Energy-consistent time-integration for dynamic finite deformation. thermoviscoelasticity. GAMM Annual Meeting,

Size: px
Start display at page:

Download "Energy-consistent time-integration for dynamic finite deformation. thermoviscoelasticity. GAMM Annual Meeting,"

Transcription

1 for dynamic finite thermo-viscoelasticity Chair of Computational Mechanics University of Siegen GAMM Annual Meeting,

2 Thermo-viscoelastic double pendulum (closed system) Thermodynamically Consistent algorithm enhanced GENERIC format partitioned discrete gradients enhanced hybrid Galerin method continuous-discontinuous Galerin method algorithmic stresses

3 Structure preserving integrators great interest in the last two decades Energy balance long stability enhanced computational robustness exact reproduction of the physical structure - adiabatic - not restricted to adiabatic systems 3

4 Kinematics Thermoviscoelastic double pendulum: m q r q m 4 linear momenta: p = m v and π = p p principal stretches: λ = l L = c with l = q l = r rel. temperatures: ϑ = θ θ int. isotr. variable: c i c e = c ci

5 Physical structure 5 closed system - q, p, s, c i Total Energy: E = T (π ) + e (c, s, c i ) = Kin. energies: T = m π Temperatures: Internal energies: θ = e s e = θ s + ψ Lyapunov-function: L = E θ S Dissipation: L = D tot 0 open system - q, v, θ, c i Total Energy: E = ˆT (v )+ ˆψ (c, θ, c i ) = Kin. energies: +θ s (θ, c ) ˆT = m v Entropies: s = ˆψ θ Relative internal energies: ê = ϑ s + ˆψ Lyapunov-function: ˆL = ˆT + ê = Dissipation: ˆL = D tot 0

6 Semidiscrete equations Equations of motion: ṗ = (e + e ) q ṗ = (e + e ) q Thermal evolution equations: ṡ = κ q = p m q = p m ( ) θ + Dint θ θ Viscous evolution equations: ṗ = ( ˆψ + ˆψ ) q ṗ = ( ˆψ + ˆψ ) q ṡ = κ with D int = ψvis c i ( ) θ + Dint θ θ ċ i = 4 c ψ vis i V ċ i = 4 c ψ vis i vol c i V vol c i ċ i 6

7 Enhanced GENERIC framewor H.C. Öttinger (005) Initial value problem: ż = (L + L c i ) ze + (M + M c i ) zs z(t 0 ) = z 0 State vector: ] z = [q, q, p, p, s, s, c i, c i Degeneracy conditions: L zs = M ze = 0 Enhanced condition: ze M c i zs = ze L c i ze Consequences: Ė = 0 Ṡ 0 L 0 7

8 Gradients and matrices Gradients: [ e + e E =, q q e, p, p ], θ, θ, ci e, ci e m m S = [ 0, 0, 0, 0,,, 0, 0 ] Matrices: I I L + L ci = c i V vol c i V vol κ θ M + M ci = θ + Dint θ κ 0 0 κ κ θ θ + Dint θ

9 Discretization Initial value problem: z n+ z n = (L + L c i ) π T h n+ DπE+(M + M c i ) π T n+ DπS n Vector of invariants: ] π = [c, c, π, π, s, s, c i, c i Discrete conditions: L Dz S = M DzẼ = 0 DzẼ Mc i Dz S= DzẼ Lc i DzẼ Consequences using the TC integrator: and: E(z n+ ) E(z n ) = 0 S(z n+ ) S(z n ) 0 L(z n+ ) L(z n ) 9

10 Discrete equations Discrete eq. of motion: midpoint & part. discr. grad. q n+ q n = p h n m n+ (no sum) p n+ p n = h n L D c e q n+ + L p n+ p n = h n L D c e r n+ Discrete thermal evolution equations: s n+ s n h n = κ ( ) Dsj e j + Dint D s e D s e D c e r n+ part. discr. grad. Discrete viscous evolution equations: part. discr. grad. c in+ c in = 4 ci h n V n+ D ci e vol 0

11 Partitioned discrete gradients D c e = e ( ) ( ) c n+, s n+, c in+ e c n, s n+, c in+ + (c n+ c n ) e (c n+, s n, ci n) e (cn, s n, ci n) (c n+ c n ) D s e = e ( ) ( ) c n, s n+, c in+ e c n, s n, c in+ + (s n+ s n ) e (c n+, s n+, ci n) e (c n+, s n, ci n) (s n+ s n ) D ci e = e ( c n, s n, c in+ ) e (c n, s n, c n i ) ( c in+ c in ) + e ( c n+, s n+, c in+ ) e (cn+, s n+, c n i ) ( c in+ c in ) and: D int = D ci e c i n+ c in h n = 4 V vol c i n+ D ci e

12 Wea forms M. Groß (009) State vector: z = [q, q, v, v, θ, θ, c i, c i ] Wea equations of motion: cg method tn+ t n tn+ t n δṗ v = m v δ q = tn+ Wea thermal evolution equations: t n+ t n+ [[ê i,t0 ] ϑ + δθ +,t 0 + ṡ δθ = t0 t n t n t n tn+ t n [ κ δṗ q ˆψ q δ q modified dg method ) ] + Dint δθ ( θj θ Wea viscous evolution equations: t n+ ψ vis t n+ δċ i = c i V vol ci t n t n θ li vis δċ i cg method

13 Discrete equations Discrete eq. of motion: midpoint rule & algo. stresses q n+ q n m v n+ v n h n m v n+ v n h n h n = v n+ = Σ c q n+ L n+ + Σ c r n+ L n+ = Σ c r n+ L n+ Discr. thermal evolution eq.: two-point Gaussian quadr. rule [ê i,t0 ] + s ϑ + rat t0 [ ] [ ( ) ] = hn ξl θjn+ξl D int ξl κ + ξ l θ n+ξl s rat l= Discr. viscous evolution eq.: c in+ c in h n = 4 V vol c i n+ ci ψ vis n+ θ n+ξl with: s rat = (s n+ s + n ) midpoint rule 3

14 Stress approximation Σ Constraints: G ( ˆΣ ) = h n (ên+ ê + n ) ê ˆΣ l = 0 Minimization of the functional: F ( ˆΣ, λ m ) = λm G ( ˆΣ ) + ˆΣ algorithmic stresses Σ = Σ + ˆΣ with Σ = c ˆψ c : Σ = h n (ê n+ ê + n ) + D int ϑ n+ h n (s n+ s + n ) l with: l and: = c n+ c n+ c n h n D int α l vis = Σ vis α l vis α = c i n+ c in+ c in h n 4

15 Stress approximation Σ vis Constraints: vis G ( ˆΣ ) = D int l= Minimization of the functional: D int ξl vis F ( ˆΣ ξl, λ m ) = λ m G ( ˆΣ ) + algorithmic dissipation D int ξl D int ξl ( D = D int int n+ ξl + l= ϑ ξl θ ξl l= ( l= = D int ξl + ˆΣ vis ξl l vis ξl : ( ϑξl D int ξ + D int θ ξl l vis ξl ξ ) ) ϑ ξl θ ξl ˆΣvis ξl l vis ξl = 0 ) ˆΣ vis ξl l vis ξl 5

16 6 Free energy function Free energy: with: and: ψ com ψ vis = µe ψ = = ψ com + ψ vis + ψ the = µ (c ln c ) + ψ vol (c ) ( ce ln ) c e + ψ vol (c e ) ψ the = ( ϑ θ ln θ θ ) ψ vol (c ) = λ β ϑ ψ vol (c ) J [ ln c + ( c ) ] [ ln ce + ( c e ) ] ψ vol (c e ) = λe Parameters: µ = [750, 75] J µ e = 750 J = 500 J K λ = [3000, 30] J λ e = 3000 J β = J K V vol = 50 Js θ = 300 K κ = 0 W K

17 Orbits Reference solution Standard integrators, t = 0.09s z z y x ehg &, t = 0.09s y t = s x z y x 7

18 Reference solution temperature - θ θ θ dissipation - D total conduction internal energy - E.354 x lyapunov - L.5 x

19 Standard integrators temperature - θ θ, t=0.0s θ, t=0.05s θ, t=0.09s θ, t=0.0s θ, t=0.05s θ, t=0.09s D tot t=0.0s t=0.05s t=0.09s energy - E.353 x 05 t=0.0s t=0.05s.358 t=0.09s lyapunov - L 3 x 04 t=0.0s t=0.05s t=0.09s

20 Structure preserving integrators temperature - θ θ, t=0.0s θ, t=0.05s θ, t=0.09s θ, t=0.0s θ, t=0.05s θ, t=0.09s D tot t=0.0s t=0.05s t=0.09s ehg-e TC-E.354 x x 05 t=0.0s t=0.05s.35 t=0.09s lyapunov - L.5 x 04 t=0.0s t=0.05s.4 t=0.09s

21 Conclusions Implementation of the - partitioned discrete gradient Implementation of the - algorithmic stresses Comparison of structure preserving integrators with standard integrators by means of a double pendulum Outloo Implementation of a thermoviscoelastic continuum for the enhanced GENERIC system Enlargement of the enhanced GENERIC system to unisolated driven systems

22 Than you for your attention! Questions?! The authors than the German Research Foundation (DFG) for financial support (GR 397/-)

On the consistent discretization in time of nonlinear thermo-elastodynamics

On the consistent discretization in time of nonlinear thermo-elastodynamics of nonlinear thermo-elastodynamics Chair of Computational Mechanics University of Siegen GAMM Annual Meeting, 3.03.00 0000 0000 Thermodynamic double pendulum Structure preserving integrators Great interest

More information

thermo-viscoelasticity using

thermo-viscoelasticity using thermo-viscoelasticity Chair of Computational Mechanics University of Siegen Chair of Applied Mechanics and Dynamics Chemnitz University of Technology ECCOMAS, 13.9.1 1 Thermoviscoelastic continuum framework

More information

DYNAMIC FINITE DEFORMATION THERMO-VISCOELASTICITY USING ENERGY-CONSISTENT TIME-INTEGRATION

DYNAMIC FINITE DEFORMATION THERMO-VISCOELASTICITY USING ENERGY-CONSISTENT TIME-INTEGRATION European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS ) J. Eberhardsteiner et.al. (eds.) Vienna, Austria, September -4, DYNAMIC FINITE DEFORMATION THERMO-VISCOELASTICITY

More information

Contents of the presentation

Contents of the presentation Peter Betsch An energy-entropy-consistent finite thermo-viscoelasticity 1 Peter Betsch Chair of Applied Chemnitz University of Technology March 1, 014 1 Chair of Computational Mechanics Institute of Mechanics

More information

Simulation of Thermomechanical Couplings of Viscoelastic Materials

Simulation of Thermomechanical Couplings of Viscoelastic Materials Simulation of Thermomechanical Couplings of Viscoelastic Materials Frank Neff 1, Thomas Miquel 2, Michael Johlitz 1, Alexander Lion 1 1 Institute of Mechanics Faculty for Aerospace Engineering Universität

More information

A Characterization of Conserved Quantities in Non-Equilibrium Thermodynamics

A Characterization of Conserved Quantities in Non-Equilibrium Thermodynamics Entropy 2013, 15, 5580-5596; doi:10.3390/e15125580 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article A Characterization of Conserved Quantities in Non-Equilibrium Thermodynamics Ignacio

More information

Continuum Mechanics and Theory of Materials

Continuum Mechanics and Theory of Materials Peter Haupt Continuum Mechanics and Theory of Materials Translated from German by Joan A. Kurth Second Edition With 91 Figures, Springer Contents Introduction 1 1 Kinematics 7 1. 1 Material Bodies / 7

More information

Nonlinear Control. Nonlinear Control Lecture # 24 State Feedback Stabilization

Nonlinear Control. Nonlinear Control Lecture # 24 State Feedback Stabilization Nonlinear Control Lecture # 24 State Feedback Stabilization Feedback Lineaization What information do we need to implement the control u = γ 1 (x)[ ψ(x) KT(x)]? What is the effect of uncertainty in ψ,

More information

Nonlinear stability of steady flow of Giesekus viscoelastic fluid

Nonlinear stability of steady flow of Giesekus viscoelastic fluid Nonlinear stability of steady flow of Giesekus viscoelastic fluid Mark Dostalík, V. Průša, K. Tůma August 9, 2018 Faculty of Mathematics and Physics, Charles University Table of contents 1. Introduction

More information

MHA042 - Material mechanics: Duggafrågor

MHA042 - Material mechanics: Duggafrågor MHA042 - Material mechanics: Duggafrågor 1) For a static uniaxial bar problem at isothermal (Θ const.) conditions, state principle of energy conservation (first law of thermodynamics). On the basis of

More information

Solutions to chapter 4 problems

Solutions to chapter 4 problems Chapter 9 Solutions to chapter 4 problems Solution to Exercise 47 For example, the x component of the angular momentum is defined as ˆL x ŷˆp z ẑ ˆp y The position and momentum observables are Hermitian;

More information

A hierarchy of higher order and higher grade continua Application to the plasticity and fracture of metallic foams

A hierarchy of higher order and higher grade continua Application to the plasticity and fracture of metallic foams A hierarchy of higher order and higher grade continua Application to the plasticity and fracture of metallic foams Samuel Forest Centre des Matériaux/UMR 7633 Mines Paris ParisTech /CNRS BP 87, 91003 Evry,

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

4 Constitutive Theory

4 Constitutive Theory ME338A CONTINUUM MECHANICS lecture notes 13 Tuesday, May 13, 2008 4.1 Closure Problem In the preceding chapter, we derived the fundamental balance equations: Balance of Spatial Material Mass ρ t + ρ t

More information

Physical Dynamics (PHY-304)

Physical Dynamics (PHY-304) Physical Dynamics (PHY-304) Gabriele Travaglini March 31, 2012 1 Review of Newtonian Mechanics 1.1 One particle Lectures 1-2. Frame, velocity, acceleration, number of degrees of freedom, generalised coordinates.

More information

(relativistic effects kinetic energy & spin-orbit coupling) 3. Hyperfine structure: ) (spin-spin coupling of e & p + magnetic moments) 4.

(relativistic effects kinetic energy & spin-orbit coupling) 3. Hyperfine structure: ) (spin-spin coupling of e & p + magnetic moments) 4. 4 Time-ind. Perturbation Theory II We said we solved the Hydrogen atom exactly, but we lied. There are a number of physical effects our solution of the Hamiltonian H = p /m e /r left out. We already said

More information

EUF. Joint Entrance Examination for Postgraduate Courses in Physics

EUF. Joint Entrance Examination for Postgraduate Courses in Physics EUF Joint Entrance Examination for Postgraduate Courses in Physics For the second semester of 06 April 06, 06 Part Instructions Do not write your name on the test. It should be identified only by your

More information

l t 1 2 2 2 2 2 B B m t t m 0 ṁ t = e ref a t m t B e ref a t t t x t a t δ a t0 = 0 ȧ t = x t δa t c(x t ) c x t, c (x t ) 0 c (x t ) 0 c(x t ) 0 c (x t ) c c (x t ) x t t

More information

Hydrodynamics, Thermodynamics, and Mathematics

Hydrodynamics, Thermodynamics, and Mathematics Hydrodynamics, Thermodynamics, and Mathematics Hans Christian Öttinger Department of Mat..., ETH Zürich, Switzerland Thermodynamic admissibility and mathematical well-posedness 1. structure of equations

More information

DYNAMIC FINITE DEFORMATION VISCOELASTICITY IN PRINCIPAL STRETCHES: ENERGY-CONSISTENT TIME INTEGRATION USING MIXED FINITE ELEMENTS

DYNAMIC FINITE DEFORMATION VISCOELASTICITY IN PRINCIPAL STRETCHES: ENERGY-CONSISTENT TIME INTEGRATION USING MIXED FINITE ELEMENTS COMPDYN 9 ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, N.D. Lagaros, M. Fragiadakis (eds.) Rhodes, Greece, -4 June 9 DYNAMIC FINITE

More information

Physics 106a, Caltech 13 November, Lecture 13: Action, Hamilton-Jacobi Theory. Action-Angle Variables

Physics 106a, Caltech 13 November, Lecture 13: Action, Hamilton-Jacobi Theory. Action-Angle Variables Physics 06a, Caltech 3 November, 08 Lecture 3: Action, Hamilton-Jacobi Theory Starred sections are advanced topics for interest and future reference. The unstarred material will not be tested on the final

More information

The Spin (continued). February 8, 2012

The Spin (continued). February 8, 2012 The Spin continued. Magnetic moment of an electron Particle wave functions including spin Stern-Gerlach experiment February 8, 2012 1 Magnetic moment of an electron. The coordinates of a particle include

More information

Lecture 5: Orbital angular momentum, spin and rotation

Lecture 5: Orbital angular momentum, spin and rotation Lecture 5: Orbital angular momentum, spin and rotation 1 Orbital angular momentum operator According to the classic expression of orbital angular momentum L = r p, we define the quantum operator L x =

More information

Variance Decomposition

Variance Decomposition Variance Decomposition 1 14.384 Time Series Analysis, Fall 2007 Recitation by Paul Schrimpf Supplementary to lectures given by Anna Mikusheva October 5, 2007 Recitation 5 Variance Decomposition Suppose

More information

Mixing Quantum and Classical Mechanics: A Partially Miscible Solution

Mixing Quantum and Classical Mechanics: A Partially Miscible Solution Mixing Quantum and Classical Mechanics: A Partially Miscible Solution R. Kapral S. Nielsen A. Sergi D. Mac Kernan G. Ciccotti quantum dynamics in a classical condensed phase environment how to simulate

More information

Energy and Momentum Conserving Algorithms in Continuum Mechanics. O. Gonzalez

Energy and Momentum Conserving Algorithms in Continuum Mechanics. O. Gonzalez Energy and Momentum Conserving Algorithms in Continuum Mechanics O. Gonzalez Département de Mathématiques École Polytechnique Fédérale de Lausanne Lausanne, Switzerland INTRODUCTION MAIN CONCERN Time integration

More information

A NOTE ON RELATIONSHIP BETWEEN FIXED-POLE AND MOVING-POLE APPROACHES IN STATIC AND DYNAMIC ANALYSIS OF NON-LINEAR SPATIAL BEAM STRUCTURES

A NOTE ON RELATIONSHIP BETWEEN FIXED-POLE AND MOVING-POLE APPROACHES IN STATIC AND DYNAMIC ANALYSIS OF NON-LINEAR SPATIAL BEAM STRUCTURES European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 212) J. Eberhardsteiner et.al. (eds.) Vienna, Austria, September 1-14, 212 A NOTE ON RELATIONSHIP BETWEEN FIXED-POLE

More information

Quantum heat engine using energy quantization in potential barrier

Quantum heat engine using energy quantization in potential barrier Quantum heat engine using energy quantization in potential barrier Sibasish Ghosh Optics and Quantum Information Group The Institute of Mathematical Sciences C.I.T. Campus, Taramani Chennai 600113. [In

More information

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle Short-Ranged Central and Tensor Correlations in Nuclear Many-Body Systems Reaction Theory for Nuclei far from Stability @ INT Seattle September 6-, Hans Feldmeier, Thomas Neff, Robert Roth Contents Motivation

More information

β matrices defined above in terms of these Pauli matrices as

β matrices defined above in terms of these Pauli matrices as The Pauli Hamiltonian First let s define a set of x matrices called the Pauli spin matrices; i σ ; ; x σ y σ i z And note for future reference that σ x σ y σ z σ σ x + σ y + σ z 3 3 We can rewrite α &

More information

Notes 19 Gradient and Laplacian

Notes 19 Gradient and Laplacian ECE 3318 Applied Electricity and Magnetism Spring 218 Prof. David R. Jackson Dept. of ECE Notes 19 Gradient and Laplacian 1 Gradient Φ ( x, y, z) =scalar function Φ Φ Φ grad Φ xˆ + yˆ + zˆ x y z We can

More information

Physical Dynamics (SPA5304) Lecture Plan 2018

Physical Dynamics (SPA5304) Lecture Plan 2018 Physical Dynamics (SPA5304) Lecture Plan 2018 The numbers on the left margin are approximate lecture numbers. Items in gray are not covered this year 1 Advanced Review of Newtonian Mechanics 1.1 One Particle

More information

6.2 Formulation of thermomechanical constitutive equations

6.2 Formulation of thermomechanical constitutive equations 6 CONSTITUTIVE EQUATIONS 61 The need for constitutive equations Basic principles of continuum mechanics, namely, conservation of mass, balance of momenta, and conservation of energy, discussed in Chapter

More information

Similarity Approach to the Problem of Second Grade Fluid Flows over a Stretching Sheet

Similarity Approach to the Problem of Second Grade Fluid Flows over a Stretching Sheet Applied Mathematical Sciences, Vol. 1, 2007, no. 7, 327-338 Similarity Approach to the Problem of Second Grade Fluid Flows over a Stretching Sheet Ch. Mamaloukas Athens University of Economics and Business

More information

An Integrodifferential Approach to Adaptive Control Design for Heat Transfer Systems with Uncertainties

An Integrodifferential Approach to Adaptive Control Design for Heat Transfer Systems with Uncertainties An Integrodifferential Approach to Adaptive Control Design for Heat Transfer Systems with Uncertainties Vasily Saurin Georgy Kostin Andreas Rauh Luise Senkel Harald Aschemann Institute for Problems in

More information

Armin Toffler, The whole is more than the sum of the parts. Aristotle, BC. Prigogine I. and Stengers I. Order out of Chaos (1984)

Armin Toffler, The whole is more than the sum of the parts. Aristotle, BC. Prigogine I. and Stengers I. Order out of Chaos (1984) 1 OUTLINE 1. Introduction 2. Complexity 3. Waves in microstructured materials internal variables examples 4. Biophysics / biomechanics 5. Complexity around snow 6. Final remarks 2 One of the most highly

More information

Krylov Techniques for Model Reduction of Second-Order Systems

Krylov Techniques for Model Reduction of Second-Order Systems Krylov Techniques for Model Reduction of Second-Order Systems A Vandendorpe and P Van Dooren February 4, 2004 Abstract The purpose of this paper is to present a Krylov technique for model reduction of

More information

Computational Modelling of Mechanics and Transport in Growing Tissue

Computational Modelling of Mechanics and Transport in Growing Tissue Computational Modelling of Mechanics and Transport in Growing Tissue H. Narayanan, K. Garikipati, E. M. Arruda & K. Grosh University of Michigan Eighth U.S. National Congress on Computational Mechanics

More information

11.D.2. Collision Operators

11.D.2. Collision Operators 11.D.. Collision Operators (11.94) can be written as + p t m h+ r +p h+ p = C + h + (11.96) where C + is the Boltzmann collision operator defined by [see (11.86a) for convention of notations] C + g(p)

More information

Angular Momentum - set 1

Angular Momentum - set 1 Angular Momentum - set PH0 - QM II August 6, 07 First of all, let us practise evaluating commutators. Consider these as warm up problems. Problem : Show the following commutation relations ˆx, ˆL x ] =

More information

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms Continuum mechanics office Math 0.107 ales.janka@unifr.ch http://perso.unifr.ch/ales.janka/mechanics Mars 16, 2011, Université de Fribourg 1. Constitutive equation: definition and basic axioms Constitutive

More information

Landau s Fermi Liquid Theory

Landau s Fermi Liquid Theory Thors Hans Hansson Stockholm University Outline 1 Fermi Liquids Why, What, and How? Why Fermi liquids? What is a Fermi liquids? Fermi Liquids How? 2 Landau s Phenomenological Approach The free Fermi gas

More information

Mechanics of materials Lecture 4 Strain and deformation

Mechanics of materials Lecture 4 Strain and deformation Mechanics of materials Lecture 4 Strain and deformation Reijo Kouhia Tampere University of Technology Department of Mechanical Engineering and Industrial Design Wednesday 3 rd February, 206 of a continuum

More information

Finite dimensional thermo-mechanical systems and second order constraints

Finite dimensional thermo-mechanical systems and second order constraints Finite dimensional thermo-mechanical systems and second order constraints arxiv:1609.05156v2 [math-ph] 28 Sep 2016 Hernán Cendra Departamento de Matemática Universidad Nacional del Sur, Av. Alem 1253 8000

More information

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

PEAT SEISMOLOGY Lecture 2: Continuum mechanics PEAT8002 - SEISMOLOGY Lecture 2: Continuum mechanics Nick Rawlinson Research School of Earth Sciences Australian National University Strain Strain is the formal description of the change in shape of a

More information

Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios

Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios Downloaded from orbit.dtu.dk on: Jan 22, 2019 Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios Nystrup, Peter Publication date: 2018 Document Version

More information

Linearization. (Lectures on Solution Methods for Economists V: Appendix) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 February 21, 2018

Linearization. (Lectures on Solution Methods for Economists V: Appendix) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 February 21, 2018 Linearization (Lectures on Solution Methods for Economists V: Appendix) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 February 21, 2018 1 University of Pennsylvania 2 Boston College Basic RBC Benchmark

More information

We now turn to our first quantum mechanical problems that represent real, as

We now turn to our first quantum mechanical problems that represent real, as 84 Lectures 16-17 We now turn to our first quantum mechanical problems that represent real, as opposed to idealized, systems. These problems are the structures of atoms. We will begin first with hydrogen-like

More information

(MPa) compute (a) The traction vector acting on an internal material plane with normal n ( e1 e

(MPa) compute (a) The traction vector acting on an internal material plane with normal n ( e1 e EN10: Continuum Mechanics Homework : Kinetics Due 1:00 noon Friday February 4th School of Engineering Brown University 1. For the Cauchy stress tensor with components 100 5 50 0 00 (MPa) compute (a) The

More information

Solution Exercise 12

Solution Exercise 12 Solution Exercise 12 Problem 1: The Stark effect in the hydrogen atom a) Since n = 2, the quantum numbers l can take the values, 1 and m = -1,, 1.We obtain the following basis: n, l, m = 2,,, 2, 1, 1,

More information

The annals of Statistics (2006)

The annals of Statistics (2006) High dimensional graphs and variable selection with the Lasso Nicolai Meinshausen and Peter Buhlmann The annals of Statistics (2006) presented by Jee Young Moon Feb. 19. 2010 High dimensional graphs and

More information

CHAPTER 6 : LITERATURE REVIEW

CHAPTER 6 : LITERATURE REVIEW CHAPTER 6 : LITERATURE REVIEW Chapter : LITERATURE REVIEW 77 M E A S U R I N G T H E E F F I C I E N C Y O F D E C I S I O N M A K I N G U N I T S A B S T R A C T A n o n l i n e a r ( n o n c o n v e

More information

P E R E N C O - C H R I S T M A S P A R T Y

P E R E N C O - C H R I S T M A S P A R T Y L E T T I C E L E T T I C E I S A F A M I L Y R U N C O M P A N Y S P A N N I N G T W O G E N E R A T I O N S A N D T H R E E D E C A D E S. B A S E D I N L O N D O N, W E H A V E T H E P E R F E C T R

More information

Gramians based model reduction for hybrid switched systems

Gramians based model reduction for hybrid switched systems Gramians based model reduction for hybrid switched systems Y. Chahlaoui Younes.Chahlaoui@manchester.ac.uk Centre for Interdisciplinary Computational and Dynamical Analysis (CICADA) School of Mathematics

More information

Fourth Aegean Summer School: Black Holes Mytilene, Island of Lesvos September 18, 2007

Fourth Aegean Summer School: Black Holes Mytilene, Island of Lesvos September 18, 2007 Fourth Aegean Summer School: Black Holes Mytilene, Island of Lesvos September 18, 2007 Central extensions in flat spacetimes Duality & Thermodynamics of BH dyons New classical central extension in asymptotically

More information

Stability of Black Holes and Black Branes. Robert M. Wald with Stefan Hollands arxiv: Commun. Math. Phys. (in press)

Stability of Black Holes and Black Branes. Robert M. Wald with Stefan Hollands arxiv: Commun. Math. Phys. (in press) Stability of Black Holes and Black Branes Robert M. Wald with Stefan Hollands arxiv:1201.0463 Commun. Math. Phys. (in press) Stability It is of considerable interest to determine the linear stablity of

More information

F7. Characteristic behavior of solids

F7. Characteristic behavior of solids F7. Characteristic behavior of solids F7a: Deformation and failure phenomena: Elasticity, inelasticity, creep, fatigue. à Choice of constitutive model: Issues to be considered è Relevance? Physical effect

More information

Chimica Inorganica 3

Chimica Inorganica 3 A symmetry operation carries the system into an equivalent configuration, which is, by definition physically indistinguishable from the original configuration. Clearly then, the energy of the system must

More information

Ergodicity in data assimilation methods

Ergodicity in data assimilation methods Ergodicity in data assimilation methods David Kelly Andy Majda Xin Tong Courant Institute New York University New York NY www.dtbkelly.com April 15, 2016 ETH Zurich David Kelly (CIMS) Data assimilation

More information

2.073 Notes on finite-deformation theory of isotropic elastic-viscoplastic solids

2.073 Notes on finite-deformation theory of isotropic elastic-viscoplastic solids 2.073 Notes on finite-deformation theory of isotropic elastic-viscoplastic solids Lallit Anand Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge, MA 02139, USA April

More information

Suggested solutions, FYS 500 Classical Mechanics and Field Theory 2015 fall

Suggested solutions, FYS 500 Classical Mechanics and Field Theory 2015 fall UNIVERSITETET I STAVANGER Institutt for matematikk og naturvitenskap Suggested solutions, FYS 500 Classical Mecanics and Field Teory 015 fall Set 1 for 16/17. November 015 Problem 68: Te Lagrangian for

More information

Introduction to Phase Transitions in Statistical Physics and Field Theory

Introduction to Phase Transitions in Statistical Physics and Field Theory Introduction to Phase Transitions in Statistical Physics and Field Theory Motivation Basic Concepts and Facts about Phase Transitions: Phase Transitions in Fluids and Magnets Thermodynamics and Statistical

More information

Energy-based Swing-up of the Acrobot and Time-optimal Motion

Energy-based Swing-up of the Acrobot and Time-optimal Motion Energy-based Swing-up of the Acrobot and Time-optimal Motion Ravi N. Banavar Systems and Control Engineering Indian Institute of Technology, Bombay Mumbai-476, India Email: banavar@ee.iitb.ac.in Telephone:(91)-(22)

More information

On the characterization of drilling rotation in the 6 parameter resultant shell theory

On the characterization of drilling rotation in the 6 parameter resultant shell theory On the characterization of drilling rotation in the 6 parameter resultant shell theory Mircea Birsan and Patrizio Neff Chair for Nonlinear Analysis and Modelling Faculty of Mathematics, University Duisburg-Essen,

More information

On the analysis for a class of thermodynamically compatible viscoelastic fluids with stress diffusion

On the analysis for a class of thermodynamically compatible viscoelastic fluids with stress diffusion On the analysis for a class of thermodynamically compatible viscoelastic fluids with stress diffusion Josef Málek Nečas Center for Mathematical Modeling and Charles University, Faculty of Mathematics and

More information

Optimal Control of Switching Surfaces

Optimal Control of Switching Surfaces Optimal Control of Switching Surfaces Y. Wardi, M. Egerstedt, M. Boccadoro, and E. Verriest {ywardi,magnus,verriest}@ece.gatech.edu School of Electrical and Computer Engineering Georgia Institute of Technology

More information

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE Proceedings of the International Conference on Mechanical Engineering 2011 (ICME2011) 18-20 December 2011, Dhaka, Bangladesh ICME11-TH-014 FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT

More information

1.6. Quantum mechanical description of the hydrogen atom

1.6. Quantum mechanical description of the hydrogen atom 29.6. Quantum mechanical description of the hydrogen atom.6.. Hamiltonian for the hydrogen atom Atomic units To avoid dealing with very small numbers, let us introduce the so called atomic units : Quantity

More information

Statistical Mechanics for the Truncated Quasi-Geostrophic Equations

Statistical Mechanics for the Truncated Quasi-Geostrophic Equations Statistical Mechanics for the Truncated Quasi-Geostrophic Equations Di Qi, and Andrew J. Majda Courant Institute of Mathematical Sciences Fall 6 Advanced Topics in Applied Math Di Qi, and Andrew J. Majda

More information

Angular momentum. Quantum mechanics. Orbital angular momentum

Angular momentum. Quantum mechanics. Orbital angular momentum Angular momentum 1 Orbital angular momentum Consider a particle described by the Cartesian coordinates (x, y, z r and their conjugate momenta (p x, p y, p z p. The classical definition of the orbital angular

More information

ENTROPY GENERATION ANALYSIS OF A REACTIVE HYDROMAGNETIC FLUID FLOW THROUGH A CHANNEL

ENTROPY GENERATION ANALYSIS OF A REACTIVE HYDROMAGNETIC FLUID FLOW THROUGH A CHANNEL U.P.B. Sci. Bull., Series A, Vol. 77, Iss., 5 ISSN 3-77 ENTROPY GENERATION ANALYSIS OF A REACTIVE HYDROMAGNETIC FLUID FLOW THROUGH A CHANNEL Anthony Rotimi HASSAN * and Jacob Abiodun GBADEYAN This research

More information

CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT

CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT Journal of Computer Science and Cybernetics, V.31, N.3 (2015), 255 265 DOI: 10.15625/1813-9663/31/3/6127 CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT NGUYEN TIEN KIEM

More information

MODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam. Uniaxial Model: Strain-Driven Format of Elastoplasticity

MODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam. Uniaxial Model: Strain-Driven Format of Elastoplasticity MODELING OF CONCRETE MATERIALS AND STRUCTURES Kaspar Willam University of Colorado at Boulder Class Meeting #3: Elastoplastic Concrete Models Uniaxial Model: Strain-Driven Format of Elastoplasticity Triaxial

More information

A Thermodynamic Formulation of the STZ Theory of Deformation in Amorphous Solids

A Thermodynamic Formulation of the STZ Theory of Deformation in Amorphous Solids A Thermodynamic Formulation of the STZ Theory of Deformation in Amorphous Solids Michael L. Falk Johns Hopkins University James S. Langer UC Santa Barbara E. Bouchbinder Weizmann Institute Thermodynamics

More information

CONSTITUTIVE THEORIES: BASIC PRINCIPLES

CONSTITUTIVE THEORIES: BASIC PRINCIPLES 1 6.161.6 CONSTITUTIVE THEORIES: BASIC PRINCIPLES I-Shih Liu Instituto de Matemática, Universidade Federal do Rio de Janeiro, Brasil Keywords: Frame of reference, change of observer, Euclidean objectivity,

More information

Boundary Layers: Stratified Fluids

Boundary Layers: Stratified Fluids Boundary Layers: Stratified Fluids Lecture 3 by Jeroen Hazewinkel continued from lecture 2 Using w I = /(2σS) 2 T I, the interior of the cylinder is be described by 2σS 2 T I + 1/2 4 2 This result can

More information

Today s Lecture: Atmosphere finish primitive equations, mostly thermodynamics

Today s Lecture: Atmosphere finish primitive equations, mostly thermodynamics Today s Lecture: Atmosphere finish primitive equations, mostly thermodynamics Reference Peixoto and Oort, Sec. 3.1, 3.2, 3.4, 3.5 (but skip the discussion of oceans until next week); Ch. 10 Thermodynamic

More information

Approximation Methods in QM

Approximation Methods in QM Chapter 3 Approximation Methods in QM Contents 3.1 Time independent PT (nondegenerate)............... 5 3. Degenerate perturbation theory (PT)................. 59 3.3 Time dependent PT and Fermi s golden

More information

arxiv: v1 [cond-mat.stat-mech] 18 Apr 2007

arxiv: v1 [cond-mat.stat-mech] 18 Apr 2007 Quasi Equilibrium Grid Algorithm: geometric construction for model reduction arxiv:0704.2317v1 [cond-mat.stat-mech] 18 Apr 2007 Eliodoro Chiavazzo, Iliya V. Karlin Aerothermochemistry and Combustion Systems

More information

MODELLING MIXED-MODE RATE-DEPENDENT DELAMINATION IN LAYERED STRUCTURES USING GEOMETRICALLY NONLINEAR BEAM FINITE ELEMENTS

MODELLING MIXED-MODE RATE-DEPENDENT DELAMINATION IN LAYERED STRUCTURES USING GEOMETRICALLY NONLINEAR BEAM FINITE ELEMENTS PROCEEDINGS Proceedings of the 25 th UKACM Conference on Computational Mechanics 12-13 April 217, University of Birmingham Birmingham, United Kingdom MODELLING MIXED-MODE RATE-DEPENDENT DELAMINATION IN

More information

Principles of Dynamics. Tom Charnock

Principles of Dynamics. Tom Charnock Principles of Dynamics Tom Charnock Contents 1 Coordinates, Vectors and Matrices 4 1.1 Cartesian Coordinates...................................... 4 1. Polar Coordinates........................................

More information

The Kosterlitz-Thouless Phase Transition

The Kosterlitz-Thouless Phase Transition The Kosterlitz-Thouless Phase Transition Steven M. Girvin Department of Physics Indiana University Bloomington, IN 47405 August 1, 2000 1 Outline 2D XY Model Continuous Symmetry, Mermin-Wagner Theorem

More information

θ = θ (s,υ). (1.4) θ (s,υ) υ υ

θ = θ (s,υ). (1.4) θ (s,υ) υ υ 1.1 Thermodynamics of Fluids 1 Specific Heats of Fluids Elastic Solids Using the free energy per unit mass ψ as a thermodynamic potential we have the caloric equation of state ψ = ψ ˆ (θυ) (1.1.1) the

More information

Condensation properties of Bethe roots in the XXZ chain

Condensation properties of Bethe roots in the XXZ chain Condensation properties of Bethe roots in the XXZ chain K K Kozlowski CNRS, aboratoire de Physique, ENS de yon 25 th of August 206 K K Kozlowski "On condensation properties of Bethe roots associated with

More information

Comparison of the multiplicative decompositions F = F θ F M and F = F M F θ in finite strain thermoelasticity

Comparison of the multiplicative decompositions F = F θ F M and F = F M F θ in finite strain thermoelasticity Comparison of the multiplicative decompositions F = F θ F and F = F F θ in finite strain thermoelasticity Stefan Hartmann Technical Report Series Fac3-12-01 Impressum Publisher: Fakultät für athematik/informatik

More information

1.1 Basis of Statistical Decision Theory

1.1 Basis of Statistical Decision Theory ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 Lecture 1: Introduction Lecturer: Yihong Wu Scribe: AmirEmad Ghassami, Jan 21, 2016 [Ed. Jan 31] Outline: Introduction of

More information

Dissipative and conservative structures for thermo-mechanical systems

Dissipative and conservative structures for thermo-mechanical systems Preprints of the 9th International Symposium on Advanced Control of Chemical Processes The International Federation of Automatic Control WeM.3 Dissipative and conservative structures for thermo-mechanical

More information

Model reduction of coupled systems

Model reduction of coupled systems Model reduction of coupled systems Tatjana Stykel Technische Universität Berlin ( joint work with Timo Reis, TU Kaiserslautern ) Model order reduction, coupled problems and optimization Lorentz Center,

More information

CONSTITUTIVE THEORIES FOR THERMOELASTIC SOLIDS IN LAGRANGIAN DESCRIPTION USING GIBBS POTENTIAL YUSSHY MENDOZA

CONSTITUTIVE THEORIES FOR THERMOELASTIC SOLIDS IN LAGRANGIAN DESCRIPTION USING GIBBS POTENTIAL YUSSHY MENDOZA CONSTITUTIVE THEORIES FOR THERMOELASTIC SOLIDS IN LAGRANGIAN DESCRIPTION USING GIBBS POTENTIAL BY YUSSHY MENDOZA B.S. in Mechanical Engineering, Saint Louis University, 2008 Submitted to the graduate degree

More information

TMA4285 December 2015 Time series models, solution.

TMA4285 December 2015 Time series models, solution. Norwegian University of Science and Technology Department of Mathematical Sciences Page of 5 TMA4285 December 205 Time series models, solution. Problem a) (i) The slow decay of the ACF of z t suggest that

More information

5. Atoms and the periodic table of chemical elements. Definition of the geometrical structure of a molecule

5. Atoms and the periodic table of chemical elements. Definition of the geometrical structure of a molecule Historical introduction The Schrödinger equation for one-particle problems Mathematical tools for quantum chemistry 4 The postulates of quantum mechanics 5 Atoms and the periodic table of chemical elements

More information

Phase transitions and critical phenomena

Phase transitions and critical phenomena Phase transitions and critical phenomena Classification of phase transitions. Discontinous (st order) transitions Summary week -5 st derivatives of thermodynamic potentials jump discontinously, e.g. (

More information

The experiment consists of studying the deflection of a beam of neutral ground state paramagnetic atoms (silver) in inhomogeneous magnetic field:

The experiment consists of studying the deflection of a beam of neutral ground state paramagnetic atoms (silver) in inhomogeneous magnetic field: SPIN 1/2 PARTICLE Stern-Gerlach experiment The experiment consists of studying the deflection of a beam of neutral ground state paramagnetic atoms (silver) in inhomogeneous magnetic field: A silver atom

More information

Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents

Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents Reference: AM and T. Hirano, arxiv:1003:3087 Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents Akihiko Monnai Department of Physics, The University of Tokyo

More information

Contact Geometry of Mesoscopic Thermodynamics and Dynamics

Contact Geometry of Mesoscopic Thermodynamics and Dynamics Entropy 2014, 16, 1652-1686; doi:10.3390/e16031652 Article OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Contact Geometry of Mesoscopic Thermodynamics and Dynamics Miroslav Grmela École

More information

J09M.1 - Coupled Pendula

J09M.1 - Coupled Pendula Part I - Mechanics J09M.1 - Coupled Pendula J09M.1 - Coupled Pendula Two simple pendula, each of length l and mass m, are coupled by a spring of force constant k. The spring is attached to the rods of

More information

COMPUTATIONAL MODELING OF SHAPE MEMORY MATERIALS

COMPUTATIONAL MODELING OF SHAPE MEMORY MATERIALS COMPUTATIONAL MODELING OF SHAPE MEMORY MATERIALS Jan Valdman Institute of Information Theory and Automation, Czech Academy of Sciences (Prague) based on joint works with Martin Kružík and Miroslav Frost

More information

Continuum mechanism: Stress and strain

Continuum mechanism: Stress and strain Continuum mechanics deals with the relation between forces (stress, σ) and deformation (strain, ε), or deformation rate (strain rate, ε). Solid materials, rigid, usually deform elastically, that is the

More information

The Geometry of the Quantum Hall Effect

The Geometry of the Quantum Hall Effect The Geometry of the Quantum Hall Effect Dam Thanh Son (University of Chicago) Refs: Carlos Hoyos, DTS arxiv:1109.2651 DTS, M.Wingate cond-mat/0509786 Plan Review of quantum Hall physics Summary of results

More information

Ğ ğ ğ Ğ ğ Öğ ç ğ ö öğ ğ ŞÇ ğ ğ

Ğ ğ ğ Ğ ğ Öğ ç ğ ö öğ ğ ŞÇ ğ ğ Ğ Ü Ü Ü ğ ğ ğ Öğ ş öğ ş ğ öğ ö ö ş ğ ğ ö ğ Ğ ğ ğ Ğ ğ Öğ ç ğ ö öğ ğ ŞÇ ğ ğ l _.j l L., c :, c Ll Ll, c :r. l., }, l : ö,, Lc L.. c l Ll Lr. 0 c (} >,! l LA l l r r l rl c c.r; (Y ; c cy c r! r! \. L : Ll.,

More information