Bulk Thermodynamics: What do we (want to) know?

Size: px
Start display at page:

Download "Bulk Thermodynamics: What do we (want to) know?"

Transcription

1 Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c, ɛ c, EoS, v s, η,...: confront resonance gas, quasi-particle gas, high-t pert. theory, HTL-resummation with lattice calculations µ > : T c (µ) T freeze (µ) : location of the chiral critical point, direct evidence for 1 st order regime; density/charge fluctuations; T c (µ) T freeze? F. Karsch p.1/19

2 Critical behavior in hot and dense matter: phase diagram crossover vs. T ~17 MeV quark-gluon plasma deconfined, χ-symmetric phase transition hadron gas confined, χ-sb color superconductor µ o few times nuclear matter density µ F. Karsch p./19

3 Critical behavior in hot and dense matter: phase diagram T ~17 MeV continuous/rapid (crossover) transition confined, χ-sb quark-gluon plasma hadron gas µ o deconfined, χ-symmetric chiral critical point color superconductor few times nuclear matter density µ continuous transition for small chemical potential and small quark masses at T c 17 MeV ɛ c.7 GeV/fm 3 nd order phase transition; Ising universality class T c (µ) under investigation 1st order phase transition??? expected - however, so far no direct evidence from lattice QCD attractive 1 gluon exchange => qq condensates F. Karsch p./19

4 Critical temperature, equation of state 8 6 T c [MeV] n f =, p4 n f =3, p4 n f =, std m PS [MeV] ɛ c (6 ± ) T 4 c (.3 1.3) GeV /fm 3 energy density for, and 3-flavor QCD T c = (173 ± 8 ± sys) MeV FK, E. Laermann, A. Peikert, Nucl. Phys. B65 (1) 579 T c = 167(13) [177(11)] MeV MILC, hep-lat/ ε/t 4 RHIC ε SB /T 4 SPS 3 flavor flavor +1-flavor flavor LHC T [MeV] F. Karsch p.3/19

5 Critical temperature, equation of state 8 6 T c [MeV] 4 18 n f =, p4 n f =3, p4 n f =, std ɛ c (6 ± ) T 4 c (.3 1.3) GeV /fm 3 16 m PS [MeV] T c = (173 ± 8 ± sys) MeV FK, E. Laermann, A. Peikert, Nucl. Phys. B65 (1) 579 T c = 167(13) [177(11)] MeV MILC, hep-lat/459 Can we be satisfied energy density for, and 3-flavor QCD with these results? ε/t 4 RHIC ε SB /T 4 SPS 3 flavor flavor +1-flavor flavor LHC T [MeV] F. Karsch p.3/19

6 Critical temperature, equation of state T c [MeV] ɛ c m P S 77 MeV (!!!) n f =, p4 n f =3, p4 n f =, std m PS [MeV] V (4 fm) 3 (thermodynamic limit) energy density for, and 3-flavor QCD T c m P S > 3 MeV (chiral limit??) a. fm (continuum limit??) improved staggered fermions, flavor symmetry breaking (need even better fermion actions) ε/t 4 RHIC ε SB /T 4 SPS 3 flavor flavor +1-flavor flavor LHC T [MeV] F. Karsch p.3/19

7 The pressure revisited 5 4 p/t 4 p SB /T p/p SB flavour +1 flavour flavour pure gauge.4. 3 flavour flavour +1 flavour pure gauge T [MeV] T/T c status: FK, E. Laermann and A. Peikert, Phys. Lett. B478 () 447. F. Karsch p.4/19

8 The pressure revisited p/t 4 p SB /T T > (-3)T c : deviations from ideal gas understood in terms of non-perturbative (ordinary) QCD contributions p/p SB 1 3 flavour +1 flavour flavour pure gauge.4. 3 flavour flavour +1 flavour pure gauge T [MeV] T/T c status: FK, E. Laermann and A. Peikert, Phys. Lett. B478 () 447. T < T c : strong deviations from ideal gas large screening masses, remnants of confinement F. Karsch p.4/19

9 Singlet free energy and asymptotic freedom pure gauge: O.Kaczmarek, FK, P. Petreczky, F. Zantow, hep-lat/4636 -flavor QCD: O.Kaczmarek, F. Zantow, hep-lat/5317 singlet free energy defines a running coupling: α eff = 3r 4 df 1 (r, T ) dr α qq (r,t) r [fm].1.1 T/T c T= F. Karsch p.5/19

10 Singlet free energy and asymptotic freedom pure gauge: O.Kaczmarek, FK, P. Petreczky, F. Zantow, hep-lat/4636 -flavor QCD: O.Kaczmarek, F. Zantow, hep-lat/5317 singlet free energy defines a running coupling: α eff = 3r 4 df 1 (r, T ) dr large distance: constant Coulomb term (string model). short distance: running coupling α(r) from (T = ), 3-loop.1 (S. Necco, R. Sommer, Nucl. Phys. B6 () 38) α qq (r,t) α π/1 r [fm].1.1 short distance physics vacuum physics T/T c T= T-dependence starts in non-perturbative regime for T < 3 T c F. Karsch p.5/19

11 )) = ) - ed ts llo M { o} v o Q Š Š ƒ Š š Š Š Ž Š Œ Ž Œ Š ŒŽ Š Žš Š Š F. Karsch p.6/19!('! & # % "$#! 6 L K+ )FG H E)FG 3DC /1 *A +B- 5 4 JJ)FG 3DC /1 *A +I- /T 4 3 3/4 s/t 3 < 897 :?@5 > / *+ 3p/T 4 1 n kml ij h j fg < 89;: /1 *+,.- ) x vwu u p.u prq T/T c ~ {l yz c `ba _S ^ \ ] [ ZV SUT VWYX RSUT Q NPO Ž Œ ˆb Š Ž Œ 1Œ ˆ bš ƒ ƒ ƒ Ž Ž œ ƒ ž š š ƒ ˆƒ ŽŸ Œ ƒ Š ƒ Œ NPO ^ N Ž Œ Œ status:

12 Deviation from ideal gas (pure gauge) (ε - 3p)/T 4 (x) (1x) (1x1) (1x) tad T/T c evidence for significant deviations from ideal gas behaviour at least up to T T c ; i.e. the regime accessible to RHIC F. Karsch p.7/19

13 Velocity of sound (pure gauge) G. Boyd et al., NPB 1996 F. Karsch p.8/19

14 Viscosity (pure gauge, exploratory) η s Perturbative Theory KSS bound T Tc A. Nakamura and S. Sakai, PRL 94 (5) 735 F. Karsch p.9/19

15 Extending the phase diagram to non-vanishing chemical potential non-zero baryon number density: µ > Z(V, T, µ) = DADψD ψ e S E(V,T,µ) = DAD det M(µ) e S E(V,T ) three (partial) solutions for large T, small µ complex fermion determinant; long standing problem F. Karsch p.1/19

16 Extending the phase diagram to non-vanishing chemical potential non-zero baryon number density: µ > Z(V, T, µ) = = DADψD ψ e S E(V,T,µ) DAD det M(µ) e S E(V,T ) three (partial) solutions for large T, small µ complex fermion determinant; long standing problem exact evaluation of detm: works well on small lattices; requires reweighting Z. Fodor, S.D. Katz, JHEP 3 () 14 Taylor expansion around µ = : works well for small µ; requires reweighting C. R. Allton et al. (Bielefeld-Swansea), Phys. Rev. D66 () 7457 imaginary chemical potential: works well for small µ; requires analytic continuation Ph. deforcrand, O. Philipsen, Nucl. Phys. B64 () 9 F. Karsch p.1/19

17 Extending the phase diagram to non-vanishing chemical potential non-zero baryon number density: µ > Z(V, T, µ) = DADψD ψ e S E(V,T,µ) = DAD det M(µ) e S E(V,T ) T [MeV] 15 1 RHIC, LHC T c (µ) T c () : 1.56(4)(µ B/T ) deforcrand, Philipsen (imag. µ) GSI future 1.78(38)(µ B /T ) Bielefeld-Swansea (O(µ ) reweighting) 5 T c, Bielefeld-Swansea T c, Forcrand, Philipsen T f, J.Cleymans et. al. µ B [GeV] F. Karsch p.1/19

18 Extending the phase diagram to non-vanishing chemical potential non-zero baryon number density: µ > Z(V, T, µ) = = DADψD ψ e S E(V,T,µ) DAD det M(µ) e S E(V,T ) T [MeV] F,K 4 / Bi-Sw 3 chiral critical point chiral critical point F,K T c, Bielefeld-Swansea T c, Forcrand, Philipsen T f, J.Cleymans et. al. µ B [GeV] F. Karsch p.11/19

19 Extending the phase diagram to non-vanishing chemical potential non-zero baryon number density: µ > Z(V, T, µ) = = DADψD ψ e S E(V,T,µ) DAD det M(µ) e S E(V,T ) T [MeV] F,K 4 / Bi-Sw 3 chiral critical point chiral critical point F,K 15 µ c shifted from 7 MeV to 4 MeV Fodor, Katz (exact determinants small lattices) 1 5 T c, Bielefeld-Swansea T c, Forcrand, Philipsen T f, J.Cleymans et. al. µ B [GeV] F. Karsch p.11/19

20 Extending the phase diagram to non-vanishing chemical potential non-zero baryon number density: µ > Z(V, T, µ) = = DADψD ψ e S E(V,T,µ) DAD det M(µ) e S E(V,T ) T [MeV] F,K 4 / Bi-Sw 3 chiral critical point chiral critical point F,K 15 µ c shifted from 7 MeV to 4 MeV Fodor, Katz (exact determinants small lattices) 1 µ c (m q ): discrepancies between calculations with real and imaginary µ 5 T c, Bielefeld-Swansea T c, Forcrand, Philipsen T f, J.Cleymans et. al. µ B [GeV] F. Karsch p.11/19

21 The pressure for µ q /T > C.R. Allton et al. (Bielefeld-Swansea), PRD68 (3) 1457 µ q =, lattice improved staggered fermions; n f =, m π 77 MeV contribution from µ q /T > Taylor expansion, O((µ/T ) 4 ) 5 4 p/t 4 p SB /T 4.8 p/t 4 µ q /T= flavour +1 flavour flavour pure gauge T [MeV] µ q /T=.8 µ q /T=.6 µ q /T=.4 high-t, ideal gas limit p 7π T 4 = n f µq T 1 µq + 4π T 4 « T/T µ q /T=. F. Karsch p.1/19

22 The pressure for µ q /T > C.R. Allton et al. (Bielefeld-Swansea), PRD68 (3) 1457 µ q =, lattice improved staggered fermions; n f =, m π 77 MeV PRD71 (5) 5458 contribution from µ q /T > NEW: Taylor expansion, O((µ/T ) 6 ) 5 4 p/t 4 p SB /T 4.8 p/t 4 µ q /T= flavour +1 flavour flavour pure gauge T [MeV] pattern for µ q = and µ q > similar; quite large contribution in hadronic phase; O((µ/T ) 6 ) correction small for µ q /T < µ q /T=.8 µ q /T=.6 µ q /T=.4 µ q /T= T/T RHIC: µ q /T <.1 F. Karsch p.1/19

23 3) Hadronic fluctuations at µ q = : Taylor expansion coefficients for µ q > S. Ejiri, FK, K.Redlich, in preparation quark number and isospin chemical potentials: µ q = 1 (µ u + µ d ), µ I = 1 (µ u µ d ) expansion coefficients evaluated at µ q,i = are related to hadronic fluctuations at µ = : baryon number, isospin, charge event-by-event fluctuations at RHIC and LHC ln Z (µ q,i /T ) = (δn q,i ) µ= = N q,i µ= 4 ln Z (µ q,i /T ) 4 = (δn q,i ) 4 µ= = N 4 q,i µ= 3 N q,i µ= k Q ln Z = (δq)k µ=, Q 3 µ u /T 1 3 µ d /T F. Karsch p.13/19

24 generic QCD phase diagram T m> T m= crossover critical point Z(), nd order T c O(4), nd order tri critical point Z(), nd order 1st order 1st order color superconductor color superconductor µ o few times nuclear matter density µ µ o few times nuclear matter density µ F. Karsch p.14/19

25 Hadronic fluctuations and chiral symmetry restoration expect nd order transition in 3-d, O(4) symmetry class; scaling field: t = T T c T c «+ A µu + T c µd T c «! + B µ u T c µ d T c singular part: f s (T, µ u, µ d ) = b 1 f s (tb 1/( α) ) t α ln Z µ q,i t 1 α, 4 ln Z µ 4 q,i t α (µ = ) O(4)/O(): α <, small (δn q,i ) dominated by T-dependence of regular part (δn q,i ) 4 develops a cusp F. Karsch p.15/19

26 Hadronic fluctuations and chiral symmetry restoration expect nd order transition in 3-d, O(4) symmetry class; scaling field: t = T T c T c «+ A µq T c µcrit T c «! singular part: f s (T, µ u, µ d ) = b 1 f s (tb 1/( α) ) t α ln Z µ q,i t α, 4 ln Z µ 4 q,i t (+α) (µ > ) O(4)/O(): α <, small (δn q,i ) develops a cusp (δn q,i ) 4 diverges on the O(4) critical line; strength µcrit T c «4 ( 1 4 at RHIC) F. Karsch p.16/19

27 Quark number and isospin fluctuations at µ B = in -flavor QCD (m π 77 MeV ) C. Allton et al. (Bielefeld-Swansea), PRD71 (5) d (p/t 4 )/d(µ q /T) 1 d (p/t 4 )/d(µ I /T) T/T T/T d 4 (p/t 4 )/d(µ q /T) d 4 (p/t 4 )/d(µ I /T) T/T T/T F. Karsch p.17/19

28 4 3 1 Fluctuations of the quark number density (µ q > ) quark number density fluctuations: up to O `(µ q /T ) χ q /T µ q /T=1. µ q /T=.5 µ q /T=. T/T χ q T = ( (µ q /T ) p T 4 ) T fixed high-t, massless limit: polynomial in (µ q /T ) χ q,sb T = n f + 3n f π ( ) µq large density fluctuations closer to the chiral critical point χ q T = 1 ( N V T 3 q N q ) ( ) p = n q n q χ q T χ q will diverge on chiral critical point T F. Karsch p.18/19

29 4 3 1 Fluctuations of the quark number density (µ q > ) quark number density fluctuations: up to O `(µ q /T ) 4 χ q /T µ q /T=1. µ q /T=.5 µ q /T=. T/T χ q T = ( (µ q /T ) p T 4 ) T fixed high-t, massless limit: polynomial in (µ q /T ) χ q,sb T = n f + 3n f π ( ) µq large density fluctuations closer to the chiral critical point χ q T = 1 ( N V T 3 q N q ) ( ) p = n q n q χ q T χ q will diverge on chiral critical point T F. Karsch p.18/19

30 Fluctuations of the quark number density (µ q > ) quark number density fluctuations: χ q T = ( (µ q /T ) p T 4 ) T fixed 4 3 χ q /T µ q /T=1. µ q /T=.5 µ q /T=. T [MeV] RHIC, 15 LHC F,K 4 / Bi-Sw 3 chiral critical point F,K SPS GSI future 1 1 T/T T c, Bielefeld-Swansea T c, Forcrand, Philipsen T f, J.Cleymans et. al. µ B [GeV] F. Karsch p.18/19

31 Conclusions - lattice calculations at µ = produced a lot of evidence for substantial deviations from ideal gas behavior for T < T c, i.e. in the temperature regime accessible to RHIC - the next generation of lattice calculations on QCDOC and apenext will produce results for QCD thermodynamics with almost realistic quark masses (m π MeV) - QCD thermodynamics for µ and large T can be analyzed reliably - bulk thermodynamics at RHIC corresponds to µ q - higher moments of baryon number and charge fluctuations show large variations at T c F. Karsch p.19/19

F. Karsch for USQCD, LQCD II p. 1/27. Lattice QCD at High Temperature and Density. Frithjof Karsch for USQCD Brookhaven National Laboratory

F. Karsch for USQCD, LQCD II p. 1/27. Lattice QCD at High Temperature and Density. Frithjof Karsch for USQCD Brookhaven National Laboratory F. Karsch for USQCD, LQCD II p. 1/27 Lattice QCD at High Temperature and Density Frithjof Karsch for USQCD Brookhaven National Laboratory F. Karsch for USQCD, LQCD II p. 2/27 Towards A New State of Matter

More information

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 The chiral critical point in 3 flavor QCD from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 Christian Schmidt Universität Wuppertal

More information

High Temperature/Density QCD

High Temperature/Density QCD High Temperature/Density QCD Frithjof Karsch, BNL and Bielefeld University Temperature ~17 MeV Early Universe Future LHC Experiments Crossover Current RHIC Experiments RHIC Energy Scan Critical Point 1

More information

The QCD phase diagram at low baryon density from lattice simulations

The QCD phase diagram at low baryon density from lattice simulations ICHEP 2010 Paris, July 2010 The QCD phase diagram at low baryon density from lattice simulations Owe Philipsen Introduction Lattice techniques for finite temperature and density The phase diagram: the

More information

QCD Phase Diagram. M. Stephanov. U. of Illinois at Chicago. QCD Phase Diagram p. 1/13

QCD Phase Diagram. M. Stephanov. U. of Illinois at Chicago. QCD Phase Diagram p. 1/13 QCD Phase Diagram p. 1/13 QCD Phase Diagram M. Stephanov U. of Illinois at Chicago QCD Phase Diagram p. 2/13 QCD phase diagram (contemporary view) T, GeV QGP 0.1 crossover critical point hadron gas vacuum

More information

Thermodynamics of (2+1)-flavor QCD from the lattice

Thermodynamics of (2+1)-flavor QCD from the lattice INT Seattle, December 7, 2006 Thermodynamics of (2+1)-flavor QCD from the lattice Christian Schmidt for the RBC-Bielefeld Collaboration --- results from QCDOC --RIKEN BNL Saumen Datta Frithjof Karsch Chulwoo

More information

arxiv: v1 [hep-lat] 26 Dec 2009

arxiv: v1 [hep-lat] 26 Dec 2009 arxiv:091.5037v1 [hep-lat] 6 Dec 009 On Equation of State at physical quark masses Physics Department, Brookhaven National Laboratory, Upton NY 11973 E-mail: petreczk@bnl.gov QCD equation of state is calculated

More information

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V.

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 1 Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Introduction

More information

The strange degrees of freedom in QCD at high temperature. Christian Schmidt

The strange degrees of freedom in QCD at high temperature. Christian Schmidt The strange degrees of freedom in QCD at high temperature Christian Schmidt Christian Schmidt LAT 213 1 Abstract We use up to fourth order cumulants of net strangeness fluctuations and their correlations

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

Exploring the QCD phase diagram with conserved charge fluctuations

Exploring the QCD phase diagram with conserved charge fluctuations New Frontiers in QCD 2013 Exploring the QCD phase diagram with conserved charge fluctuations Frithjof Karsch Brookhaven National Laboratory & Bielefeld University OUTLINE conserved charge fluctuations

More information

arxiv:hep-lat/ v1 5 Oct 2006

arxiv:hep-lat/ v1 5 Oct 2006 arxiv:hep-lat/6141v1 5 Oct 26 Singlet Free Energies and the Renormalized Polyakov Loop in full QCD for RBC-Bielefeld collaboration Niels Bohr Institute E-mail: kpetrov@nbi.dk We calculate the free energy

More information

The QCD phase diagram at real and imaginary chemical potential

The QCD phase diagram at real and imaginary chemical potential Strongnet Meeting Trento, October 211 The QCD phase diagram at real and imaginary chemical potential Owe Philipsen Is there a critical end point in the QCD phase diagram? Is it connected to a chiral phase

More information

Bulk Thermodynamics in SU(3) gauge theory

Bulk Thermodynamics in SU(3) gauge theory Bulk Thermodynamics in SU(3) gauge theory In Monte-Carlo simulations ln Z(T) cannot be determined but only its derivatives computational cost go as large cutoff effects! Boyd et al., Nucl. Phys. B496 (1996)

More information

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky What is the limiting temperature on hadronic matter? What is the nature of the deconfined matter? In this talk: Chiral

More information

arxiv: v1 [hep-lat] 19 Feb 2012

arxiv: v1 [hep-lat] 19 Feb 2012 Cent. Eur. J. Phys. -5 Author version Central European Journal of Physics Determination of Freeze-out Conditions from Lattice QCD Calculations Review Article arxiv:.473v [hep-lat] 9 Feb Frithjof Karsch,

More information

Phase diagram and EoS from a Taylor expansion of the pressure

Phase diagram and EoS from a Taylor expansion of the pressure he XXVI International Symposium on Lattice Field heory (Lattice 28), Williamsburg, Virginia, USA, 28 July 14 19. Phase diagram and EoS from a aylor expansion of the pressure Christian Schmidt Universität

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

arxiv: v1 [hep-lat] 5 Nov 2007

arxiv: v1 [hep-lat] 5 Nov 2007 arxiv:0711.0661v1 [hep-lat] 5 Nov 2007 Recent lattice results on finite temperature and density QCD, part II Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: karsch@bnl.gov

More information

Heavy quark free energies, screening and the renormalized Polyakov loop

Heavy quark free energies, screening and the renormalized Polyakov loop Heavy quark free energies, screening and the renormalized Polyakov loop Olaf Kaczmarek Felix Zantow Universität Bielefeld October 6, 26 VI Workshop III, Rathen, October, 26 p./9 Charmonium suppression..75.5

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

The QCD phase diagram from the lattice

The QCD phase diagram from the lattice The QCD phase diagram from the lattice Sourendu Gupta ILGTI: TIFR CBM Meeting VECC Kolkata July 31, 2010 Zero baryon density Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry Broken

More information

Insights (?) from lattice QCD at finite baryo-chemical potential (title given to me)

Insights (?) from lattice QCD at finite baryo-chemical potential (title given to me) Exploring the QCD Phase Diagram through Energy Scans Insights (?) from lattice QCD at finite baryo-chemical potential (title given to me) Frithjof Karsch Bielefeld University & Brookhaven National Laboratory

More information

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Equation of state Pasi Huovinen Uniwersytet Wroc lawski Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Dec 14, 2016, University of Science and Technology of China, Hefei, China The

More information

Heavy quark free energies and screening from lattice QCD

Heavy quark free energies and screening from lattice QCD Heavy quark free energies and screening from lattice QCD Olaf Kaczmarek Universität Bielefeld February 9, 29 RBC-Bielefeld collaboration O. Kaczmarek, PoS CPOD7 (27) 43 RBC-Bielefeld, Phys.Rev.D77 (28)

More information

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Pasi Huovinen J. W. Goethe Universität, Frankfurt Quantifying the properties of Hot QCD matter June 11, 1, Institute

More information

arxiv:hep-lat/ v1 25 Jun 2005

arxiv:hep-lat/ v1 25 Jun 2005 TKYNT-05-16, 2005/June Lee-Yang zero analysis for the study of QCD phase structure Shinji Ejiri Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan (March 1, 2008) Abstract arxiv:hep-lat/0506023v1

More information

Probing the QCD phase diagram with higher moments

Probing the QCD phase diagram with higher moments Probing the QCD phase diagram with higher moments in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach Outline Why higher moments? Algorithmic differentiation Lattice Taylor expansion

More information

Recent Progress in Lattice QCD at Finite Density

Recent Progress in Lattice QCD at Finite Density Recent Progress in Lattice QCD at Finite Density Shinji Ejiri (Brookhaven ational Laboratory) Lattice 008, July 14-19, 008 QCD thermodynamics at 0 Heavy-ion experiments (HIC) (low energy RHIC, FAIR) Properties

More information

QCD thermodynamics OUTLINE:

QCD thermodynamics OUTLINE: QCD thermodynamics Frithjof Karsch, BNL OUTLINE: Equation of state and transition temperature QCD phase diagram close to the chiral limit Charge fluctuations and the RHIC search for the critical point

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

The QCD Equation of State at μ B > 0 from Lattice QCD

The QCD Equation of State at μ B > 0 from Lattice QCD The QCD Equation of State at μ B > 0 from Lattice QCD Hiroshi Ohno (BNL-Bielefeld-CCNU Collaboration) CCS, University of Tsukuba Brookhaven National Laboratory arxiv:1701.04325 [hep-lat] 7 th Workshop

More information

Can we locate the QCD critical endpoint with a Taylor expansion?

Can we locate the QCD critical endpoint with a Taylor expansion? Can we locate the QCD critical endpoint with a Taylor expansion? Bernd-Jochen Schaefer Karl-Franzens-Universität Graz, Austria 7 th February - 6 th March, 1 48. Internationale Universitätswochen für Theoretische

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

The QCD phase diagram from the lattice

The QCD phase diagram from the lattice The QCD phase diagram from the lattice Sourendu Gupta ILGTI: TIFR ICPAGQP Student Day Doan Paula, Goa December 5, 2010 Zero baryon density Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry

More information

Nuclear Matter between Heaven and Earth: The QCD Phase Diagram

Nuclear Matter between Heaven and Earth: The QCD Phase Diagram Antrittsvorlesung Frankfurt, October 2010 Nuclear Matter between Heaven and Earth: The QCD Phase Diagram Owe Philipsen Introduction to QCD and lattice simulations Phase diagram: the many faces of QCD Computational

More information

N f = 1. crossover. 2nd order Z(2) m, m

N f = 1. crossover. 2nd order Z(2) m, m April 24 QCD Thermodynamics from Imaginary Owe Philipsen (University of Sussex) with Philippe de Forcrand (ETH/CERN) Motivation Imaginary chemical potential "Analyticity" of the pseudo-critical line T

More information

Opportunities for Lattice QCD Thermodynamics. 1 QCD at nonzero temperature and density

Opportunities for Lattice QCD Thermodynamics. 1 QCD at nonzero temperature and density Opportunities for Lattice QCD Thermodynamics Lattice QCD Executive Committee R. Brower, (Boston U.) N. Christ (Columbia U.), M. Creutz (BNL), P. Mackenzie (Fermilab), J. Negele (MIT), C. Rebbi (Boston

More information

Constraints on the QCD phase diagram from imaginary chemical potential

Constraints on the QCD phase diagram from imaginary chemical potential SM+FT 211 Bari, September 211 Constraints on the QCD phase diagram from imaginary chemical potential Owe Philipsen Introduction: summary on QCD phase diagram Taking imaginary µ more seriously Triple, critical

More information

QCD confinement and chiral crossovers, two critical points?

QCD confinement and chiral crossovers, two critical points? QCD confinement and chiral crossovers, two critical points? CFTP, Dep. Física, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal E-mail: bicudo@ist.utl.pt We study the QCD phase diagram,

More information

Lattice QCD Thermodynamics at zero and nonzero baryon density

Lattice QCD Thermodynamics at zero and nonzero baryon density IN Program 10-2a: Quantifying the Poperties of Hot QCD Matter Institute for Nuclear heory, July 16, 2010, Seattle, WA, USA Lattice QCD hermodynamics at zero and nonzero baryon density Christian Schmidt

More information

Weakly coupled QGP? Péter Petreczky

Weakly coupled QGP? Péter Petreczky Weakly coupled QGP? Péter Petreczky QGP is expected to be strongly coupled around T c : how does this features manifest itself in terms of different quantities, how do we observe it on lattice? QGP: state

More information

QCD Thermodynamics Péter Petreczky

QCD Thermodynamics Péter Petreczky QCD Thermodynamics Péter Petreczky What is deconfinement in QCD? What is the nature of the deconfined matter? Tools: screening of color charges, EoS, fluctuation of conserved quantum numbers QGP: state

More information

arxiv: v1 [hep-ph] 18 Feb 2016

arxiv: v1 [hep-ph] 18 Feb 2016 Nuclear Physics A Nuclear Physics A 00 (2016) 1 5 www.elsevier.com/locate/procedia arxiv:1602.05811v1 [hep-ph] 18 Feb 2016 Abstract Confronting fluctuations of conserved charges in central nuclear collisions

More information

The Quark-Gluon plasma in the LHC era

The Quark-Gluon plasma in the LHC era The Quark-Gluon plasma in the LHC era Journées de prospective IN2P3-IRFU, Giens, Avril 2012 t z IPhT, Saclay 1 Quarks and gluons Strong interactions : Quantum Chromo-Dynamics Matter : quarks ; Interaction

More information

The QCD CEP in the 3 flavoured constituent quark model

The QCD CEP in the 3 flavoured constituent quark model The QCD CEP in the 3 flavoured constituent quark model Péter Kovács HAS-ELTE Statistical and Biological Physics Research Group Rab, aug. 3 - sept. 3, 27 Motivation for using effective models to describe

More information

arxiv:hep-ph/ v1 23 Jan 2003 QCD PHASE DIAGRAM AT SMALL DENSITIES FROM SIMULATIONS WITH IMAGINARY µ

arxiv:hep-ph/ v1 23 Jan 2003 QCD PHASE DIAGRAM AT SMALL DENSITIES FROM SIMULATIONS WITH IMAGINARY µ arxiv:hep-ph/0301209v1 23 Jan 2003 QCD PHASE DIAGRAM A SMALL DENSIIES FROM SIMULAIONS WIH IMAGINARY µ PH. DE FORCRAND EH Zürich, CH-8093 Zürich, Switzerland and CERN, CH-1211 Genève 23, Switzerland E-mail:

More information

The critical point of QCD: what measurements can one make?

The critical point of QCD: what measurements can one make? The critical point of QCD: what measurements can one make? Sourendu Gupta ILGTI: TIFR Strong Interactions 2010 TIFR, Mumbai February 10, 2010 Lattice measurements The critical point NLS at finite µ B Experimental

More information

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 5 POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 1 Institute of Theoretical Physics, University of Wroclaw,

More information

Analytic continuation from an imaginary chemical potential

Analytic continuation from an imaginary chemical potential Analytic continuation from an imaginary chemical potential A numerical study in 2-color QCD (hep-lat/0612018, to appear on JHEP) P. Cea 1,2, L. Cosmai 2, M. D Elia 3 and A. Papa 4 1 Dipartimento di Fisica,

More information

QCD Critical Point : Inching Towards Continuum

QCD Critical Point : Inching Towards Continuum QCD Critical Point : Inching Towards Continuum Rajiv V. Gavai T. I. F. R., Mumbai, India Introduction Lattice QCD Results Searching Experimentally Summary Work done with Saumen Datta & Sourendu Gupta New

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

Pushing dimensional reduction of QCD to lower temperatures

Pushing dimensional reduction of QCD to lower temperatures Intro DimRed Center symm. SU(2) Outlook Pushing dimensional reduction of QCD to lower temperatures Philippe de Forcrand ETH Zürich and CERN arxiv:0801.1566 with A. Kurkela and A. Vuorinen Really: hep-ph/0604100,

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT BI-TP 2000/41 Quark Mass and Flavour Dependence of the QCD Phase Transition F. Karsch, E. Laermann and A. Peikert Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany ABSTRACT We analyze

More information

QCD in an external magnetic field

QCD in an external magnetic field QCD in an external magnetic field Gunnar Bali Universität Regensburg TIFR Mumbai, 20.2.12 Contents Lattice QCD The QCD phase structure QCD in U(1) magnetic fields The B-T phase diagram Summary and Outlook

More information

Effective theories for QCD at finite temperature and density from strong coupling

Effective theories for QCD at finite temperature and density from strong coupling XQCD 2011 San Carlos, July 2011 Effective theories for QCD at finite temperature and density from strong coupling Owe Philipsen Introduction to strong coupling expansions SCE for finite temperature: free

More information

arxiv:hep-lat/ v1 7 Jan 2004

arxiv:hep-lat/ v1 7 Jan 2004 BI-TP 2003/38 Remarks on the multi-parameter reweighting method for the study of lattice QCD at non-zero temperature and density Shinji Ejiri Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld,

More information

Taylor expansion in chemical potential for 2 flavour QCD with a = 1/4T. Rajiv Gavai and Sourendu Gupta TIFR, Mumbai. April 1, 2004

Taylor expansion in chemical potential for 2 flavour QCD with a = 1/4T. Rajiv Gavai and Sourendu Gupta TIFR, Mumbai. April 1, 2004 Taylor expansion in chemical potential for flavour QCD with a = /4T Rajiv Gavai and Sourendu Gupta TIFR, Mumbai April, 004. The conjectured phase diagram, the sign problem and recent solutions. Comparing

More information

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Freeze-out parameters Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Claudia Ratti University of Houston, Texas (USA) S. Borsanyi, Z. Fodor, S. Katz, S. Krieg, C. R.,

More information

The Beam Energy Scan at RHIC

The Beam Energy Scan at RHIC 2013 ICNT Program @ FRIB, MSU July 31, 2013 The Beam Energy Scan at RHIC Jinfeng Liao Indiana University, Physics Dept. & CEEM RIKEN BNL Research Center 1 Outline Brief Intro: High Energy Heavy Ion Collisions

More information

Thermodynamics using p4-improved staggered fermion action on QCDOC

Thermodynamics using p4-improved staggered fermion action on QCDOC Thermodynamics using p4-improved staggered fermion action on QCDOC for the RBC-Bielefeld Collaboration Brookhaven National Laboratory and Columbia University, USA E-mail: chulwoo@bnl.gov We present an

More information

Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3)

Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3) Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3) Akira Ohnishi in Collaboration with N. Kawamoto, K.Miura, T.Ohnuma Hokkaido University,

More information

Lattice QCD at non-zero temperature and density

Lattice QCD at non-zero temperature and density Lattice QCD at non-zero temperature and density Frithjof Karsch Bielefeld University & Brookhaven National Laboratory QCD in a nutshell, non-perturbative physics, lattice-regularized QCD, Monte Carlo simulations

More information

Flavor quark at high temperature from a holographic Model

Flavor quark at high temperature from a holographic Model Flavor quark at high temperature from a holographic Model Ghoroku (Fukuoka Institute of Technology) Sakaguchi (Kyushu University) Uekusa (Kyushu University) Yahiro (Kyushu University) Hep-th/0502088 (Phys.Rev.D71:106002,2005

More information

Fluctuations and QCD phase structure

Fluctuations and QCD phase structure Fluctuations and QCD phase structure Guo-yun Shao ( 邵国运 ) Xi an Jiaotong University Outline: Motivation Methods to describe fluctuations of conserved charges in heavy-ion collisions Numerical results and

More information

Lattice QCD based equation of state at finite baryon density

Lattice QCD based equation of state at finite baryon density Lattice QCD based equation of state at finite baryon density Pasi Huovinen J. W. Goethe Universität & Frankfurt Institute for Advanced Studies Hydrodynamics for Strongly Coupled Fluids May 12, 214, ECT*,

More information

Thermodynamics of strongly-coupled lattice QCD in the chiral limit

Thermodynamics of strongly-coupled lattice QCD in the chiral limit CERN-PH-TH-2017-012 Thermodynamics of strongly-coupled lattice QCD in the chiral limit Philippe de Forcrand Institut für Theoretische Physik, ETH Zürich, CH-8093 Zürich, Switzerland CERN, TH Division,

More information

Critical end point of Nf=3 QCD at finite temperature and density

Critical end point of Nf=3 QCD at finite temperature and density Critical end point of Nf=3 QCD at finite temperature and density a,b, Xiao-Yong Jin b, Yoshinobu Kuramashi b,c,d, Yoshifumi Nakamura b, and Akira Ukawa b a Institute of Physics, Kanazawa University, Kanazawa

More information

Pions in the quark matter phase diagram

Pions in the quark matter phase diagram Pions in the quark matter phase diagram Daniel Zabłocki Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Poland Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory of Theoretical

More information

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa Bottomonium melting at T >> Tc Pedro Bicudo CFTP, IST, Lisboa Motivation The finite T string tension The quark mass gap equation with finite T and finite quark mass Chiral symmetry and confinement crossovers

More information

arxiv:hep-lat/ v1 5 Feb 2007

arxiv:hep-lat/ v1 5 Feb 2007 BI-TP 27/1 BNL-NT-7/5 Color Screening and Quark-Quark Interactions in Finite Temperature QCD Matthias Döring, Kay Hübner, Olaf Kaczmarek, and Frithjof Karsch Fakultät für Physik, Universität Bielefeld,

More information

QCD thermodynamics. Frithjof Karsch, BNL/Bielefeld

QCD thermodynamics. Frithjof Karsch, BNL/Bielefeld QCD thermodynamics Frithjof Karsch, BNL/Bielefeld Key Questions NSAC Long Range Plan 2007 What are the phases of strongly interacting matter, and what role do they play in the cosmos? What does QCD predict

More information

Center-symmetric dimensional reduction of hot Yang-Mills theory

Center-symmetric dimensional reduction of hot Yang-Mills theory Center-symmetric dimensional reduction of hot Yang-Mills theory Aleksi Kurkela, Univ. of Helsinki Lattice 2008 arxiv:0704.1416, arxiv:0801.1566 with Philippe de Forcrand and Aleksi Vuorinen Aleksi Kurkela,Univ.

More information

Baryonic Spectral Functions at Finite Temperature

Baryonic Spectral Functions at Finite Temperature Baryonic Spectral Functions at Finite Temperature Masayuki Asakawa Department of Physics, Osaka University July 2008 @ XQCD 2008 QCD Phase Diagram T LHC 160-190 MeV 100MeV ~ 10 12 K RHIC crossover CEP(critical

More information

EQUATION OF STATE AND FLUCTUATIONS FROM THE LATTICE Claudia Ratti University of Houston (USA)

EQUATION OF STATE AND FLUCTUATIONS FROM THE LATTICE Claudia Ratti University of Houston (USA) EQUATION OF STATE AND FLUCTUATIONS FROM THE LATTICE Claudia Ratti University of Houston (USA) Collaborators: Paolo Alba, Rene Bellwied, Szabolcs Borsanyi, Zoltan Fodor, Jana Guenther, Sandor Katz, Stefan

More information

arxiv:hep-lat/ v2 17 Jun 2005

arxiv:hep-lat/ v2 17 Jun 2005 BI-TP 25/8 and BNL-NT-5/8 Static quark anti-quark interactions in zero and finite temperature QCD. I. Heavy quark free energies, running coupling and quarkonium binding Olaf Kaczmarek Fakultät für Physik,

More information

The QCD Equation of State for Two Flavours at Non-Zero Chemical Potential

The QCD Equation of State for Two Flavours at Non-Zero Chemical Potential BROOKH EN N A T 0 N A L LAB 0 R A T 0 RY BNL-7508-005-CP The QCD Equation of State for Two Flavours at Non-Zero Chemical Potential S. Ejiri C.R. Allton M. Doring S.J. Hands 0.Kaczmarek F. Karsch E. Laermann

More information

QCD in Heavy-ion collisions

QCD in Heavy-ion collisions QCD in Heavy-ion collisions RPP 2012, Montpellier transition t p z q IPhT, Saclay 1 Outline 1 2 3 4 5 6 7 transition 2 1 transition 2 3 4 5 6 transition 7 2 Asymptotic freedom Running coupling : α s =

More information

Can we locate the QCD critical endpoint with the Taylor expansion?

Can we locate the QCD critical endpoint with the Taylor expansion? Can we locate the QCD critical endpoint with the Taylor expansion? in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach 23.6.21 Mathias Wagner Institut für Kernphysik TU Darmstadt Outline

More information

Confined chirally symmetric dense matter

Confined chirally symmetric dense matter Confined chirally symmetric dense matter L. Ya. Glozman, V. Sazonov, R. Wagenbrunn Institut für Physik, FB Theoretische Physik, Universität Graz 28 June 2013 L. Ya. Glozman, V. Sazonov, R. Wagenbrunn (Institut

More information

Chemical Nonequilibrium in QGP and The Phase Boundary to Hadron Matter

Chemical Nonequilibrium in QGP and The Phase Boundary to Hadron Matter Chemical Nonequilibrium in QGP and The Phase Boundary to Hadron Matter Vienna Equilibration Workshop, August 12, 2005 Jean Letessier and JR, nucl-th/0504028, other works Is there a chemical nonequilibrium

More information

Some selected results of lattice QCD

Some selected results of lattice QCD Some selected results of lattice QCD Heidelberg, October 12, 27 Kurt Langfeld School of Mathematics and Statistics University of Plymouth p.1/3 Glueball spectrum: no quarks (quenched approximation) 12

More information

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions QCD Green s Functions, Confinement and Phenomenology ECT*, Trento, 1 September 29 SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions Wolfram Weise Modelling the PHASES of QCD in contact

More information

Heavy quark bindings at high temperature

Heavy quark bindings at high temperature Universität Bielefeld Olaf Kaczmarek Felix Zantow Matthias Döring Kay Hübner Frithjof Karsch RBC-Bielefeld Sourendu Gupta February 9, 27 apenext workshop, Firenze, February 9, 27 p.1/25 Machines for lattice

More information

QCD phase diagram from the lattice at strong coupling

QCD phase diagram from the lattice at strong coupling CERN-PH-TH-25-67 QCD phase diagram from the lattice at strong coupling Philippe de Forcrand Institute for Theoretical Physics, ETH Zürich, CH-893 Zürich, Switzerland and CERN, Physics Department, TH Unit,

More information

STRANGENESS NEUTRALITY AND THE QCD PHASE STRUCTURE

STRANGENESS NEUTRALITY AND THE QCD PHASE STRUCTURE STRANGENESS NEUTRALITY AND THE QCD PHASE STRUCTURE Fabian Rennecke Brookhaven National Laboratory [Fu, Pawlowski, FR, hep-ph/1808.00410] [Fu, Pawlowski, FR, hep-ph/1809.01594] NUCLEAR PHYSICS COLLOQUIUM

More information

Magnetized QCD phase diagram

Magnetized QCD phase diagram Magnetized QCD phase diagram Márcio Ferreira, Pedro Costa, and Constança Providência CFisUC, University of Coimbra, Portugal New Frontiers in QCD 2018 May 30 - June 29 Yukawa Institute for Theoretical

More information

The Conformal Window in SU(3) Yang-Mills

The Conformal Window in SU(3) Yang-Mills The Conformal Window in SU(3) Yang-Mills Ethan T. Neil ethan.neil@yale.edu Department of Physics Yale University Lattice 2008 Williamsburg, VA July 15, 2008 Ethan Neil (Yale) Conformal Window in Yang-Mills

More information

Phase diagram of QCD: the critical point

Phase diagram of QCD: the critical point Phase diagram of QCD: the critical point p. 1/1 Phase diagram of QCD: the critical point M. Stephanov U. of Illinois at Chicago Phase diagram of QCD: the critical point p. 2/1 Phase Diagram of QCD Basic

More information

Chiral Symmetry Breaking. Schwinger-Dyson Equations

Chiral Symmetry Breaking. Schwinger-Dyson Equations Critical End Point of QCD Phase-Diagram: A Schwinger-Dyson Equation Perspective Adnan Bashir Michoacán University, Mexico Collaborators: E. Guadalupe Gutiérrez, A Ahmad, A. Ayala, A. Raya, J.R. Quintero

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

Probing QCD Phase Diagram in Heavy Ion Collisions

Probing QCD Phase Diagram in Heavy Ion Collisions LQCD LHC Probing QCD Phase Diagram in Heavy Ion Collisions QCD Phase Diagram from LQCD Fluctuations of conserved charges as probe of thermalization and QCD phase boundary Linking LQCD results to HIC data

More information

The phase diagram of two flavour QCD

The phase diagram of two flavour QCD The phase diagram of two flavour QCD Jan M. Pawlowski Universität Heidelberg & ExtreMe Matter Institute Quarks, Gluons and the Phase Diagram of QCD St. Goar, September 2nd 2009 Outline Phase diagram of

More information

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany G2 gauge theories Axel Maas 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany Overview Why G2? Overview Why G2? G2 Yang-Mills theory Running coupling [Olejnik, Maas JHEP'08,

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Towards thermodynamics from lattice QCD with dynamical charm Project A4 Towards thermodynamics from lattice QCD with dynamical charm Project A4 Florian Burger Humboldt University Berlin for the tmft Collaboration: E.-M. Ilgenfritz (JINR Dubna), M. Müller-Preussker (HU Berlin),

More information

MD Simulations of classical sqgp

MD Simulations of classical sqgp MD Simulations of classical sqgp From RHIC to LHC: Achievements and Opportunities Tuesday, November 7, 2006 Kevin Dusling Ismail Zahed Outline Introduction Motivation for sqgp Motivation for classical

More information