimized regulator functions tf (m) (sk 2 ) = 2 Γ(m) (sk2 ) m e sk 2 (8) Flow simplifies to [ ] m tγ k = Tr (Γ (2) k + k 2 ) 1 k 2 (9) Generalized proper time flows in the background formalism tγ Wetterich k = tγ sptrg k + tγ (2) k (10) Term tγ (2) k vanishes at the criticality In the leading order of derivative expansion it is possible to map Wetterich equation regulator PT flow regulator Mapping is injection: m d/2 + 1 (d is the number of dimensions) 6

8 Scales of QCD Above 2 GeV perturbative QCD At lower momentum scales: bound states, quark condensate, confinement... Possible hierarchy of the scales: Compositeness scale k φ 1 GeV - mesonic bound states are formed Chiral symmetry breaking scale k χ = 500 MeV Baryon formation 7

9 Motivation for Quark-Meson Model Start the RG evolution at Λ = k φ Initial effective action: two flavor quark-meson model { } Γ = d 4 1 x 2 ( µφ)2 + U(φ) + q [γ + g(σ + i π τγ 5)] q (11) Short-hand notation φ = (σ, π) U(φ) meson potential - Mexican hat potential Physical picture behind: integrate out all gluons non-local effective 4 and higher quark vertices are replaced with mesons Truncation: only scalar and pseudoscalar channel Most important for thermodynamics Baryons are omitted: good approximation for small quark chemical potentials 8

10 Flow for Quark-Meson Model Proper-time flow equation with optimized regulator function f 5/2 k (sk 2 ) Lowest order of derivative expansion { Γ[φ] = d 4 x U(φ) + 1 } 2 Z( µφ) (12) with Z = 1 Projection on constant fields φ(x) = (σ, 0) Yukawa g coupling is not running Temperature - imaginary time formalism And finite quark chemical potential β Γ = dτ 0 { } d 3 1 x 2 ( µφ)2 + U(φ) + q [γ + g(σ + i π τγ 5) + γ 0µ] q (13) Isospin symmetry is assumed Flow equation for the grand potential U k 9

11 Interpretation Flow equation: tu k (T, µ) = ( k5 1 coth Eσ 12π 2 E σ 2T + 3 coth Eπ E π 2T 2NcN f tanh Eq µ E q 2T ) 2NcN f tanh Eq + µ E q 2T quark/antiquark E q = k 2 + g 2 φ 2 pion E π = k 2 + 2U k σ-meson E σ = k 2 + 2U k + 4φ2 U k Additive contribution of relevant degrees of freedom to the equation T = 0: Silver Blaze property ( ) tu k = k NcN f Θ(E 12π 2 q µ) E σ E π E q (14) (15) Opposite roles of quarks and meson in RG evolution 10

12 Comparison with Mean-Field (MF) Approximation MF approximation: neglecting meson fluctuations replacing meson fields replaced with their expectational values (σ 0, 0) Grand potential for the MF d 3 p U = U B (σ 0, 0) + νt { βeq + ln[1 nq(t, µ)] + ln[1 (2π) 3 n q(t, µ)]}, (16) where n q(t, µ) = 1, n q(t, µ) = nq(t, µ) (17) 1 + exp[β(e q µ)] Cross out the meson potential, find scale derivative Flow in the MF approximation ( tu k (T, µ) = k5 2N cn f tanh Eq µ 12π 2 E q 2T ) Eq + µ + tanh 2T Flow for QM model enables studying the influence of the meson fluctuations (18) 11

13 Taylor Expansion of the Effective Potential Start at UV scale: Mexican hat potential integrating out fluctuations generating new vertices couplings are scale dependent coefficients in expansion of U k notation: φ 2 = ρ Symmetric phase U k = N n=0 a n n! ρn (19) Broken symmetry phase U k = b 0 + N n=2 b n n! (ρ ρ0)n (20) U(0) ρ < 0 non-trivial minimum ρ 0 tu k N beta functions for {a 0,..., a N } tu k beta functions for {b 0, b 2,..., b N } additional tρ 0 Small number N of equations U k known only at its minimum 12

14 Initial ultraviolet parameters Initial effective potential in vacuum for UV scale k Λ U Λ (φ) = λ 4 (φ2 v 2 ) 2 cσ (21) Initial parameters give f π = σ 0 = 93 MeV for k = 0 and chiral symmetry breaking scale in vacuum Yukawa coupling: m q = gσ 0 Initial UV parameters fixed for finite T and µ Temperature range is limited T /Λ <

15 Influence of the Truncation Order f π [MeV] k χ [MeV] N =3 N =4 N = T [MeV] N =3 N =4 N =5 Results for µ = 0 Truncation orders N = 3, 4, 5 Convergence for N = 5 Note: k χ independent of the truncation order Second order phase transition at T c = MeV with N = T [MeV] 14

16 Mass Sensibility for Taylor Expanded Potential [MeV] m q m π m σ m q m π m σ T [MeV] Chiral limit: T c = MeV Pions - Goldstone bosons Explicit χsb: a crossover T > 200 MeV: pions and σ-meson acquire the same mass Meson masses rise linearly with T > 200 MeV - lowest quark Matsubara mode Influence of fixed initial potential parameters 15

17 Effective Potential on a Grid U k Problem: tu(σ i) = F (U (σ i), U (σ i)) Also, tu (σ i) = G(U (σ i), U (3) (σ i)) and so on... Find derivatives U (σ i) and U (3) (σ i) independently of the flow σ i σ i 1D grid with M σ-field points M > N flow equations global minimum of U k Taylor expansion of U(σ i) at each grid point to the third order Matching expansions at half distance between neighboring grid points 16

18 RG Evolution on Grid 4e9 (T, µ) =(100 MeV, 0) k =950 MeV 3e9 U [MeV 4 ] 2e9 1e σ [MeV] 17

19 RG Evolution on Grid 3e9 (T, µ) =(100 MeV, 0) k =850 MeV 2.5e9 2e9 U [MeV 4 ] 1.5e9 1e9 5e σ [MeV] 17

20 RG Evolution on Grid 2e9 (T, µ) =(100 MeV, 0) k =750 MeV 1.5e9 U [MeV 4 ] 1e9 5e σ [MeV] 17

21 RG Evolution on Grid 1.2e9 (T, µ) =(100 MeV, 0) k =650 MeV 1e9 U [MeV 4 ] 8e8 6e8 4e8 2e σ [MeV] 17

22 RG Evolution on Grid 7e8 (T, µ) =(100 MeV, 0) k =550 MeV 6e8 5e8 U [MeV 4 ] 4e8 3e8 2e8 1e σ [MeV] 17

23 RG Evolution on Grid 4e8 (T, µ) =(100 MeV, 0) k =450 MeV 3e8 U [MeV 4 ] 2e8 1e σ [MeV] Spontaneous symmetry breaking 17

24 RG Evolution on Grid 2.5e8 (T, µ) =(100 MeV, 0) k =350 MeV 2e8 U [MeV 4 ] 1.5e8 1e8 5e σ [MeV] Minimum of U k is fixed Inner part of U k flattens 17

25 RG Evolution on Grid 2e8 (T, µ) =(100 MeV, 0) k =250 MeV 1.5e8 U [MeV 4 ] 1e8 5e σ [MeV] Minimum of U k is fixed Inner part of U k flattens 17

26 RG Evolution on Grid 2e8 (T, µ) =(100 MeV, 0) k =150 MeV 1.5e8 U [MeV 4 ] 1e8 5e σ [MeV] Minimum of U k is fixed Inner part of U k flattens 17

27 RG Evolution on Grid 2e8 (T, µ) =(100 MeV, 0) k =100 MeV 1.5e8 U [MeV 4 ] 1e8 5e σ [MeV] Minimum of U k is fixed Inner part of U k flattens 17

28 RG Evolution on Grid 2e8 (T, µ) =(100 MeV, 0) k =50 MeV 1.5e8 U [MeV 4 ] 1e8 5e σ [MeV] Minimum of U k is fixed Inner part of U k flattens 17

29 Mass Sensitivity on the Grid [MeV] m q m π m σ m q m π m σ T [MeV] Chiral limit: T c = MeV Explicit χsb: crossover Comparison with the Taylor expanded potential... 18

30 Comparison Chiral limit: Explicit χsb [MeV] m π, TE m σ, TE m q, TE m π, grid m σ, grid m q, grid [MeV] m q, TE m π, TE m σ, TE m q, grid m π, grid m σ, grid T [MeV] T [MeV] 19

31 Summary Quark-meson model as a good approximation to QCD Flow equation Comparison of two solution strategies To do: map phase diagram for µ > 0 20

Non-perturbative Study of Chiral Phase Transition

Non-perturbative Study of Chiral Phase Transition Non-perturbative Study of Chiral Phase Transition Ana Juričić Advisor: Bernd-Jochen Schaefer University of Graz Graz, January 9, 2013 Table of Contents Chiral Phase Transition in Low Energy QCD Renormalization

More information

Critical Region of the QCD Phase Transition

Critical Region of the QCD Phase Transition Critical Region of the QCD Phase Transition Mean field vs. Renormalization group B.-J. Schaefer 1 and J. Wambach 1,2 1 Institut für Kernphysik TU Darmstadt 2 GSI Darmstadt 18th August 25 Uni. Graz B.-J.

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

t Hooft Determinant at Finite Temperature with Fluctuations

t Hooft Determinant at Finite Temperature with Fluctuations t Hooft Determinant at Finite Temperature with Fluctuations Mario Mitter In collaboration with: Bernd-Jochen Schaefer, Nils Strodthoff, Lorenz von Smekal (former) PhD Advisers: Reinhard Alkofer, Bernd-Jochen

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] 5th International Conference

More information

Aspects of Two- and Three-Flavor Chiral Phase Transitions

Aspects of Two- and Three-Flavor Chiral Phase Transitions Aspects of Two- and Three-Flavor Chiral Phase Transitions Mario Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Kyoto, September 6, 211 Table of Contents 1 Motivation

More information

Analytic continuation of functional renormalization group equations

Analytic continuation of functional renormalization group equations Analytic continuation of functional renormalization group equations Stefan Flörchinger (CERN) Aachen, 07.03.2012 Short outline Quantum effective action and its analytic continuation Functional renormalization

More information

Thermodynamics of the Polyakov-Quark-Meson Model

Thermodynamics of the Polyakov-Quark-Meson Model Thermodynamics of the Polyakov-Quark-Meson Model Bernd-Jochen Schaefer 1, Jan Pawlowski and Jochen Wambach 3 1 KFU Graz, Austria U Heidelberg, Germany 3 TU and GSI Darmstadt, Germany Virtual Institute

More information

On the role of fluctuations in (2+1)-flavor QCD

On the role of fluctuations in (2+1)-flavor QCD On the role of fluctuations in (2+1)-flavor QCD Bernd-Jochen Schaefer Germany Germany November 29 th, 217 Conjectured QC3D phase diagram Temperature early universe LHC crossover vacuum RHIC SPS =

More information

Jochen Wambach. to Gerry Brown

Jochen Wambach. to Gerry Brown Real-Time Spectral Functions from the Functional Renormalization Group Jochen Wambach TU-Darmstadt and GSI Germany to Gerry Brown an inspring physicist and a great human being November 24, 203 TU Darmstadt

More information

Dimensional Reduction in the Renormalisation Group:

Dimensional Reduction in the Renormalisation Group: Dimensional Reduction in the Renormalisation Group: From Scalar Fields to Quantum Einstein Gravity Natália Alkofer Advisor: Daniel Litim Co-advisor: Bernd-Jochen Schaefer 11/01/12 PhD Seminar 1 Outline

More information

QCD-like theories at finite density

QCD-like theories at finite density QCD-like theories at finite density 34 th International School of Nuclear Physics Probing the Extremes of Matter with Heavy Ions Erice, Sicily, 23 September 212 Lorenz von Smekal 23. September 212 Fachbereich

More information

Can we locate the QCD critical endpoint with a Taylor expansion?

Can we locate the QCD critical endpoint with a Taylor expansion? Can we locate the QCD critical endpoint with a Taylor expansion? Bernd-Jochen Schaefer Karl-Franzens-Universität Graz, Austria 7 th February - 6 th March, 1 48. Internationale Universitätswochen für Theoretische

More information

The mass of the Higgs boson

The mass of the Higgs boson The mass of the Higgs boson LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12 a prediction Higgs boson found standard model Higgs boson T.Plehn, M.Rauch Spontaneous symmetry breaking confirmed

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

Functional renormalization for ultracold quantum gases

Functional renormalization for ultracold quantum gases Functional renormalization for ultracold quantum gases Stefan Floerchinger (Heidelberg) S. Floerchinger and C. Wetterich, Phys. Rev. A 77, 053603 (2008); S. Floerchinger and C. Wetterich, arxiv:0805.2571.

More information

With the FRG towards the QCD Phase diagram

With the FRG towards the QCD Phase diagram With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra Cold Atoms to the Hot QGP 22 nd Aug - 9 th Sept, 211 Helmholtz Alliance Extremes of Density

More information

Mesonic and nucleon fluctuation effects in nuclear medium

Mesonic and nucleon fluctuation effects in nuclear medium Mesonic and nucleon fluctuation effects in nuclear medium Research Center for Nuclear Physics Osaka University Workshop of Recent Developments in QCD and Quantum Field Theories National Taiwan University,

More information

Spectral Functions from the Functional RG

Spectral Functions from the Functional RG Spectral Functions from the Functional RG 7 th International Conference on the Exact Renormalization Group ERG 2014 22/09/14 Lefkada, Greece Nils Strodthoff, ITP Heidelberg 2-Point Functions and their

More information

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model FAIRNESS 2013, 15-21 September 1 Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model A Meistrenko 1, C Wesp 1, H van Hees 1,2 and C Greiner 1 1 Institut für Theoretische

More information

Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature

Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature Hendrik van Hees in collaboration with Jörn Knoll Contents Schwinger-Keldysh real-time formalism

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential Jens Braun Theoretisch-Physikalisches Institut Friedrich-Schiller Universität Jena Quarks, Hadrons

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg Graz, April 19, 2016 M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, 2016 1 / 34 fqcd collaboration

More information

Inverse square potential, scale anomaly, and complex extension

Inverse square potential, scale anomaly, and complex extension Inverse square potential, scale anomaly, and complex extension Sergej Moroz Seattle, February 2010 Work in collaboration with Richard Schmidt ITP, Heidelberg Outline Introduction and motivation Functional

More information

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Leonard Fister, Jan M. Pawlowski, Universität Heidelberg... work in progress ERG Corfu - September 2 Motivation ultimate goal: computation

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

arxiv: v2 [hep-ph] 18 Nov 2008

arxiv: v2 [hep-ph] 18 Nov 2008 The three-flavor chiral phase structure in hot and dense QCD matter B.-J. Schaefer, and M. Wagner, Institut für Physik, Karl-Franzens-Universität, A-8 Graz, Austria Institut für Kernphysik, TU Darmstadt,

More information

Mesonic and nucleon fluctuation effects at finite baryon density

Mesonic and nucleon fluctuation effects at finite baryon density Mesonic and nucleon fluctuation effects at finite baryon density Research Center for Nuclear Physics Osaka University Workshop on Strangeness and charm in hadrons and dense matter Yukawa Institute for

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg GSI, February 9, 216 M. Mitter (U Heidelberg) χsb in continuum QCD GSI, February 216 1 / 29 fqcd collaboration

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg Trieste, September 206 M. Mitter (U Heidelberg) χsb in continuum QCD Trieste, September 206 / 20 fqcd collaboration

More information

QCD matter with isospin-asymmetry. Gergely Endrődi. Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer

QCD matter with isospin-asymmetry. Gergely Endrődi. Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer QCD matter with isospin-asymmetry Gergely Endrődi Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer SIGN 2017 22. March 2017 Outline introduction: QCD with isospin

More information

Theory toolbox. Chapter Chiral effective field theories

Theory toolbox. Chapter Chiral effective field theories Chapter 3 Theory toolbox 3.1 Chiral effective field theories The near chiral symmetry of the QCD Lagrangian and its spontaneous breaking can be exploited to construct low-energy effective theories of QCD

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk FY3464 Quantum Field Theory II Final exam 0..0 NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory II Contact: Kåre Olaussen, tel. 735 9365/4543770 Allowed tools: mathematical

More information

QCD phase structure from the functional RG

QCD phase structure from the functional RG QCD phase structure from the functional RG Mario Mitter Ruprecht-Karls-Universität Heidelberg Dubna, November 216 M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 1 / 23 fqcd

More information

Functional RG methods in QCD

Functional RG methods in QCD methods in QCD Institute for Theoretical Physics University of Heidelberg LC2006 May 18th, 2006 methods in QCD motivation Strong QCD QCD dynamical symmetry breaking instantons χsb top. dofs link?! deconfinement

More information

(Inverse) magnetic catalysis and phase transition in QCD

(Inverse) magnetic catalysis and phase transition in QCD (Inverse) magnetic catalysis and phase transition in QCD 1 Theory Seminar ITP Wien, Monday October 6 2014. 1 In collaboration with Anders Tranberg (University of Stavanger), William Naylor and Rashid Khan

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 99890701 Allowed tools: mathematical tables Some formulas can be found on p.2. 1. Concepts.

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

10 Thermal field theory

10 Thermal field theory 0 Thermal field theory 0. Overview Introduction The Green functions we have considered so far were all defined as expectation value of products of fields in a pure state, the vacuum in the absence of real

More information

LEADING LOGARITHMS FOR THE NUCLEON MASS

LEADING LOGARITHMS FOR THE NUCLEON MASS /9 LEADING LOGARITHMS FOR THE NUCLEON MASS O(N + ) Lund University bijnens@thep.lu.se http://thep.lu.se/ bijnens http://thep.lu.se/ bijnens/chpt/ QNP5 - Universidad Técnica Federico Santa María UTFSMXI

More information

On bound states in gauge theories with different matter content

On bound states in gauge theories with different matter content On bound states in gauge theories with different matter content Reinhard Alkofer Institute of Physics, Department of Theoretical Physics, University of Graz Bound states in QCD and beyond St. Goar, March

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

Dynamical Locking of the Chiral and the Deconfinement Phase Transition

Dynamical Locking of the Chiral and the Deconfinement Phase Transition Dynamical Locking of the Chiral and the Deconfinement Phase Transition Jens Braun Friedrich-Schiller-University Jena Quarks, Gluons, and Hadronic Matter under Extreme Conditions St. Goar 17/03/2011 J.

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach KFU Graz, January 3, 213 January 3, 213 TU Darmstadt 1 Outline Introduction: QCD phase diagram Dyson-Schwinger

More information

8 September Dear Paul...

8 September Dear Paul... EXA 2011 Vienna PK Symposium 8 September 2011 Dear Paul... DEEPLY BOUND STATES of PIONIC ATOMS Experiment (GSI): K. Suzuki et al. Phys. Rev. Lett. 92 (2004) 072302 Theory: Energy Dependent Pion-Nucleus

More information

Sarma phase in relativistic and non-relativistic systems

Sarma phase in relativistic and non-relativistic systems phase in relativistic and non-relativistic systems Tina Katharina Herbst In Collaboration with I. Boettcher, J. Braun, J. M. Pawlowski, D. Roscher, N. Strodthoff, L. von Smekal and C. Wetterich arxiv:149.5232

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 2 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Lecture 2 outline

More information

arxiv: v1 [hep-ph] 2 Nov 2009

arxiv: v1 [hep-ph] 2 Nov 2009 arxiv:911.296v1 [hep-ph] 2 Nov 29 QCD Thermodynamics: Confronting the Polyakov-Quark-Meson Model with Lattice QCD J. Wambach Institut für Kernphysik, TU Darmstadt, D-64289 Darmstadt, Germany and B.-J.

More information

Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory

Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory Universität Tübingen Institut für Theoretische Physi Auf der Morgenstelle 4 D-7076 Tübingen Germany E-mail: hugo.reinhardt@uni-tuebingen.de Marus Leder

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Lectures on Chiral Perturbation Theory

Lectures on Chiral Perturbation Theory Lectures on Chiral Perturbation Theory I. Foundations II. Lattice Applications III. Baryons IV. Convergence Brian Tiburzi RIKEN BNL Research Center Chiral Perturbation Theory I. Foundations Low-energy

More information

Magnetized QCD phase diagram

Magnetized QCD phase diagram Magnetized QCD phase diagram Márcio Ferreira, Pedro Costa, and Constança Providência CFisUC, University of Coimbra, Portugal New Frontiers in QCD 2018 May 30 - June 29 Yukawa Institute for Theoretical

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

Vacuum stability and the mass of the Higgs boson. Holger Gies

Vacuum stability and the mass of the Higgs boson. Holger Gies Vacuum stability and the mass of the Higgs boson Holger Gies Helmholtz Institute Jena & TPI, Friedrich-Schiller-Universität Jena & C. Gneiting, R. Sondenheimer, PRD 89 (2014) 045012, [arxiv:1308.5075],

More information

Michael Buballa. Theoriezentrum, Institut für Kernphysik, TU Darmstadt

Michael Buballa. Theoriezentrum, Institut für Kernphysik, TU Darmstadt Vacuum-fluctuation effects on inhomogeneous chiral condensates Michael Buballa Theoriezentrum, Institut für Kernphysik, TU Darmstadt International School of Nuclear Physics 38 th Course Nuclear matter

More information

Dual quark condensate and dressed Polyakov loops

Dual quark condensate and dressed Polyakov loops Dual quark condensate and dressed Polyakov loops Falk Bruckmann (Univ. of Regensburg) Lattice 28, William and Mary with Erek Bilgici, Christian Hagen and Christof Gattringer Phys. Rev. D77 (28) 947, 81.451

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

QCD from quark, gluon, and meson correlators

QCD from quark, gluon, and meson correlators QCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Frankfurt, October 7 M. Mitter (BNL) Correlators of QCD Frankfurt, October 7 / fqcd collaboration - QCD (phase diagram)

More information

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature.

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. N.O. Agasian and I.A. Shushpanov Institute of Theoretical and Experimental Physics 117218 Moscow, Russia Abstract In the first

More information

Confinement in Polyakov gauge

Confinement in Polyakov gauge Confinement in Polyakov gauge Florian Marhauser arxiv:812.1144 QCD Phase Diagram chiral vs. deconfinement phase transition finite density critical point... Confinement Order Parameter ( β ) φ( x) = L(

More information

Can we locate the QCD critical endpoint with the Taylor expansion?

Can we locate the QCD critical endpoint with the Taylor expansion? Can we locate the QCD critical endpoint with the Taylor expansion? in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach 23.6.21 Mathias Wagner Institut für Kernphysik TU Darmstadt Outline

More information

RG flow of the Higgs potential. Holger Gies

RG flow of the Higgs potential. Holger Gies RG flow of the Higgs potential Holger Gies Helmholtz Institute Jena & Friedrich-Schiller-Universität Jena & C. Gneiting, R. Sondenheimer, PRD 89 (2014) 045012, [arxiv:1308.5075], & S. Rechenberger, M.M.

More information

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory Renormalization of microscopic Hamiltonians Renormalization Group without Field Theory Alberto Parola Università dell Insubria (Como - Italy) Renormalization Group Universality Only dimensionality and

More information

HLbl from a Dyson Schwinger Approach

HLbl from a Dyson Schwinger Approach HLbl from a Dyson Schwinger Approach Richard Williams KFUni Graz Tobias Göcke TU Darmstadt Christian Fischer Uni Gießen INT Workshop on Hadronic Light-by-Light contribution to the Muon Anomaly February

More information

Pions in the quark matter phase diagram

Pions in the quark matter phase diagram Pions in the quark matter phase diagram Daniel Zabłocki Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Poland Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory of Theoretical

More information

Pairing in many-fermion systems: an exact-renormalisation-group treatment

Pairing in many-fermion systems: an exact-renormalisation-group treatment Pairing in many-fermion systems: an exact-renormalisation-group treatment Michael C Birse, Judith A McGovern (University of Manchester) Boris Krippa, Niels R Walet (UMIST) Birse, Krippa, McGovern and Walet,

More information

PNJL Model and QCD Phase Transitions

PNJL Model and QCD Phase Transitions PNJL Model and QCD Phase Transitions Hiromichi Nishimura Washington University in St. Louis INT Workshop, Feb. 25, 2010 Phase Transitions in Quantum Chromodynamics This Talk Low Temperature Lattice and

More information

Effects of fluctuations for QCD phase diagram with isospin chemical potential

Effects of fluctuations for QCD phase diagram with isospin chemical potential Effects of fluctuations for QCD phase diagram with isospin chemical potential Kazuhio Kamiado (Yuawa Institute, Kyoto Univ) woring with Nils Strodthoff, Lorenz von Smeal and Jochen Wambach (TU Darmstadt)

More information

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract SUNY-NTG-01-03 Possible Color Octet Quark-Anti-Quark Condensate in the Instanton Model Thomas Schäfer Department of Physics, SUNY Stony Brook, Stony Brook, NY 11794 and Riken-BNL Research Center, Brookhaven

More information

From confinement to new states of dense QCD matter

From confinement to new states of dense QCD matter From confinement to new states of dense QCD matter From Quarks and Gluons to Hadrons and Nuclei, Erice, Sicily, 17 Sept2011 Kurt Langfeld School of Comp. and Mathematics and The HPCC, Univ. of Plymouth,

More information

Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and Conservation Laws Goldstone Theorem The Potential Linear Sigma Model Wigner

Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and Conservation Laws Goldstone Theorem The Potential Linear Sigma Model Wigner Lecture 3 Pions as Goldstone Bosons of Chiral Symmetry Breaking Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and

More information

RG flow of the Higgs potential. Holger Gies

RG flow of the Higgs potential. Holger Gies RG flow of the Higgs potential Holger Gies Helmholtz Institute Jena & Friedrich-Schiller-Universität Jena & C. Gneiting, R. Sondenheimer, PRD 89 (2014) 045012, [arxiv:1308.5075], & S. Rechenberger, M.M.

More information

Confined chirally symmetric dense matter

Confined chirally symmetric dense matter Confined chirally symmetric dense matter L. Ya. Glozman, V. Sazonov, R. Wagenbrunn Institut für Physik, FB Theoretische Physik, Universität Graz 28 June 2013 L. Ya. Glozman, V. Sazonov, R. Wagenbrunn (Institut

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Lecture 2: The QCD Lagrangian, Symmetries and Feynman Rules

More information

RG flow of the Higgs potential. Holger Gies

RG flow of the Higgs potential. Holger Gies RG flow of the Higgs potential Holger Gies Helmholtz Institute Jena & TPI, Friedrich-Schiller-Universität Jena & C. Gneiting, R. Sondenheimer, PRD 89 (2014) 045012, [arxiv:1308.5075], & S. Rechenberger,

More information

Ising Model and Renormalization Group

Ising Model and Renormalization Group Ising Model and Renormalization Group Felix Johannes Behrens April 24, 2018 Abstract This paper sums up the talk I gave in the Statistical Physics seminar by Prof. A. Mielke. The aim of this paper is to

More information

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures)

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures) STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT (Two lectures) Lecture 1: Mass scales in particle physics - naturalness in QFT Lecture 2: Renormalisable or non-renormalisable effective electroweak

More information

The Functional Renormalization Group Method An Introduction

The Functional Renormalization Group Method An Introduction The Functional Renormalization Group Method An Introduction A. Wipf Theoretisch-Physikalisches Institut, FSU Jena La Plata 21. Juli 2014 Andreas Wipf (FSU Jena) The Functional Renormalization Group Method

More information

Fluid dynamics with a critical point

Fluid dynamics with a critical point Fluid dynamics with a critical point Marlene Nahrgang PhD student of Institut für Theoretische Physik, Goethe- Universität Frankfurt am Main. Scientific interests include QCD, quark-gluon plasma, and particle

More information

Anomalies and discrete chiral symmetries

Anomalies and discrete chiral symmetries Anomalies and discrete chiral symmetries Michael Creutz BNL & U. Mainz Three sources of chiral symmetry breaking in QCD spontaneous breaking ψψ 0 explains lightness of pions implicit breaking of U(1) by

More information

πn Multi-πN Scattering in the 1/N c Expansion (HJK, Richard Lebed, Phys.Rev.D75:016002,2007)

πn Multi-πN Scattering in the 1/N c Expansion (HJK, Richard Lebed, Phys.Rev.D75:016002,2007) N Multi-N Scattering in the 1/N c Expansion (HJK, Richard Lebed, Phys.Rev.D75:01600,007) Herry Kwee Arizona State University JLAB, May 3, 007 1 Outline 1. Introduction. Scattering Amplitudes and N c power

More information

Axial symmetry in the chiral symmetric phase

Axial symmetry in the chiral symmetric phase Axial symmetry in the chiral symmetric phase Swagato Mukherjee June 2014, Stoney Brook, USA Axial symmetry in QCD massless QCD Lagrangian is invariant under U A (1) : ψ (x) e i α ( x) γ 5 ψ(x) μ J 5 μ

More information

BCS-BEC Cross over: Using the ERG

BCS-BEC Cross over: Using the ERG BCS-BEC Cross over: Using the ERG Niels Walet with Mike Birse, Boris Krippa and Judith McGovern School of Physics and Astronomy University of Manchester RPMBT14, Barcelona, 2007 Outline 1 Introduction

More information

Lattice QCD at non-zero temperature and density

Lattice QCD at non-zero temperature and density Lattice QCD at non-zero temperature and density Frithjof Karsch Bielefeld University & Brookhaven National Laboratory QCD in a nutshell, non-perturbative physics, lattice-regularized QCD, Monte Carlo simulations

More information

Flow equations and phase transitions

Flow equations and phase transitions Flow equations and phase transitions phase transitions QCD phase transition Quark gluon plasma Gluons : 8 x 2 = 16 Quarks : 9 x 7/2 =12.5 Dof : 28.5 Chiral symmetry Hadron gas Light mesons : 8 (pions

More information

The Role of the Quark-Gluon Vertex in the QCD Phase Transition

The Role of the Quark-Gluon Vertex in the QCD Phase Transition The Role of the Quark-Gluon Vertex in the QCD Phase Transition PhD Seminar, 05.12.2012 Markus Hopfer University of Graz (A. Windisch, R. Alkofer) Outline 1 Motivation A Physical Motivation Calculations

More information

QCD chiral phase boundary from RG flows. Holger Gies. Heidelberg U.

QCD chiral phase boundary from RG flows. Holger Gies. Heidelberg U. Heidelberg U. From Micro to Macro DoF From Micro to Macro DoF UV PLM PNJL NJL Quark Meson model Quark models Bag models Skyrmions... IR From Micro to Macro DoF UV PLM PNJL NJL Quark Meson model Quark models

More information

Towards a quantitative FRG approach for the BCS-BEC crossover

Towards a quantitative FRG approach for the BCS-BEC crossover Towards a quantitative FRG approach for the BCS-BEC crossover Michael M. Scherer Theoretisch Physikalisches Institut, Jena University in collaboration with Sebastian Diehl, Stefan Flörchinger, Holger Gies,

More information

Phase diagram of strongly interacting matter under strong magnetic fields.

Phase diagram of strongly interacting matter under strong magnetic fields. Phase diagram of strongly interacting matter under strong magnetic fields. Introduction N. N. Scoccola Tandar Lab -CNEA Buenos Aires The PNJL and the EPNJL models under strong magnetic fields Results PLAN

More information

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1-55 Cracow School of Theoretical Physics 20 28/6/2015, Zakopane, Poland Outline The Lagrangian of QCD and its symmetries

More information

EDMs from the QCD θ term

EDMs from the QCD θ term ACFI EDM School November 2016 EDMs from the QCD θ term Vincenzo Cirigliano Los Alamos National Laboratory 1 Lecture II outline The QCD θ term Toolbox: chiral symmetries and their breaking Estimate of the

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

Termodynamics and Transport in Improved Holographic QCD

Termodynamics and Transport in Improved Holographic QCD Termodynamics and Transport in Improved Holographic QCD p. 1 Termodynamics and Transport in Improved Holographic QCD Francesco Nitti APC, U. Paris VII Large N @ Swansea July 07 2009 Work with E. Kiritsis,

More information

Phenomenology of a pseudoscalar glueball and charmed mesons

Phenomenology of a pseudoscalar glueball and charmed mesons JUSTUS-LIEBßIG Universität Giessen T Phenomenology of a pseudoscalar glueball and charmed mesons Walaa I. Eshraim Yukawa Institute for Theoretical Physics, Kyoto University, Japan, June 15th, 2018 Introduction

More information

Higgs mass bounds from the functional renormalization group

Higgs mass bounds from the functional renormalization group Higgs mass bounds from the functional renormalization group René Sondenheimer A. Eichhorn, H. Gies, C. Gneiting, J. Jäckel, T. Plehn, M. Scherer Theoretisch-Physikalisches Institut Friedrich-Schiller-Universität

More information

The phase diagram of two flavour QCD

The phase diagram of two flavour QCD The phase diagram of two flavour QCD Jan M. Pawlowski Universität Heidelberg & ExtreMe Matter Institute Quarks, Gluons and the Phase Diagram of QCD St. Goar, September 2nd 2009 Outline Phase diagram of

More information