INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -33 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

Size: px
Start display at page:

Download "INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -33 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc."

Transcription

1 INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -33 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

2 Summary of the previous lecture Regression on Principal components x ij ( X ) ij xj s j y = Y y = i i Z = X A Y = ZΒ 2

3 MULTIVARIATE STOCHASTIC MODELS 3

4 Stochastic models discussed for single site in relation with the auto correlations and auto covariance. Thomas Fiering models Stationary and non-stationary models ARMA models Box Jenkins models 4

5 First order Markov process: Random component X t+ = µ x +ρ (X t µ x ) + ε t+ Deterministic component ε Mean 0 and variance σ ε 2 2 X = µ + ρ X µ + u σ ρ t+ x t x t+ x 5

6 First order Markov model with non-stationarity, for stream flow generation: σ X X t ρ j is serial correlation between flows of j th month and j+ th month. t i, j+ N(0, ) j+ 2 i, j+ = µ j+ + ρ j ij µ j + i, j+ σ j+ ρj σ j 6

7 ARIMA Models ARMA (p, q) Residuals of order q X t = φ X t- + φ 2 X t φ p X t-p + θ e t- + θ 2 e t θ q e t-q AR of order p + e t {e t } is the residual series Assumptions : {e t } has zero mean with uncorrelated terms p Xˆ = φ X + θ e t+ j t j j t j j= j= q 7

8 Data generation (or forecasting) on a random variate depending on two or more sites is usually required. For example, in the design of a reservoir, the flow from all the streams fed to the reservoir must be considered. If the time series for the random variables are independent, then the generation techniques for single site can be used. When they are not independent, it is important to consider the simultaneous behavior of the random variables. 8

9 Correlation of a random variable between two sites is cross-correlation. Lag zero cross-correlation is the correlation of a random variable at two points in the same time period. Lag k cross-correlation, r j,h (k) is the correlation between random variable at site j with the random variable at site h, with lag time k. 9

10 r jh, ( k) = n ( x ) ji, xj xhi, + k xh i= ( n ) k s s j h where n is the total number of pairs of observations on X j and X k, x j,i is the i th observation on X j xj, sj are the mean and standard deviation of the observations on X j 0

11 Example Obtain the lag one cross correlation of annual rainfall data in mm at two sites A and B. Year Annual rainfall at site A (mm) Annual rainfall at site B (mm) Year Annual rainfall at site A (mm) Annual rainfall at site B (mm)

12 Example (Contd.) Site A B Mean Std.dev lag one cross correlation of sites A and B is given by r AB, = n ( x ) Ai, xa xbi, + xb i= ( n ) s s A B 2

13 S.No. Annual Annual xai, xa (i) rainfall at A rainfall at B x x Bi, x Ai, xa + B xbi, + xb Σ

14 Example (Contd.) n ( x ) Ai, xa xbi, + xb i= = r AB, = = = n ( x ) Ai, xa xbi, + xb i= ( n ) s s A B 4

15 Multisite Markov model (Two sites): Model preserves mean, variance, skewness, lag one serial correlation and lag zero cross-correlation (Haan 977). One site is to be selected as key site. Selection may be based on the length of the data and the quality of the record. Consider j as the key site and h as the subordinate site to key site j. A sequence of observations is generated for site j using single site generation technique. Ref.: Haan, C.T. (977) Statistical methods in Hydrology, Iowa State University Press 5

16 A cross-correlation model is used to generate values of site h based on generated values at site j. s X = x + r 0 X x + us r 0 h 2 ht, h jh, jt, j t h jh, s j j and h refer to two sites, in this model First order Markov model with non-stationarity (single site) σ X X t j+ 2 i, j+ = µ j+ + ρ j ij µ j + i, j+ σ j+ ρj σ j i is year j is month in this model 6

17 where u t is a standardized random variate adjusted to incorporate the serial correlation at site h. u t ( X x ) ht, h 2 tt ζ sh = ζ + t t is a standardized random variate ζ = r r r 0 2 h j j, h r 0 2 jh, 7

18 Multisite Markov model: Multisite generation requires simultaneous generation of data at several sites while preserving the correlation between the data at various sites. Consider x j,t x jt, = ( x ) jt, xj s j 8

19 The first order Markov model for site h is x = ρ x + ε ρ 2 ht, + h ht, ht, + h The first order Markov model for site j is x = ρ x + ε ρ 2 jt, + j jt, jt, + j 2 X = µ + ρ X µ + u σ ρ t+ x t x t+ x µ= 0 and σ = because it is standardized data The equations are written in matrix form 9

20 X EX Gε = + t+ t where X t is a p x vector of standardized values of the variable generated at time t, E is a p x p diagonal matrix whose j th diagonal element is ρ j (), G is a p x p diagonal matrix whose j th diagonal element 2 is ρ j ε is a p x vector of random variates 20

21 ε is defined to preserve the first order serial correlation (auto correlation) of the x j s and the lag zero cross-correlation between x j and x h. ε is made of elements that are ε j,t+ ; each ε j,t+ is independent of x j,t ; ε j is N(0,) The cross correlation between ε j and ε h is ρ* j,h (0), { ρ } * j ρh ρj, h 0 ρ jh, ( 0) = 2 2 ρ ρ { }{ } j h ρ* j,h (0) reproduces the desired ρ j,h (0), which is the lag zero cross correlation between x j and x h. 2

22 ε = 2 AD e λ where D 2 is a p x p diagonal matrix whose j th λ diagonal element is the square root of the j th largest eigenvalue of the p x p correlation matrix whose elements are ρ* j,h (0) A is a p x p matrix consisting of eigenvectors of correlation matrix, e is p x vector of independent observations from N (0,) 22

23 Matalas (967) has given a multisite normal generation model that preserves the means, variances, lag one serial correlation, lag one crosscorrelations and lag zero cross-correlations. X = AX + Bε t+ t t+ where X t and X t+ are p x vectors representing standardized data corresponding to p sites at time steps t and t+ resp. Ref.: Matalas, N.C. (967) Mathematical assessment of synthetic hydrology, Water Resources Research 3(4):

24 ε t+ is a form of N(0,) with ε t+ independent of X t. A and B are coefficient matrices of size p x p. X t+ (, t+ ) ( 2, t+ ) x x.. = x( i, t+ ).. x( p, t+ ) X t (, t) ( 2, t) x x.. = xit (, ).. x( p, t) ε t + (, t + ) ( 2, t + ) ε ε.. = ε ( it, + ).. ε ( pt, + ) 24

25 The equation form is where p = + + x a x i, t b ε i, t it, + i, j i, j j= j= a i,j and b i,j denote the (i, j)th elements of the matrices A and B. B is assumed to be lower triangular matrix. i 25

26 Coefficient matrices A and B: The expectation of X t X t is denoted by M 0 M = E X X ' 0 t t If m 0 (i, j) is a element of M 0 matrix in the i th row and j th column, m0 ( i, j) = x( i, ) x( j, ) x( i,2 ) x( j,2 )... x( i, n) x( j, n) n + + n m0 i j = x i t x j t (, ) (, ) (, ) n t = 26

27 m 0 ( i, j) X x X x = n s s n it, i jt, j t= i j i.e., m 0 (i, j) is correlation coefficient between the data at sites i and j at time t. Therefore M 0 is the cross-covariance matrix of lag zero 27

28 The expectation of X t X t- is denoted by M M = E X X ' t t If m (i, j) is a element of M matrix in the i th row and j th column, m i j x i x j x i x j x i n x j n n (, ) = (,) (,0) + (,2) (,) +... (, ) (, ) n (, ) = x( i, t) x( j, t ) m i j n t= 2 28

29 (, ) m i j X x X x = n s s n it, i jt, j t= 2 i j i.e., m (i, j) represents lag one cross correlation between the data at sites i and j. Therefore M is the cross-covariance matrix of lag one 29

30 Considering the model, X = AX + Bε t+ t t+ Post multiplying with X t on both sides and taking the expectation,. ' ' ' E Xt X t AE XtXt BE ε + = + t+ X t M A 0 = = AM + M M

31 Post multiplying with X t+ on both sides and taking the expectation,. X = AX + Bε t+ t t+ ' ' ' E Xt X t AE XtXt BE ε + + = + + t+ X t+ M 0 3

32 M M = E X X ' t t { } ' ' E XtX t = ' { } ' ' = E XtX t ' = E Xt Xt or ' ' M = E XtX t + 32

33 ε ' X = ε { AX + Bε } ' t+ t+ t+ t t+ ε = XA+ ε ε ' ' ' ' t+ t t+ t+ Taking expectation on both sides, ' ' ' ' ' E εt X t E εt XtA ε ε + + = + + t t B + + ' ' ' ' = E εt XtA E ε ε + + t+ t+ B = 0 + IB = B ' ' B 33

34 Substituting in the equation, ' ' ' E Xt X t AE XtXt BE ε + + = + + t+ X t+ M = AM + BB ' 0 M = M M M + BB ' ' 0 0 ' A = M M 0 BB = M M M M ' ' 0 0 If C = BB C = M M M M '

35 B does not have a unique solution. One method is to assume B is a lower triangular matrix. BB ' b, b, b 2,... b p, b 2, b 2, b 2, 2... b p, 2 = b( p, ) b( p,2 )... b( p, p) b( p, p) (,) (, 2) (,3 ).. (, ) ( 2,) ( 2, 2) ( 2,3 ).. ( 2, ) c c c c p b b b b p C = b( p, ) b( p,2 )... b( p, p) 35

36 The diagonal elements of the B matrix are obtained as, b, = c, { } b 2, 2 = c 2, 2 b 2,... (, ) = (, ) (, ) (, 2 )... (,) { } bkk ckk b kk b kk b k

37 The elements in the k th row are obtained as, (, ) b k j b k, b k,2... = = c k, b, c k,2 b 2, b k, b 2, 2 (, ) (,) (,) (,2) (,2)... (, ) (, ) b( j, j) c k j b j b k b j b k b j j b k j = 37

38 If the model is to fit the data, the matrices M 0 and BB should be positive definite. This condition is used to check the inconsistency in the data. Assumption is that the model is multivariate normal. 38

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -35 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -35 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -35 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Multivariate stochastic models Multisite

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -12 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -12 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -12 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Data Extension & Forecasting Moving

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -18 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -18 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -18 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Model selection Mean square error

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -20 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -20 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -20 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Case study -3: Monthly streamflows

More information

9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006.

9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006. 9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: Introduction to Time Series and Forecasting. P.J. Brockwell and R. A. Davis, Springer Texts

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -30 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -30 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -30 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture IDF relationship Procedure for creating

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -36 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -36 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -36 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Multivariate stochastic models Matalas

More information

Water Resources Systems: Modeling Techniques and Analysis

Water Resources Systems: Modeling Techniques and Analysis INDIAN INSTITUTE OF SCIENCE Water Resources Systems: Modeling Techniques and Analysis Lecture - 20 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. 1 Summary of the previous lecture

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Chapter 9 Multivariate time series 2 Transfer function

More information

Switching Regime Estimation

Switching Regime Estimation Switching Regime Estimation Series de Tiempo BIrkbeck March 2013 Martin Sola (FE) Markov Switching models 01/13 1 / 52 The economy (the time series) often behaves very different in periods such as booms

More information

Optimal Interpolation ( 5.4) We now generalize the least squares method to obtain the OI equations for vectors of observations and background fields.

Optimal Interpolation ( 5.4) We now generalize the least squares method to obtain the OI equations for vectors of observations and background fields. Optimal Interpolation ( 5.4) We now generalize the least squares method to obtain the OI equations for vectors of observations and background fields. Optimal Interpolation ( 5.4) We now generalize the

More information

1 Linear Difference Equations

1 Linear Difference Equations ARMA Handout Jialin Yu 1 Linear Difference Equations First order systems Let {ε t } t=1 denote an input sequence and {y t} t=1 sequence generated by denote an output y t = φy t 1 + ε t t = 1, 2,... with

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Course Contents Introduction to Random Variables (RVs) Probability Distributions

More information

Statistics 910, #5 1. Regression Methods

Statistics 910, #5 1. Regression Methods Statistics 910, #5 1 Overview Regression Methods 1. Idea: effects of dependence 2. Examples of estimation (in R) 3. Review of regression 4. Comparisons and relative efficiencies Idea Decomposition Well-known

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -27 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -27 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -27 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Frequency factors Normal distribution

More information

5: MULTIVARATE STATIONARY PROCESSES

5: MULTIVARATE STATIONARY PROCESSES 5: MULTIVARATE STATIONARY PROCESSES 1 1 Some Preliminary Definitions and Concepts Random Vector: A vector X = (X 1,..., X n ) whose components are scalarvalued random variables on the same probability

More information

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 )

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 ) Covariance Stationary Time Series Stochastic Process: sequence of rv s ordered by time {Y t } {...,Y 1,Y 0,Y 1,...} Defn: {Y t } is covariance stationary if E[Y t ]μ for all t cov(y t,y t j )E[(Y t μ)(y

More information

Water Resources Systems: Modeling Techniques and Analysis

Water Resources Systems: Modeling Techniques and Analysis INDIAN INSTITUTE OF SCIENCE Water Resources Systems: Modeling Techniques and Analysis Lecture - 9 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture

More information

Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8]

Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8] 1 Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8] Insights: Price movements in one market can spread easily and instantly to another market [economic globalization and internet

More information

Stochastic Analysis of Benue River Flow Using Moving Average (Ma) Model.

Stochastic Analysis of Benue River Flow Using Moving Average (Ma) Model. American Journal of Engineering Research (AJER) 24 American Journal of Engineering Research (AJER) e-issn : 232-847 p-issn : 232-936 Volume-3, Issue-3, pp-274-279 www.ajer.org Research Paper Open Access

More information

Regression of Time Series

Regression of Time Series Mahlerʼs Guide to Regression of Time Series CAS Exam S prepared by Howard C. Mahler, FCAS Copyright 2016 by Howard C. Mahler. Study Aid 2016F-S-9Supplement Howard Mahler hmahler@mac.com www.howardmahler.com/teaching

More information

Principal Component Analysis-I Geog 210C Introduction to Spatial Data Analysis. Chris Funk. Lecture 17

Principal Component Analysis-I Geog 210C Introduction to Spatial Data Analysis. Chris Funk. Lecture 17 Principal Component Analysis-I Geog 210C Introduction to Spatial Data Analysis Chris Funk Lecture 17 Outline Filters and Rotations Generating co-varying random fields Translating co-varying fields into

More information

Multivariate Time Series

Multivariate Time Series Multivariate Time Series Notation: I do not use boldface (or anything else) to distinguish vectors from scalars. Tsay (and many other writers) do. I denote a multivariate stochastic process in the form

More information

1. Fundamental concepts

1. Fundamental concepts . Fundamental concepts A time series is a sequence of data points, measured typically at successive times spaced at uniform intervals. Time series are used in such fields as statistics, signal processing

More information

Some Time-Series Models

Some Time-Series Models Some Time-Series Models Outline 1. Stochastic processes and their properties 2. Stationary processes 3. Some properties of the autocorrelation function 4. Some useful models Purely random processes, random

More information

Pure Random process Pure Random Process or White Noise Process: is a random process {X t, t 0} which has: { σ 2 if k = 0 0 if k 0

Pure Random process Pure Random Process or White Noise Process: is a random process {X t, t 0} which has: { σ 2 if k = 0 0 if k 0 MODULE 9: STATIONARY PROCESSES 7 Lecture 2 Autoregressive Processes 1 Moving Average Process Pure Random process Pure Random Process or White Noise Process: is a random process X t, t 0} which has: E[X

More information

2. Multivariate ARMA

2. Multivariate ARMA 2. Multivariate ARMA JEM 140: Quantitative Multivariate Finance IES, Charles University, Prague Summer 2018 JEM 140 () 2. Multivariate ARMA Summer 2018 1 / 19 Multivariate AR I Let r t = (r 1t,..., r kt

More information

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay. Solutions to Midterm

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay. Solutions to Midterm Booth School of Business, University of Chicago Business 41914, Spring Quarter 017, Mr Ruey S Tsay Solutions to Midterm Problem A: (51 points; 3 points per question) Answer briefly the following questions

More information

Module 9: Stationary Processes

Module 9: Stationary Processes Module 9: Stationary Processes Lecture 1 Stationary Processes 1 Introduction A stationary process is a stochastic process whose joint probability distribution does not change when shifted in time or space.

More information

Modern Navigation. Thomas Herring

Modern Navigation. Thomas Herring 12.215 Modern Navigation Thomas Herring Estimation methods Review of last class Restrict to basically linear estimation problems (also non-linear problems that are nearly linear) Restrict to parametric,

More information

. a m1 a mn. a 1 a 2 a = a n

. a m1 a mn. a 1 a 2 a = a n Biostat 140655, 2008: Matrix Algebra Review 1 Definition: An m n matrix, A m n, is a rectangular array of real numbers with m rows and n columns Element in the i th row and the j th column is denoted by

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices Matrices A. Fabretti Mathematics 2 A.Y. 2015/2016 Table of contents Matrix Algebra Determinant Inverse Matrix Introduction A matrix is a rectangular array of numbers. The size of a matrix is indicated

More information

Discrete time processes

Discrete time processes Discrete time processes Predictions are difficult. Especially about the future Mark Twain. Florian Herzog 2013 Modeling observed data When we model observed (realized) data, we encounter usually the following

More information

VAR Model. (k-variate) VAR(p) model (in the Reduced Form): Y t-2. Y t-1 = A + B 1. Y t + B 2. Y t-p. + ε t. + + B p. where:

VAR Model. (k-variate) VAR(p) model (in the Reduced Form): Y t-2. Y t-1 = A + B 1. Y t + B 2. Y t-p. + ε t. + + B p. where: VAR Model (k-variate VAR(p model (in the Reduced Form: where: Y t = A + B 1 Y t-1 + B 2 Y t-2 + + B p Y t-p + ε t Y t = (y 1t, y 2t,, y kt : a (k x 1 vector of time series variables A: a (k x 1 vector

More information

ECON 4160, Lecture 11 and 12

ECON 4160, Lecture 11 and 12 ECON 4160, 2016. Lecture 11 and 12 Co-integration Ragnar Nymoen Department of Economics 9 November 2017 1 / 43 Introduction I So far we have considered: Stationary VAR ( no unit roots ) Standard inference

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

Chapter 5 Matrix Approach to Simple Linear Regression

Chapter 5 Matrix Approach to Simple Linear Regression STAT 525 SPRING 2018 Chapter 5 Matrix Approach to Simple Linear Regression Professor Min Zhang Matrix Collection of elements arranged in rows and columns Elements will be numbers or symbols For example:

More information

ECON 4160, Spring term Lecture 12

ECON 4160, Spring term Lecture 12 ECON 4160, Spring term 2013. Lecture 12 Non-stationarity and co-integration 2/2 Ragnar Nymoen Department of Economics 13 Nov 2013 1 / 53 Introduction I So far we have considered: Stationary VAR, with deterministic

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY PREFACE xiii 1 Difference Equations 1.1. First-Order Difference Equations 1 1.2. pth-order Difference Equations 7

More information

(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a).

(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a). .(5pts) Let B = 5 5. Compute det(b). (a) (b) (c) 6 (d) (e) 6.(5pts) Determine which statement is not always true for n n matrices A and B. (a) If two rows of A are interchanged to produce B, then det(b)

More information

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis Introduction to Time Series Analysis 1 Contents: I. Basics of Time Series Analysis... 4 I.1 Stationarity... 5 I.2 Autocorrelation Function... 9 I.3 Partial Autocorrelation Function (PACF)... 14 I.4 Transformation

More information

7. MULTIVARATE STATIONARY PROCESSES

7. MULTIVARATE STATIONARY PROCESSES 7. MULTIVARATE STATIONARY PROCESSES 1 1 Some Preliminary Definitions and Concepts Random Vector: A vector X = (X 1,..., X n ) whose components are scalar-valued random variables on the same probability

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 III. Stationary models 1 Purely random process 2 Random walk (non-stationary)

More information

Chapter 3 - Temporal processes

Chapter 3 - Temporal processes STK4150 - Intro 1 Chapter 3 - Temporal processes Odd Kolbjørnsen and Geir Storvik January 23 2017 STK4150 - Intro 2 Temporal processes Data collected over time Past, present, future, change Temporal aspect

More information

Ch.10 Autocorrelated Disturbances (June 15, 2016)

Ch.10 Autocorrelated Disturbances (June 15, 2016) Ch10 Autocorrelated Disturbances (June 15, 2016) In a time-series linear regression model setting, Y t = x tβ + u t, t = 1, 2,, T, (10-1) a common problem is autocorrelation, or serial correlation of the

More information

M 340L CS Homework Set 12 Solutions. Note: Scale all eigenvectors so the largest component is +1.

M 340L CS Homework Set 12 Solutions. Note: Scale all eigenvectors so the largest component is +1. M 34L CS Homework Set 2 Solutions Note: Scale all eigenvectors so the largest component is +.. For each of these matrices, find the characteristic polynomial p( ) det( A I). factor it to get the eigenvalues:,

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2018 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

Statistical Properties o[ Multivariate Fractional Noise Processes

Statistical Properties o[ Multivariate Fractional Noise Processes VOL. 7, NO. 6 WATER RESOURCES RESEARCH DECEMBER 1971 Statistical Properties o[ Multivariate Fractional Noise Processes 1. C. MATALAS U.S. Geological Survey, Washington, D. C. œ0œ œ J. R. WALLIS IBM Research

More information

ECE 636: Systems identification

ECE 636: Systems identification ECE 636: Systems identification Lectures 3 4 Random variables/signals (continued) Random/stochastic vectors Random signals and linear systems Random signals in the frequency domain υ ε x S z + y Experimental

More information

(I AL BL 2 )z t = (I CL)ζ t, where

(I AL BL 2 )z t = (I CL)ζ t, where ECO 513 Fall 2011 MIDTERM EXAM The exam lasts 90 minutes. Answer all three questions. (1 Consider this model: x t = 1.2x t 1.62x t 2 +.2y t 1.23y t 2 + ε t.7ε t 1.9ν t 1 (1 [ εt y t = 1.4y t 1.62y t 2

More information

Time Series Outlier Detection

Time Series Outlier Detection Time Series Outlier Detection Tingyi Zhu July 28, 2016 Tingyi Zhu Time Series Outlier Detection July 28, 2016 1 / 42 Outline Time Series Basics Outliers Detection in Single Time Series Outlier Series Detection

More information

6. The econometrics of Financial Markets: Empirical Analysis of Financial Time Series. MA6622, Ernesto Mordecki, CityU, HK, 2006.

6. The econometrics of Financial Markets: Empirical Analysis of Financial Time Series. MA6622, Ernesto Mordecki, CityU, HK, 2006. 6. The econometrics of Financial Markets: Empirical Analysis of Financial Time Series MA6622, Ernesto Mordecki, CityU, HK, 2006. References for Lecture 5: Quantitative Risk Management. A. McNeil, R. Frey,

More information

Lecture 2: Univariate Time Series

Lecture 2: Univariate Time Series Lecture 2: Univariate Time Series Analysis: Conditional and Unconditional Densities, Stationarity, ARMA Processes Prof. Massimo Guidolin 20192 Financial Econometrics Spring/Winter 2017 Overview Motivation:

More information

Positive Definite Matrix

Positive Definite Matrix 1/29 Chia-Ping Chen Professor Department of Computer Science and Engineering National Sun Yat-sen University Linear Algebra Positive Definite, Negative Definite, Indefinite 2/29 Pure Quadratic Function

More information

Empirical properties of large covariance matrices in finance

Empirical properties of large covariance matrices in finance Empirical properties of large covariance matrices in finance Ex: RiskMetrics Group, Geneva Since 2010: Swissquote, Gland December 2009 Covariance and large random matrices Many problems in finance require

More information

Stochastic Processes

Stochastic Processes Stochastic Processes Stochastic Process Non Formal Definition: Non formal: A stochastic process (random process) is the opposite of a deterministic process such as one defined by a differential equation.

More information

End-Semester Examination MA 373 : Statistical Analysis on Financial Data

End-Semester Examination MA 373 : Statistical Analysis on Financial Data End-Semester Examination MA 373 : Statistical Analysis on Financial Data Instructor: Dr. Arabin Kumar Dey, Department of Mathematics, IIT Guwahati Note: Use the results in Section- III: Data Analysis using

More information

16.584: Random Vectors

16.584: Random Vectors 1 16.584: Random Vectors Define X : (X 1, X 2,..X n ) T : n-dimensional Random Vector X 1 : X(t 1 ): May correspond to samples/measurements Generalize definition of PDF: F X (x) = P[X 1 x 1, X 2 x 2,...X

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 3: Positive-Definite Systems; Cholesky Factorization Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 11 Symmetric

More information

Linear Algebra Review

Linear Algebra Review Linear Algebra Review Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Linear Algebra Review 1 / 45 Definition of Matrix Rectangular array of elements arranged in rows and

More information

Exercises - Time series analysis

Exercises - Time series analysis Descriptive analysis of a time series (1) Estimate the trend of the series of gasoline consumption in Spain using a straight line in the period from 1945 to 1995 and generate forecasts for 24 months. Compare

More information

EASTERN MEDITERRANEAN UNIVERSITY ECON 604, FALL 2007 DEPARTMENT OF ECONOMICS MEHMET BALCILAR ARIMA MODELS: IDENTIFICATION

EASTERN MEDITERRANEAN UNIVERSITY ECON 604, FALL 2007 DEPARTMENT OF ECONOMICS MEHMET BALCILAR ARIMA MODELS: IDENTIFICATION ARIMA MODELS: IDENTIFICATION A. Autocorrelations and Partial Autocorrelations 1. Summary of What We Know So Far: a) Series y t is to be modeled by Box-Jenkins methods. The first step was to convert y t

More information

Modeling conditional distributions with mixture models: Theory and Inference

Modeling conditional distributions with mixture models: Theory and Inference Modeling conditional distributions with mixture models: Theory and Inference John Geweke University of Iowa, USA Journal of Applied Econometrics Invited Lecture Università di Venezia Italia June 2, 2005

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2016 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

Forecasting using R. Rob J Hyndman. 3.2 Dynamic regression. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 3.2 Dynamic regression. Forecasting using R 1 Forecasting using R Rob J Hyndman 3.2 Dynamic regression Forecasting using R 1 Outline 1 Regression with ARIMA errors 2 Stochastic and deterministic trends 3 Periodic seasonality 4 Lab session 14 5 Dynamic

More information

STA 6857 VAR, VARMA, VARMAX ( 5.7)

STA 6857 VAR, VARMA, VARMAX ( 5.7) STA 6857 VAR, VARMA, VARMAX ( 5.7) Outline 1 Multivariate Time Series Modeling 2 VAR 3 VARIMA/VARMAX Arthur Berg STA 6857 VAR, VARMA, VARMAX ( 5.7) 2/ 16 Outline 1 Multivariate Time Series Modeling 2 VAR

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Definitions An m n (read "m by n") matrix, is a rectangular array of entries, where m is the number of rows and n the number of columns. 2 Definitions (Con t) A is square if m=

More information

Class 1: Stationary Time Series Analysis

Class 1: Stationary Time Series Analysis Class 1: Stationary Time Series Analysis Macroeconometrics - Fall 2009 Jacek Suda, BdF and PSE February 28, 2011 Outline Outline: 1 Covariance-Stationary Processes 2 Wold Decomposition Theorem 3 ARMA Models

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 IX. Vector Time Series Models VARMA Models A. 1. Motivation: The vector

More information

A time series is called strictly stationary if the joint distribution of every collection (Y t

A time series is called strictly stationary if the joint distribution of every collection (Y t 5 Time series A time series is a set of observations recorded over time. You can think for example at the GDP of a country over the years (or quarters) or the hourly measurements of temperature over a

More information

X random; interested in impact of X on Y. Time series analogue of regression.

X random; interested in impact of X on Y. Time series analogue of regression. Multiple time series Given: two series Y and X. Relationship between series? Possible approaches: X deterministic: regress Y on X via generalized least squares: arima.mle in SPlus or arima in R. We have

More information

Econometric Forecasting

Econometric Forecasting Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 1, 2014 Outline Introduction Model-free extrapolation Univariate time-series models Trend

More information

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent.

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent. Lecture Notes: Orthogonal and Symmetric Matrices Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Orthogonal Matrix Definition. Let u = [u

More information

TIME SERIES MODELING OF MONTHLY RAINFALL IN ARID AREAS: CASE STUDY FOR SAUDI ARABIA

TIME SERIES MODELING OF MONTHLY RAINFALL IN ARID AREAS: CASE STUDY FOR SAUDI ARABIA American Journal of Environmental Sciences 10 (3): 277-282, 2014 ISSN: 1553-345X 2014 Science Publication doi:10.3844/ajessp.2014.277.282 Published Online 10 (3) 2014 (http://www.thescipub.com/ajes.toc)

More information

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley Time Series Models and Inference James L. Powell Department of Economics University of California, Berkeley Overview In contrast to the classical linear regression model, in which the components of the

More information

X t = a t + r t, (7.1)

X t = a t + r t, (7.1) Chapter 7 State Space Models 71 Introduction State Space models, developed over the past 10 20 years, are alternative models for time series They include both the ARIMA models of Chapters 3 6 and the Classical

More information

Basics: Definitions and Notation. Stationarity. A More Formal Definition

Basics: Definitions and Notation. Stationarity. A More Formal Definition Basics: Definitions and Notation A Univariate is a sequence of measurements of the same variable collected over (usually regular intervals of) time. Usual assumption in many time series techniques is that

More information

Applied time-series analysis

Applied time-series analysis Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 18, 2011 Outline Introduction and overview Econometric Time-Series Analysis In principle,

More information

Vector autoregressions, VAR

Vector autoregressions, VAR 1 / 45 Vector autoregressions, VAR Chapter 2 Financial Econometrics Michael Hauser WS17/18 2 / 45 Content Cross-correlations VAR model in standard/reduced form Properties of VAR(1), VAR(p) Structural VAR,

More information

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis Chapter 12: An introduction to Time Series Analysis Introduction In this chapter, we will discuss forecasting with single-series (univariate) Box-Jenkins models. The common name of the models is Auto-Regressive

More information

Circle the single best answer for each multiple choice question. Your choice should be made clearly.

Circle the single best answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 6, 2017 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 32 multiple choice

More information

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0. Matrices Operations Linear Algebra Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0 The rectangular array 1 2 1 4 3 4 2 6 1 3 2 1 in which the

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 011 MODULE 3 : Stochastic processes and time series Time allowed: Three Hours Candidates should answer FIVE questions. All questions carry

More information

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity.

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. Important points of Lecture 1: A time series {X t } is a series of observations taken sequentially over time: x t is an observation

More information

Chapter 6: Model Specification for Time Series

Chapter 6: Model Specification for Time Series Chapter 6: Model Specification for Time Series The ARIMA(p, d, q) class of models as a broad class can describe many real time series. Model specification for ARIMA(p, d, q) models involves 1. Choosing

More information

Financial Times Series. Lecture 12

Financial Times Series. Lecture 12 Financial Times Series Lecture 12 Multivariate Volatility Models Here our aim is to generalize the previously presented univariate volatility models to their multivariate counterparts We assume that returns

More information

MTH 215: Introduction to Linear Algebra

MTH 215: Introduction to Linear Algebra MTH 215: Introduction to Linear Algebra Lecture 5 Jonathan A. Chávez Casillas 1 1 University of Rhode Island Department of Mathematics September 20, 2017 1 LU Factorization 2 3 4 Triangular Matrices Definition

More information

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models Module 3 Descriptive Time Series Statistics and Introduction to Time Series Models Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W Q Meeker November 11, 2015

More information

Time Series 2. Robert Almgren. Sept. 21, 2009

Time Series 2. Robert Almgren. Sept. 21, 2009 Time Series 2 Robert Almgren Sept. 21, 2009 This week we will talk about linear time series models: AR, MA, ARMA, ARIMA, etc. First we will talk about theory and after we will talk about fitting the models

More information

Topic 7 - Matrix Approach to Simple Linear Regression. Outline. Matrix. Matrix. Review of Matrices. Regression model in matrix form

Topic 7 - Matrix Approach to Simple Linear Regression. Outline. Matrix. Matrix. Review of Matrices. Regression model in matrix form Topic 7 - Matrix Approach to Simple Linear Regression Review of Matrices Outline Regression model in matrix form - Fall 03 Calculations using matrices Topic 7 Matrix Collection of elements arranged in

More information

ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS

ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS 1. THE CLASS OF MODELS y t {y s, s < t} p(y t θ t, {y s, s < t}) θ t = θ(s t ) P[S t = i S t 1 = j] = h ij. 2. WHAT S HANDY ABOUT IT Evaluating the

More information

Multivariate Time Series: VAR(p) Processes and Models

Multivariate Time Series: VAR(p) Processes and Models Multivariate Time Series: VAR(p) Processes and Models A VAR(p) model, for p > 0 is X t = φ 0 + Φ 1 X t 1 + + Φ p X t p + A t, where X t, φ 0, and X t i are k-vectors, Φ 1,..., Φ p are k k matrices, with

More information

ESSE Mid-Term Test 2017 Tuesday 17 October :30-09:45

ESSE Mid-Term Test 2017 Tuesday 17 October :30-09:45 ESSE 4020 3.0 - Mid-Term Test 207 Tuesday 7 October 207. 08:30-09:45 Symbols have their usual meanings. All questions are worth 0 marks, although some are more difficult than others. Answer as many questions

More information

Estimation, Detection, and Identification

Estimation, Detection, and Identification Estimation, Detection, and Identification Graduate Course on the CMU/Portugal ECE PhD Program Spring 2008/2009 Chapter 5 Best Linear Unbiased Estimators Instructor: Prof. Paulo Jorge Oliveira pjcro @ isr.ist.utl.pt

More information

Introduction to PDEs and Numerical Methods Lecture 7. Solving linear systems

Introduction to PDEs and Numerical Methods Lecture 7. Solving linear systems Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Introduction to PDEs and Numerical Methods Lecture 7. Solving linear systems Dr. Noemi Friedman, 09.2.205. Reminder: Instationary heat

More information

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong STAT 443 Final Exam Review L A TEXer: W Kong 1 Basic Definitions Definition 11 The time series {X t } with E[X 2 t ] < is said to be weakly stationary if: 1 µ X (t) = E[X t ] is independent of t 2 γ X

More information

GEOG 4110/5100 Advanced Remote Sensing Lecture 15

GEOG 4110/5100 Advanced Remote Sensing Lecture 15 GEOG 4110/5100 Advanced Remote Sensing Lecture 15 Principal Component Analysis Relevant reading: Richards. Chapters 6.3* http://www.ce.yildiz.edu.tr/personal/songul/file/1097/principal_components.pdf *For

More information

Structural VAR Models and Applications

Structural VAR Models and Applications Structural VAR Models and Applications Laurent Ferrara 1 1 University of Paris Nanterre M2 Oct. 2018 SVAR: Objectives Whereas the VAR model is able to capture efficiently the interactions between the different

More information

2b Multivariate Time Series

2b Multivariate Time Series 2b Multivariate Time Series Andrew Harvey Faculty of Economics, University of Cambridge May 2017 Andrew Harvey (Faculty of Economics, University of Cambridge) 2b Multivariate Time Series May 2017 1 / 28

More information