On the consistent discretization in time of nonlinear thermo-elastodynamics

Size: px
Start display at page:

Download "On the consistent discretization in time of nonlinear thermo-elastodynamics"

Transcription

1 of nonlinear thermo-elastodynamics Chair of Computational Mechanics University of Siegen GAMM Annual Meeting,

2 Thermodynamic double pendulum

3 Structure preserving integrators Great interest in the last two decades Energy balance Long stability Enhanced computational robustness - adiabatic - not restricted to adiabatic systems 3

4 Kinematics Thermodynamic double pendulum: q m r m q linear momenta: p i = m i v i and π i = p i p i lengths of the springs: λ i = c i with c = q q c = r r relative temperatures: ϑ i =θ i θ 4

5 Poisson - Lagrange Poissonian formalism Total Energy: E = T i (π i ) + e i (c i, s i ) i= Kin. energies: T i = m i π i Temperatures: Internal energies: θ i = e i s i e i =θ i s i +ψ i Lyapunov-function: L = E θ S Dissipation: L = D cdu 0 Lagrangian formalism Total Energy: E = T i (v i ) + ˆψ i (c i,θ i ) i= Kin. energies: T i = m i v i Entropies: s i = ˆψ i θ i Relative internal energies: ê i =ϑ i s i + ˆψ i Lyapunov-function: V = T i + ê i i= Dissipation: V = D cdu 0 5

6 Semidiscrete equations First equations of motion: Second equations of motion: ṗ = (e + e ) q ṗ = (e + e ) q q = p m q = p m ṗ = ( ˆψ + ˆψ ) q ṗ = ( ˆψ + ˆψ ) q Thermal evolution equations: ṡ =κ ( ) θ θ ṡ =κ ( ) θ θ 6

7 GENERIC framework Initial value problem: ż t = L(z t ) E(z t ) + M(z t ) S(z t ) z(t 0 ) = z 0 State vector: ] z = [q, q, p, p, s, s Degeneracy conditions: L(z t ) S(z t ) = M(z t ) E(z t ) = 0 Consequences: Ė(z t ) = 0 Ṡ(z t ) 0 7

8 Gradients and matrices Gradients: E = S = [ f ν f ν, f ν, p [ ] 0, 0, 0, 0,, Poisson matrix and friction matrix:, p ],θ,θ m m 0 0 I I 0 0 I L =, M = 0 8 κ θ 0 I θ κ κ κ θ θ

9 Discretization Initial value problem: z n+ z n h n Vector of invariants: Degeneracy conditions: = L π T DẼ +M π T D S π = [ c, c,π,π, s, s ] L(z n, z n+ )DS(z n, z n+ ) = M (z n, z n+ )DE(z n, z n+ ) = 0 Consequences using the TC integrator: E(z n+ ) E(z n ) = 0 S(z n+ ) S(z n ) 0 and: L(z n+ ) L(z n ) 9

10 Discrete equations First discrete equations of motion: midpoint rule q in+ q in h n = m i p in+ (no sum) Second discrete equations of motion: part. discr. grad. p n+ p n = D c e q h n+ + D c e r n+ n p n+ p n = D c e r h n+ n Discrete thermal evolution equations: part. discr. grad. ( ) s in+ s in θ j =κ h n θ i 0 with: θ = D s e θ = D s e

11 Partitioned discrete gradient Second discrete equations of motion: D ci e i = e i(c in+, s in+ ) e i (c in, s in+ ) (c in+ c in ) Discrete thermal evolution equations: D si e i = e i(c in+, s in+ ) e i (c in+, s in ) (s in+ s in ) + e i(c in+, s in ) e i (c in, s in ) (c in+ c in ) + e i(c in, s in+ ) e i (c in, s in ) (s in+ s in )

12 Weak forms ] State vector: z = [q, q, v, v,θ,θ First weak equations of motion: tn+ t n δṗ i v i = Second weak equations of motion: tn+ t n m i v i δ q i = Weak thermal evolution equations: tn+ t n tn+ t ( ) n+ [s i,t=t0 ] + [si enh ] δθ i,t=t ṡ i δθ i = t n t n δṗ i q i ˆψ q i δ q i cg method cg method modified dg method t n+ with: [s enh i ] = ϑ + i t=t0 ( [ϑ i,t=t0 ] s i,t=t0 + [ ˆψ i,t=t0 ] t n κ ( ) θj δθ i θ i )

13 Discrete equations First discrete eq. of motion: q in+ q in = v in+ h n Second discrete eq. of motion: midpoint rule algo. stresses m v n+ v n h n = S q n+ + S r n+ m v n+ v n h n = S r n+ Discr. thermal evolution eq.: two-point Gaussian quadr. rule ê + in êin + θ + in θ (s i n+ s i + n ) κ [ ]( ) ξl θ + jn+ξ h l n (s i n+ s i + n ) ξ l θ + = 0 l= i n+ξl with: c i = c in+ andθ + i n+ξl = ( ξ l )θ + i n +ξ l θ in+ 3

14 Stress approximation Constraints: G i (Ŝi ) = ê in+ ê + i n ê in+ Ŝi (c in+ c in ) Minimization of the functional: F i (Ŝi,µ i ) =µ i G i (Ŝi ) + Ŝ i algorithmic stresses S i = S i + Ŝi with S i = ˆψ i c i : yields: ê in+ ê i + n [ s in+ s + ] i n ϑ + in+ S i = c in+ c in V n+ V n + h n 0 D cdu = 0 4

15 Parameters Initial state: [] [] q 0 = m p 0 0 = Ns θ 0 = 380 K m 0 = kg [ ] [ ] q 0. = m p = Ns θ = 30 K m = kg Free energy: ˆψ i = K i log ( λi λ 0 i with (i [, ]): ) ( ) [ ( )] λi θi β i ϑ i log λ 0 + k i ϑ i θ i log i θ λ 0 = m K i = 0000 J κ = 0 W K θ = 300 K λ 0 = m k i = 000 J K β i = 0. J K 5

16 Reference solution 6 temperature E x θ θ length of q L x

17 Standard integrators temperature E x 05 h= h=0.009 h=0.0 3 h= θ θ length of q L x 05 h=0.006 h= h=0.0 h=

18 Structure preserving integrators 8 temperature E x 05 h=0.006 h= h=0.0 h= θ θ length of q L x 04 h=0.006 h= h=0.0 h=

19 Conclusions Implementation of the - partitioned discrete gradient Implementation of the - algorithmic stresses Comparison of structure preserving integrators with standard integrators by means of a double pendulum Outlook Implementation and comparison of both integrators for a thermodynamical continuum Enlargement of the GENERIC system for unisolated driven systems 9

20 Thank you for your attention! Questions?! 0 The authors thank the German Research Foundation (DFG) for financial support (GR 397/-)

Energy-consistent time-integration for dynamic finite deformation. thermoviscoelasticity. GAMM Annual Meeting,

Energy-consistent time-integration for dynamic finite deformation. thermoviscoelasticity. GAMM Annual Meeting, for dynamic finite thermo-viscoelasticity Chair of Computational Mechanics University of Siegen GAMM Annual Meeting, 9.04.0 Thermo-viscoelastic double pendulum (closed system) Thermodynamically Consistent

More information

thermo-viscoelasticity using

thermo-viscoelasticity using thermo-viscoelasticity Chair of Computational Mechanics University of Siegen Chair of Applied Mechanics and Dynamics Chemnitz University of Technology ECCOMAS, 13.9.1 1 Thermoviscoelastic continuum framework

More information

A Characterization of Conserved Quantities in Non-Equilibrium Thermodynamics

A Characterization of Conserved Quantities in Non-Equilibrium Thermodynamics Entropy 2013, 15, 5580-5596; doi:10.3390/e15125580 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article A Characterization of Conserved Quantities in Non-Equilibrium Thermodynamics Ignacio

More information

Contents of the presentation

Contents of the presentation Peter Betsch An energy-entropy-consistent finite thermo-viscoelasticity 1 Peter Betsch Chair of Applied Chemnitz University of Technology March 1, 014 1 Chair of Computational Mechanics Institute of Mechanics

More information

DYNAMIC FINITE DEFORMATION THERMO-VISCOELASTICITY USING ENERGY-CONSISTENT TIME-INTEGRATION

DYNAMIC FINITE DEFORMATION THERMO-VISCOELASTICITY USING ENERGY-CONSISTENT TIME-INTEGRATION European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS ) J. Eberhardsteiner et.al. (eds.) Vienna, Austria, September -4, DYNAMIC FINITE DEFORMATION THERMO-VISCOELASTICITY

More information

Generalized Coordinates, Lagrangians

Generalized Coordinates, Lagrangians Generalized Coordinates, Lagrangians Sourendu Gupta TIFR, Mumbai, India Classical Mechanics 2012 August 10, 2012 Generalized coordinates Consider again the motion of a simple pendulum. Since it is one

More information

Simulation of Thermomechanical Couplings of Viscoelastic Materials

Simulation of Thermomechanical Couplings of Viscoelastic Materials Simulation of Thermomechanical Couplings of Viscoelastic Materials Frank Neff 1, Thomas Miquel 2, Michael Johlitz 1, Alexander Lion 1 1 Institute of Mechanics Faculty for Aerospace Engineering Universität

More information

Hydrodynamics, Thermodynamics, and Mathematics

Hydrodynamics, Thermodynamics, and Mathematics Hydrodynamics, Thermodynamics, and Mathematics Hans Christian Öttinger Department of Mat..., ETH Zürich, Switzerland Thermodynamic admissibility and mathematical well-posedness 1. structure of equations

More information

Outline: Phenomenology of Wall Bounded Turbulence: Minimal Models First Story: Large Re Neutrally-Stratified (NS) Channel Flow.

Outline: Phenomenology of Wall Bounded Turbulence: Minimal Models First Story: Large Re Neutrally-Stratified (NS) Channel Flow. Victor S. L vov: Israeli-Italian March 2007 Meeting Phenomenology of Wall Bounded Turbulence: Minimal Models In collaboration with : Anna Pomyalov, Itamar Procaccia, Oleksii Rudenko (WIS), Said Elgobashi

More information

Physical Dynamics (PHY-304)

Physical Dynamics (PHY-304) Physical Dynamics (PHY-304) Gabriele Travaglini March 31, 2012 1 Review of Newtonian Mechanics 1.1 One particle Lectures 1-2. Frame, velocity, acceleration, number of degrees of freedom, generalised coordinates.

More information

Finite dimensional thermo-mechanical systems and second order constraints

Finite dimensional thermo-mechanical systems and second order constraints Finite dimensional thermo-mechanical systems and second order constraints arxiv:1609.05156v2 [math-ph] 28 Sep 2016 Hernán Cendra Departamento de Matemática Universidad Nacional del Sur, Av. Alem 1253 8000

More information

Energy and Momentum Conserving Algorithms in Continuum Mechanics. O. Gonzalez

Energy and Momentum Conserving Algorithms in Continuum Mechanics. O. Gonzalez Energy and Momentum Conserving Algorithms in Continuum Mechanics O. Gonzalez Département de Mathématiques École Polytechnique Fédérale de Lausanne Lausanne, Switzerland INTRODUCTION MAIN CONCERN Time integration

More information

Lecture 5: Orbital angular momentum, spin and rotation

Lecture 5: Orbital angular momentum, spin and rotation Lecture 5: Orbital angular momentum, spin and rotation 1 Orbital angular momentum operator According to the classic expression of orbital angular momentum L = r p, we define the quantum operator L x =

More information

Optimal input design for nonlinear dynamical systems: a graph-theory approach

Optimal input design for nonlinear dynamical systems: a graph-theory approach Optimal input design for nonlinear dynamical systems: a graph-theory approach Patricio E. Valenzuela Department of Automatic Control and ACCESS Linnaeus Centre KTH Royal Institute of Technology, Stockholm,

More information

Module-3: Kinematics

Module-3: Kinematics Module-3: Kinematics Lecture-20: Material and Spatial Time Derivatives The velocity acceleration and velocity gradient are important quantities of kinematics. Here we discuss the description of these kinematic

More information

Adiabat Shaping of Direct-Drive OMEGA Capsules Using Ramped Pressure Profiles

Adiabat Shaping of Direct-Drive OMEGA Capsules Using Ramped Pressure Profiles Adiabat Shaping of Direct-Drive OMEGA Capsules Using Ramped Pressure Profiles a r Lagrangian coordinate K. Anderson University of Rochester Laboratory for Laser Energetics 44th Annual Meeting of the American

More information

Physics 5153 Classical Mechanics. Canonical Transformations-1

Physics 5153 Classical Mechanics. Canonical Transformations-1 1 Introduction Physics 5153 Classical Mechanics Canonical Transformations The choice of generalized coordinates used to describe a physical system is completely arbitrary, but the Lagrangian is invariant

More information

DYNAMICS OF SERIAL ROBOTIC MANIPULATORS

DYNAMICS OF SERIAL ROBOTIC MANIPULATORS DYNAMICS OF SERIAL ROBOTIC MANIPULATORS NOMENCLATURE AND BASIC DEFINITION We consider here a mechanical system composed of r rigid bodies and denote: M i 6x6 inertia dyads of the ith body. Wi 6 x 6 angular-velocity

More information

CHAPTER 6 : LITERATURE REVIEW

CHAPTER 6 : LITERATURE REVIEW CHAPTER 6 : LITERATURE REVIEW Chapter : LITERATURE REVIEW 77 M E A S U R I N G T H E E F F I C I E N C Y O F D E C I S I O N M A K I N G U N I T S A B S T R A C T A n o n l i n e a r ( n o n c o n v e

More information

P E R E N C O - C H R I S T M A S P A R T Y

P E R E N C O - C H R I S T M A S P A R T Y L E T T I C E L E T T I C E I S A F A M I L Y R U N C O M P A N Y S P A N N I N G T W O G E N E R A T I O N S A N D T H R E E D E C A D E S. B A S E D I N L O N D O N, W E H A V E T H E P E R F E C T R

More information

Adaptive Tracking and Parameter Estimation with Unknown High-Frequency Control Gains: A Case Study in Strictification

Adaptive Tracking and Parameter Estimation with Unknown High-Frequency Control Gains: A Case Study in Strictification Adaptive Tracking and Parameter Estimation with Unknown High-Frequency Control Gains: A Case Study in Strictification Michael Malisoff, Louisiana State University Joint with Frédéric Mazenc and Marcio

More information

Classical Mechanics and Statistical/Thermodynamics. August 2018

Classical Mechanics and Statistical/Thermodynamics. August 2018 Classical Mechanics and Statistical/Thermodynamics August 2018 1 Handy Integrals: Possibly Useful Information 0 x n e αx dx = n! α n+1 π α 0 0 e αx2 dx = 1 2 x e αx2 dx = 1 2α 0 x 2 e αx2 dx = 1 4 π α

More information

Armin Toffler, The whole is more than the sum of the parts. Aristotle, BC. Prigogine I. and Stengers I. Order out of Chaos (1984)

Armin Toffler, The whole is more than the sum of the parts. Aristotle, BC. Prigogine I. and Stengers I. Order out of Chaos (1984) 1 OUTLINE 1. Introduction 2. Complexity 3. Waves in microstructured materials internal variables examples 4. Biophysics / biomechanics 5. Complexity around snow 6. Final remarks 2 One of the most highly

More information

The Geometry of the Quantum Hall Effect

The Geometry of the Quantum Hall Effect The Geometry of the Quantum Hall Effect Dam Thanh Son (University of Chicago) Refs: Carlos Hoyos, DTS arxiv:1109.2651 DTS, M.Wingate cond-mat/0509786 Plan Review of quantum Hall physics Summary of results

More information

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms Continuum mechanics office Math 0.107 ales.janka@unifr.ch http://perso.unifr.ch/ales.janka/mechanics Mars 16, 2011, Université de Fribourg 1. Constitutive equation: definition and basic axioms Constitutive

More information

ORDER-DISORDER TRANSITIONS IN A MINIMAL MODEL OF SELF-SUSTAINED COUPLED OSCILLATORS

ORDER-DISORDER TRANSITIONS IN A MINIMAL MODEL OF SELF-SUSTAINED COUPLED OSCILLATORS Romanian Reports in Physics, Vol. 66, No. 4, P. 1018 1028, 2014 ORDER-DISORDER TRANSITIONS IN A MINIMAL MODEL OF SELF-SUSTAINED COUPLED OSCILLATORS L. DAVIDOVA 1, SZ. BODA 1, Z. NÉDA 1,2 1 Babeş-Bolyai

More information

Physical Dynamics (SPA5304) Lecture Plan 2018

Physical Dynamics (SPA5304) Lecture Plan 2018 Physical Dynamics (SPA5304) Lecture Plan 2018 The numbers on the left margin are approximate lecture numbers. Items in gray are not covered this year 1 Advanced Review of Newtonian Mechanics 1.1 One Particle

More information

Chapter 2 Thermodynamics

Chapter 2 Thermodynamics Chapter 2 Thermodynamics 2.1 Introduction The First Law of Thermodynamics is a statement of the existence of a property called Energy which is a state function that is independent of the path and, in the

More information

arxiv: v1 [math-ph] 12 Apr 2017

arxiv: v1 [math-ph] 12 Apr 2017 Dirac structures in nonequilibrium thermodynamics arxiv:1704.03935v1 [math-ph] 12 Apr 2017 François Gay-Balmaz Hiroaki Yoshimura CNRS, LMD, IPSL School of Science and Engineering Ecole Normale Supérieure

More information

Department of Physics PRELIMINARY EXAMINATION 2014 Part I. Short Questions

Department of Physics PRELIMINARY EXAMINATION 2014 Part I. Short Questions Department of Physics PRELIMINARY EXAMINATION 2014 Part I. Short Questions Thursday May 15th, 2014, 14-17h Examiners: Prof. A. Clerk, Prof. M. Dobbs, Prof. G. Gervais (Chair), Prof. T. Webb, Prof. P. Wiseman

More information

Turbulent drag reduction by streamwise traveling waves

Turbulent drag reduction by streamwise traveling waves 51st IEEE Conference on Decision and Control December 10-13, 2012. Maui, Hawaii, USA Turbulent drag reduction by streamwise traveling waves Armin Zare, Binh K. Lieu, and Mihailo R. Jovanović Abstract For

More information

Part of the advantage : Constraint forces do no virtual. work under a set of virtual displacements compatible

Part of the advantage : Constraint forces do no virtual. work under a set of virtual displacements compatible FORCES OF CONSTRAINT Lagrangian formalism : Generalized coordinate Minimum set of Eqns Part of the advantage : Constraint forces do no virtual work under a set of virtual displacements compatible with

More information

MSMS Basilio Bona DAUIN PoliTo

MSMS Basilio Bona DAUIN PoliTo MSMS 214-215 Basilio Bona DAUIN PoliTo Problem 2 The planar system illustrated in Figure 1 consists of a bar B and a wheel W moving (no friction, no sliding) along the bar; the bar can rotate around an

More information

arxiv:gr-qc/ v2 6 Apr 1999

arxiv:gr-qc/ v2 6 Apr 1999 1 Notations I am using the same notations as in [3] and [2]. 2 Temporal gauge - various approaches arxiv:gr-qc/9801081v2 6 Apr 1999 Obviously the temporal gauge q i = a i = const or in QED: A 0 = a R (1)

More information

Nonlinear Waves: Woods Hole GFD Program 2009

Nonlinear Waves: Woods Hole GFD Program 2009 Nonlinear Waves: Woods Hole GFD Program 2009 Roger Grimshaw Loughborough University, UK July 13, 2009 Lecture 10: Wave-Mean Flow Interaction, Part II The Great Wave at Kanagawa 929 (JP1847) The Great Wave

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

l t 1 2 2 2 2 2 B B m t t m 0 ṁ t = e ref a t m t B e ref a t t t x t a t δ a t0 = 0 ȧ t = x t δa t c(x t ) c x t, c (x t ) 0 c (x t ) 0 c(x t ) 0 c (x t ) c c (x t ) x t t

More information

Physics 235 Chapter 7. Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics

Physics 235 Chapter 7. Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics Many interesting physics systems describe systems of particles on which many forces are acting. Some of these forces are immediately

More information

4 Constitutive Theory

4 Constitutive Theory ME338A CONTINUUM MECHANICS lecture notes 13 Tuesday, May 13, 2008 4.1 Closure Problem In the preceding chapter, we derived the fundamental balance equations: Balance of Spatial Material Mass ρ t + ρ t

More information

CHAPTER 11: REYNOLDS-STRESS AND RELATED MODELS. Turbulent Flows. Stephen B. Pope Cambridge University Press, 2000 c Stephen B. Pope y + < 1.

CHAPTER 11: REYNOLDS-STRESS AND RELATED MODELS. Turbulent Flows. Stephen B. Pope Cambridge University Press, 2000 c Stephen B. Pope y + < 1. 1/3 η 1C 2C, axi 1/6 2C y + < 1 axi, ξ > 0 y + 7 axi, ξ < 0 log-law region iso ξ -1/6 0 1/6 1/3 Figure 11.1: The Lumley triangle on the plane of the invariants ξ and η of the Reynolds-stress anisotropy

More information

Comparative Tensor Visualisation within the Framework of Consistent Time-Stepping Schemes

Comparative Tensor Visualisation within the Framework of Consistent Time-Stepping Schemes Comparative Tensor Visualisation within the Framework of Consistent Time-Stepping Schemes R. Mohr 1, T. Bobach 2, Y. Hijazi 2, G. Reis 2, P. Steinmann 1, and H. Hagen 2 1 University of Kaiserslautern Chair

More information

Curves in the configuration space Q or in the velocity phase space Ω satisfying the Euler-Lagrange (EL) equations,

Curves in the configuration space Q or in the velocity phase space Ω satisfying the Euler-Lagrange (EL) equations, Physics 6010, Fall 2010 Hamiltonian Formalism: Hamilton s equations. Conservation laws. Reduction. Poisson Brackets. Relevant Sections in Text: 8.1 8.3, 9.5 The Hamiltonian Formalism We now return to formal

More information

A hierarchy of higher order and higher grade continua Application to the plasticity and fracture of metallic foams

A hierarchy of higher order and higher grade continua Application to the plasticity and fracture of metallic foams A hierarchy of higher order and higher grade continua Application to the plasticity and fracture of metallic foams Samuel Forest Centre des Matériaux/UMR 7633 Mines Paris ParisTech /CNRS BP 87, 91003 Evry,

More information

On the characterization of drilling rotation in the 6 parameter resultant shell theory

On the characterization of drilling rotation in the 6 parameter resultant shell theory On the characterization of drilling rotation in the 6 parameter resultant shell theory Mircea Birsan and Patrizio Neff Chair for Nonlinear Analysis and Modelling Faculty of Mathematics, University Duisburg-Essen,

More information

Physics 106a, Caltech 13 November, Lecture 13: Action, Hamilton-Jacobi Theory. Action-Angle Variables

Physics 106a, Caltech 13 November, Lecture 13: Action, Hamilton-Jacobi Theory. Action-Angle Variables Physics 06a, Caltech 3 November, 08 Lecture 3: Action, Hamilton-Jacobi Theory Starred sections are advanced topics for interest and future reference. The unstarred material will not be tested on the final

More information

Statistical Mechanics for the Truncated Quasi-Geostrophic Equations

Statistical Mechanics for the Truncated Quasi-Geostrophic Equations Statistical Mechanics for the Truncated Quasi-Geostrophic Equations Di Qi, and Andrew J. Majda Courant Institute of Mathematical Sciences Fall 6 Advanced Topics in Applied Math Di Qi, and Andrew J. Majda

More information

Applications to simulations: Monte-Carlo

Applications to simulations: Monte-Carlo Applications to simulations: Monte-Carlo A.C. Maggs ESPCI, Paris June 2016 Summary Algorithms Faster/simpler codes Thermodynamics of Electric fields Partition function of electric field Thermal Casimir/Lifshitz

More information

Addendum: Lyapunov Exponent Calculation

Addendum: Lyapunov Exponent Calculation Addendum: Lyapunov Exponent Calculation Experiment CP-Ly Equations of Motion The system phase u is written in vector notation as θ u = (1) φ The equation of motion can be expressed compactly using the

More information

Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios

Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios Downloaded from orbit.dtu.dk on: Jan 22, 2019 Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios Nystrup, Peter Publication date: 2018 Document Version

More information

Introduction to Phase Transitions in Statistical Physics and Field Theory

Introduction to Phase Transitions in Statistical Physics and Field Theory Introduction to Phase Transitions in Statistical Physics and Field Theory Motivation Basic Concepts and Facts about Phase Transitions: Phase Transitions in Fluids and Magnets Thermodynamics and Statistical

More information

THE BREZIS-EKELAND-NAYROLES VARIATIONAL PRINCIPALE FOR ELASTOPLASTIC PROBLEMS

THE BREZIS-EKELAND-NAYROLES VARIATIONAL PRINCIPALE FOR ELASTOPLASTIC PROBLEMS 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 2018, Glasgow, UK THE BREZIS-EKELAND-NAYROLES VARIATIONAL PRINCIPALE

More information

Adaptive Tracking and Estimation for Nonlinear Control Systems

Adaptive Tracking and Estimation for Nonlinear Control Systems Adaptive Tracking and Estimation for Nonlinear Control Systems Michael Malisoff, Louisiana State University Joint with Frédéric Mazenc and Marcio de Queiroz Sponsored by NSF/DMS Grant 0708084 AMS-SIAM

More information

Euler equation and Navier-Stokes equation

Euler equation and Navier-Stokes equation Euler equation and Navier-Stokes equation WeiHan Hsiao a a Department of Physics, The University of Chicago E-mail: weihanhsiao@uchicago.edu ABSTRACT: This is the note prepared for the Kadanoff center

More information

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Benjamin Hornberger 1/26/1 Phy 55, Classical Electrodynamics, Prof. Goldhaber Lecture notes from Oct. 26, 21 Lecture held by Prof. Weisberger

More information

Role of thermodynamics in modeling the behavior of complex solids

Role of thermodynamics in modeling the behavior of complex solids IWNET Summer School 2015 Role of thermodynamics in modeling the behavior of complex solids Bob Svendsen Material Mechanics RWTH Aachen University Microstructure Physics and Alloy Design Max-Planck-Institut

More information

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems: Thermomechanics

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems: Thermomechanics The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems: Thermomechanics Prof. Dr. Eleni Chatzi Dr. Giuseppe Abbiati, Dr. Konstantinos Agathos Lecture 13-14 December, 2017 1 / 30 Forewords

More information

This introductory chapter presents some basic concepts of continuum mechanics, symbols and notations for future reference.

This introductory chapter presents some basic concepts of continuum mechanics, symbols and notations for future reference. Chapter 1 Introduction to Elasticity This introductory chapter presents some basic concepts of continuum mechanics, symbols and notations for future reference. 1.1 Kinematics of finite deformations We

More information

Control of the Inertia Wheel Pendulum by Bounded Torques

Control of the Inertia Wheel Pendulum by Bounded Torques Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 5 Seville, Spain, December -5, 5 ThC6.5 Control of the Inertia Wheel Pendulum by Bounded Torques Victor

More information

Robotics & Automation. Lecture 25. Dynamics of Constrained Systems, Dynamic Control. John T. Wen. April 26, 2007

Robotics & Automation. Lecture 25. Dynamics of Constrained Systems, Dynamic Control. John T. Wen. April 26, 2007 Robotics & Automation Lecture 25 Dynamics of Constrained Systems, Dynamic Control John T. Wen April 26, 2007 Last Time Order N Forward Dynamics (3-sweep algorithm) Factorization perspective: causal-anticausal

More information

Energy-based Swing-up of the Acrobot and Time-optimal Motion

Energy-based Swing-up of the Acrobot and Time-optimal Motion Energy-based Swing-up of the Acrobot and Time-optimal Motion Ravi N. Banavar Systems and Control Engineering Indian Institute of Technology, Bombay Mumbai-476, India Email: banavar@ee.iitb.ac.in Telephone:(91)-(22)

More information

J09M.1 - Coupled Pendula

J09M.1 - Coupled Pendula Part I - Mechanics J09M.1 - Coupled Pendula J09M.1 - Coupled Pendula Two simple pendula, each of length l and mass m, are coupled by a spring of force constant k. The spring is attached to the rods of

More information

Introduction. There exist many physical. systems that are a combination of two. separate states which interact with

Introduction. There exist many physical. systems that are a combination of two. separate states which interact with Introduction There exist many physical systems that are a combination of two separate states which interact with each other, thus modifying one state in a certain way will effect the other state. To clearly

More information

Nondeterministic Kinetics Based Feature Clustering for Fractal Pattern Coding

Nondeterministic Kinetics Based Feature Clustering for Fractal Pattern Coding Nondeterministic Kinetics Based Feature Clustering for Fractal Pattern Coding Kohji Kamejima Faculty of Engineering, Osaka Institute of Technology 5-16-1 Omiya, Asahi, Osaka 535-8585 JAPAN Tel: +81 6 6954-4330;

More information

CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT

CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT Journal of Computer Science and Cybernetics, V.31, N.3 (2015), 255 265 DOI: 10.15625/1813-9663/31/3/6127 CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT NGUYEN TIEN KIEM

More information

Contact Geometry of Mesoscopic Thermodynamics and Dynamics

Contact Geometry of Mesoscopic Thermodynamics and Dynamics Entropy 2014, 16, 1652-1686; doi:10.3390/e16031652 Article OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Contact Geometry of Mesoscopic Thermodynamics and Dynamics Miroslav Grmela École

More information

MODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam. Uniaxial Model: Strain-Driven Format of Elastoplasticity

MODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam. Uniaxial Model: Strain-Driven Format of Elastoplasticity MODELING OF CONCRETE MATERIALS AND STRUCTURES Kaspar Willam University of Colorado at Boulder Class Meeting #3: Elastoplastic Concrete Models Uniaxial Model: Strain-Driven Format of Elastoplasticity Triaxial

More information

Numerics and Control of PDEs Lecture 1. IFCAM IISc Bangalore

Numerics and Control of PDEs Lecture 1. IFCAM IISc Bangalore 1/1 Numerics and Control of PDEs Lecture 1 IFCAM IISc Bangalore July 22 August 2, 2013 Introduction to feedback stabilization Stabilizability of F.D.S. Mythily R., Praveen C., Jean-Pierre R. 2/1 Q1. Controllability.

More information

. D CR Nomenclature D 1

. D CR Nomenclature D 1 . D CR Nomenclature D 1 Appendix D: CR NOMENCLATURE D 2 The notation used by different investigators working in CR formulations has not coalesced, since the topic is in flux. This Appendix identifies the

More information

Nonlinear stability of steady flow of Giesekus viscoelastic fluid

Nonlinear stability of steady flow of Giesekus viscoelastic fluid Nonlinear stability of steady flow of Giesekus viscoelastic fluid Mark Dostalík, V. Průša, K. Tůma August 9, 2018 Faculty of Mathematics and Physics, Charles University Table of contents 1. Introduction

More information

Swinging-Up and Stabilization Control Based on Natural Frequency for Pendulum Systems

Swinging-Up and Stabilization Control Based on Natural Frequency for Pendulum Systems 9 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June -, 9 FrC. Swinging-Up and Stabilization Control Based on Natural Frequency for Pendulum Systems Noriko Matsuda, Masaki Izutsu,

More information

Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents

Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents Reference: AM and T. Hirano, arxiv:1003:3087 Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents Akihiko Monnai Department of Physics, The University of Tokyo

More information

3 Space curvilinear motion, motion in non-inertial frames

3 Space curvilinear motion, motion in non-inertial frames 3 Space curvilinear motion, motion in non-inertial frames 3.1 In-class problem A rocket of initial mass m i is fired vertically up from earth and accelerates until its fuel is exhausted. The residual mass

More information

Introduction to Seismology Spring 2008

Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu.50 Introduction to Seismology Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. .50 Introduction to Seismology

More information

Circuit Synthesis of the Kuramoto Model and Electrical Interpretation of its Synchronization Condition

Circuit Synthesis of the Kuramoto Model and Electrical Interpretation of its Synchronization Condition RUHR-UNIVERSITÄT BOCHUM Circuit Synthesis of the Kuramoto Model and Electrical Interpretation of its Synchronization Condition Karlheinz Ochs, Dennis Michaelis, Julian Roggendorf, Petro Feketa, Alexander

More information

Mechanics IV: Oscillations

Mechanics IV: Oscillations Mechanics IV: Oscillations Chapter 4 of Morin covers oscillations, including damped and driven oscillators in detail. Also see chapter 10 of Kleppner and Kolenkow. For more on normal modes, see any book

More information

A Hamiltonian Numerical Scheme for Large Scale Geophysical Fluid Systems

A Hamiltonian Numerical Scheme for Large Scale Geophysical Fluid Systems A Hamiltonian Numerical Scheme for Large Scale Geophysical Fluid Systems Bob Peeters Joint work with Onno Bokhove & Jason Frank TW, University of Twente, Enschede CWI, Amsterdam PhD-TW colloquium, 9th

More information

S13 PHY321: Final May 1, NOTE: Show all your work. No credit for unsupported answers. Turn the front page only when advised by the instructor!

S13 PHY321: Final May 1, NOTE: Show all your work. No credit for unsupported answers. Turn the front page only when advised by the instructor! Name: Student ID: S13 PHY321: Final May 1, 2013 NOTE: Show all your work. No credit for unsupported answers. Turn the front page only when advised by the instructor! The exam consists of 6 problems (60

More information

An Integrodifferential Approach to Adaptive Control Design for Heat Transfer Systems with Uncertainties

An Integrodifferential Approach to Adaptive Control Design for Heat Transfer Systems with Uncertainties An Integrodifferential Approach to Adaptive Control Design for Heat Transfer Systems with Uncertainties Vasily Saurin Georgy Kostin Andreas Rauh Luise Senkel Harald Aschemann Institute for Problems in

More information

A quantum heat equation 5th Spring School on Evolution Equations, TU Berlin

A quantum heat equation 5th Spring School on Evolution Equations, TU Berlin A quantum heat equation 5th Spring School on Evolution Equations, TU Berlin Mario Bukal A. Jüngel and D. Matthes ACROSS - Centre for Advanced Cooperative Systems Faculty of Electrical Engineering and Computing

More information

CH.1. THERMODYNAMIC FOUNDATIONS OF CONSTITUTIVE MODELLING. Computational Solid Mechanics- Xavier Oliver-UPC

CH.1. THERMODYNAMIC FOUNDATIONS OF CONSTITUTIVE MODELLING. Computational Solid Mechanics- Xavier Oliver-UPC CH.1. THERMODYNAMIC FOUNDATIONS OF CONSTITUTIVE MODELLING Computational Solid Mechanics- Xavier Oliver-UPC 1.1 Dissipation approach for constitutive modelling Ch.1. Thermodynamical foundations of constitutive

More information

Nonlinear Control Lecture # 36 Tracking & Regulation. Nonlinear Control

Nonlinear Control Lecture # 36 Tracking & Regulation. Nonlinear Control Nonlinear Control Lecture # 36 Tracking & Regulation Normal form: η = f 0 (η,ξ) ξ i = ξ i+1, for 1 i ρ 1 ξ ρ = a(η,ξ)+b(η,ξ)u y = ξ 1 η D η R n ρ, ξ = col(ξ 1,...,ξ ρ ) D ξ R ρ Tracking Problem: Design

More information

Chapter 0. Preliminaries. 0.1 Things you should already know

Chapter 0. Preliminaries. 0.1 Things you should already know Chapter 0 Preliminaries These notes cover the course MATH45061 (Continuum Mechanics) and are intended to supplement the lectures. The course does not follow any particular text, so you do not need to buy

More information

HAMILTON S PRINCIPLE

HAMILTON S PRINCIPLE HAMILTON S PRINCIPLE In our previous derivation of Lagrange s equations we started from the Newtonian vector equations of motion and via D Alembert s Principle changed coordinates to generalised coordinates

More information

DEVELOPING A MICRO-SCALE MODEL OF SOIL FREEZING

DEVELOPING A MICRO-SCALE MODEL OF SOIL FREEZING Proceedings of ALGORITMY 2016 pp. 234 243 DEVELOPING A MICRO-SCALE MODEL OF SOIL FREEZING A. ŽÁK, M. BENEŠ, AND T.H. ILLANGASEKARE Abstract. In this contribution, we analyze thermal and mechanical effects

More information

Physical Law Eulerian Form N Lagrangian Form n = V, 3,

Physical Law Eulerian Form N Lagrangian Form n = V, 3, Chapter 5 Constitutive Modelling 5.1 Introduction Thus far we have established four conservation (or balance) equations, an entropy inequality and a number of kinematic relationships. The overall set of

More information

Stability Subject to Dynamical Accessibility

Stability Subject to Dynamical Accessibility Stability Subject to Dynamical Accessibility P. J. Morrison Department of Physics and Institute for Fusion Studies The University of Texas at Austin morrison@physics.utexas.edu http://www.ph.utexas.edu/

More information

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

PEAT SEISMOLOGY Lecture 2: Continuum mechanics PEAT8002 - SEISMOLOGY Lecture 2: Continuum mechanics Nick Rawlinson Research School of Earth Sciences Australian National University Strain Strain is the formal description of the change in shape of a

More information

Sample Solutions of Assignment 9 for MAT3270B

Sample Solutions of Assignment 9 for MAT3270B Sample Solutions of Assignment 9 for MAT370B. For the following ODEs, find the eigenvalues and eigenvectors, and classify the critical point 0,0 type and determine whether it is stable, asymptotically

More information

Type II hidden symmetries of the Laplace equation

Type II hidden symmetries of the Laplace equation Type II hidden symmetries of the Laplace equation Andronikos Paliathanasis Larnaka, 2014 A. Paliathanasis (Univ. of Naples) Type II symmetries Larnaka, 2014 1 / 25 Plan of the Talk 1 The generic symmetry

More information

MHA042 - Material mechanics: Duggafrågor

MHA042 - Material mechanics: Duggafrågor MHA042 - Material mechanics: Duggafrågor 1) For a static uniaxial bar problem at isothermal (Θ const.) conditions, state principle of energy conservation (first law of thermodynamics). On the basis of

More information

Modified Equations for Variational Integrators

Modified Equations for Variational Integrators Modified Equations for Variational Integrators Mats Vermeeren Technische Universität Berlin Groningen December 18, 2018 Mats Vermeeren (TU Berlin) Modified equations for variational integrators December

More information

Helicity fluctuation, generation of linking number and effect on resistivity

Helicity fluctuation, generation of linking number and effect on resistivity Helicity fluctuation, generation of linking number and effect on resistivity F. Spineanu 1), M. Vlad 1) 1) Association EURATOM-MEC Romania NILPRP MG-36, Magurele, Bucharest, Romania spineanu@ifin.nipne.ro

More information

MIXED FINITE ELEMENT FORMULATIONS FOR THE GALERKIN-BASED TIME INTEGRATION OF FINITE ANISOTROPIC ELASTODYNAMICS

MIXED FINITE ELEMENT FORMULATIONS FOR THE GALERKIN-BASED TIME INTEGRATION OF FINITE ANISOTROPIC ELASTODYNAMICS 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 18, Glasgow, UK MIXED FINITE ELEMENT FORMULATIONS FOR THE GALERKIN-BASED

More information

Mechanics of materials Lecture 4 Strain and deformation

Mechanics of materials Lecture 4 Strain and deformation Mechanics of materials Lecture 4 Strain and deformation Reijo Kouhia Tampere University of Technology Department of Mechanical Engineering and Industrial Design Wednesday 3 rd February, 206 of a continuum

More information

Discontinuous Collocation Methods for DAEs in Mechanics

Discontinuous Collocation Methods for DAEs in Mechanics Discontinuous Collocation Methods for DAEs in Mechanics Scott Small Laurent O. Jay The University of Iowa Iowa City, Iowa, USA July 11, 2011 Outline 1 Introduction of the DAEs 2 SPARK and EMPRK Methods

More information

06. Lagrangian Mechanics II

06. Lagrangian Mechanics II University of Rhode Island DigitalCommons@URI Classical Dynamics Physics Course Materials 2015 06. Lagrangian Mechanics II Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License

More information

Computational Modelling of Mechanics and Transport in Growing Tissue

Computational Modelling of Mechanics and Transport in Growing Tissue Computational Modelling of Mechanics and Transport in Growing Tissue H. Narayanan, K. Garikipati, E. M. Arruda & K. Grosh University of Michigan Eighth U.S. National Congress on Computational Mechanics

More information

Lecture Note 7: Velocity Kinematics and Jacobian

Lecture Note 7: Velocity Kinematics and Jacobian ECE5463: Introduction to Robotics Lecture Note 7: Velocity Kinematics and Jacobian Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018

More information

The Kosterlitz-Thouless Phase Transition

The Kosterlitz-Thouless Phase Transition The Kosterlitz-Thouless Phase Transition Steven M. Girvin Department of Physics Indiana University Bloomington, IN 47405 August 1, 2000 1 Outline 2D XY Model Continuous Symmetry, Mermin-Wagner Theorem

More information

UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT. PART I Qualifying Examination. August 20, 2013, 5:00 p.m. to 8:00 p.m.

UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT. PART I Qualifying Examination. August 20, 2013, 5:00 p.m. to 8:00 p.m. UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT PART I Qualifying Examination August 20, 2013, 5:00 p.m. to 8:00 p.m. Instructions: The only material you are allowed in the examination room is a writing

More information