Lecturer: Bengt E W Nilsson

Size: px
Start display at page:

Download "Lecturer: Bengt E W Nilsson"

Transcription

1 Lecturer: Bengt E W Nilsson From the previous lecture: Example 3 Figure 1. Some x µ s will have ND or DN boundary condition half integer mode expansions! Recall also: Half integer mode expansions in the NS-sector of the superstring: { br I, b s I } = δ r+s,0 δ IJ I p, b 1 p, etc. While in the R-sector we have integer mode expansions: 2 { dm I, d n J } = δ m+n,0 δ IJ { d 0 I, d 0 J } =δ IJ Spectrum: vacuum in the R-sector must be such that this commutation relation can be realised d 0 I γ I = spinor! 1

2 Chapter 16: String charge and electric charge Recall the action for a charged particle interacting with electromagnetism: S = m P ds + q A 1 2 P 4κ 0 d D x F µν F µν where A=A µ dx µ. If we are not in four dimensions, κ 0 2 will be a dimensionful constant. P = the path (the world line). ds = η µν dx µ dx ν F µν = µ A ν ν A µ with gauge invariance δa µ = µ Λ S int = q A = q A µ (x)ẋ µ dτ = q dτ P P P d D x δ D (x X(τ))A µ (x) ẋ µ with A µ (x) independent of τ. Can all this be generalised to the string? Electromagnetism: e : point charge world line A µ (one index) String:? world sheet B µν S int = B Σ 2 B µν dx µ dx ν Σ 2 Note: We use weight one forms and antisymmetric brackets: B 1 2 dxµ dx ν B µν dx µ dx ν 1 2 (dxµ dx ν dx ν dx ν ), where is the tensor product dx [µ dτ dx S int = B µν Σ2 µ dx ν dτ dσ dx ν] dτ 1 ( dx µ dx ν 2 dτ dσ dxν dτ ) dx µ dσ where S string = 1 2πα da Σ 2 Σ 2 B 1 6κ 2 d D x H µνρ H µνρ H µνρ µ B νρ + ν B ρµ + ρ B µν 3 [µ B νρ] Gauge invariant under δb µν = µ Λ ν ν Λ µ. 2

3 Now, in electromagnetism we have ν F µν = κ 0 2 j µ µ j µ =0 conservation of charge Q, Q j 0 d d x. String: ρ H µνρ = κ 2 j µν, where j µν is the current defined from S int = B = B µν ẋ µ x ν dτdσ dτ dσ Σ 2 Σ 2 Σ 2 d D xδ D (x x(τ,σ))b µν ẋ µ x ν d D xb µν j µν We get µ ρ H µνρ = κ 2 j µ j µν = 0 µ j µν = 0. (Compare to the stress tensor µ T µν = 0.) So j µν = ( j 0ν, j iν). j 00 = 0 because of antisymmetry. There are only j 0i in j 0ν. j iν = (j i0, j ij ) =( j 0i, j ij ). So the independent components are j 0i and j ij. j 0i d d x j 0i = Q i (vector charge, conserved) j ij vector (the i index) charge current (the j index) density. Implication of µ j µν =0? Electromagnetism: µ j µ = 0 t j 0 + i j i integrate = 0 7 charge conservation but not in the static case i j i =0 (a divergence-free current). String: µ j µν ν=0 =07 t j 00 + i j i0 = 0, i.e. i j 0i = 0 looks like a current that is divergence free. ν = j: t j 0j + i j ij = 0 vector charge conservation. A current that is divergence free cannot stop. i j 0i = 0 the string must be a loop (closed string), of if open it must be infinite, of if ending on D-branes, something new must happen. What? To understand these stringy currents and charges better, consider the static gauge. j µν (t, x)= dτdσδ(x 0 τ)δ d (x x(τ,σ)ẋ [µ (x ) ν] = j 0i = 1 2 dσ δ D 1 (x x(τ σ)) σ x i (t, σ) dσδ d (x x(t, σ)) dx[µ dt dx ν] dσ i.e. the vector string charge density is directed along the string from σ = 0 to σ = π, that is, B µν fells the orientation of the string. 3

4 Recall: Type I string = unorinented string. Start from a closed oriented string and identify the two orientations. This can only be done if the string we start from is orientation symmetric, i.e. IIB. x L x R, ψ 1 ψ 2. Example. In the bosonic string we can introduce the orientation flip operator Ω: Ωα n I Ω 1 =ᾱ n I Then we can keep only states that are orientation flip symmetric: g µν, B µν, φ. 1) If adding open strings. Type I string. 2) If adding closed heterotic string you get heterotic string. 16.2: Visualising the string charge Electromagnetism Figure 2. E da = ( E)dV = ρ dv = q S 2 = B 3 B 3 B 3 4

5 A magnetic version Figure 3. j da B dl = ( B) da = S 1 B 2 B c 2 = jtot c (through the surface B 2 ) 5

6 This can be taken over to the string: Let s be in D = 3+1 ρ H µνρ = κ 2 j µν Put H 0jk ε jkl B l (H) µν = 0j: ρ H 0jρ = k H 0jk =κ 2 j 0i B (H) = κ 2 j 0 just as in electromagnetism, and the above calculation will give the number of strings N instead of j tot. 16.3: Strings ending on D-branes D-branes has A µ fields on them! Is there some scalar associated to the A µ? Figure 4. Can the end point of the string couple to A µ? How is this related to the string vector charge? Recall from electromagnetism: Gauge invariance δa µ = µ Λ. Is S int = q A 6

7 gauge invariant? Vary A µ δs int = δa µ j µ d D x = ( µ Λ)j µ d D x= Λ µ j µ d D x+boundary term (in τ) =0 if µ j µ = 0. So gauge invariance is closely connected to charge conservation. What happens in the string? S B = dτ dσ xµ τ x ν σ B µν δb µν = µ Λ ν ν Λ µ δs B = dτ dσ τ x µ σ x ν ( µ Λ ν ν Λ µ )= = dτdσ (( τ Λ µ ) σ x µ ( τ x µ ) σ Λ µ )= = dτdσ( τ (Λ µ σ x µ ) Λ µ τ σ x µ σ ( τ x µ Λ µ ) + τ σ x µ Λ µ ) = (drop boundary terms in τ-direction) = dτ[ τ x µ σ=π Λ µ ] σ=0 These bound terms are located in the D-branes x µ x m, x a x m : -brane Neumann boundary conditions x a : -brane Dirichlet boundary conditions δs B = dτ [ Λ m ẋ m + Λ a ẋ a] σ=π σ=0 = dτ Λ m ẋ σ=π m dτλ m ẋ m σ=0 This must be made to vanish to save gauge invariance! How? Let us say that the end points actually have q = { + 1 at σ = { π with respect to A 1 0 µ! S tot =S B + dτ A m ẋ σ=π m dτa m ẋ m σ=0 Then define the gauge invariance as { δbµν = µ Λ ν ν Λ µ δa m = Λ m δs tot = 0. 7

8 F mn on the brane is not gauge invariant under this set of transformations. The gauge invariant field strength is really a new object F mn =F mn +B mn F mn F mn F mn F mn = F 2 + B 2 +FB which means that F is like a current of string charge. Figure : D-brane charge 8

9 If the string has a string charge coupling to B µν is this true also for D-branes? What possible fields do we have? In the bosonic string there are no fields like this (only g µν, B µν, φ). unstable! In the superstring: from the RR-sector (call these C µ,,ν): IIA. C µ C µνρ. C µ D0, C µνρ D2 All D-branes are IIB. C D( 1), C µν D1, C (+) µνρσ D3 Recall: q electric charge Figure 6. Q e = 1 E da = 1 F 0i da i = 1 ( F) ij da ij 4π S 4π 2 S 4π 2 S 2 ( F) ij = 1 2 ε ρσµνf µν = 1 2 ε ij0kf 0k m magnetic charge: [B i = 12 ε ijk F jk, F = 12 F ij dx i dx j ] Example: D0-brane in D = 10, electric charge Q m = 1 B da = 1 F 4π 4π S 2 9

10 Q e = Figure 7. 1 Vol(S 8 F 2 ) S 8 D6-brane. F 2 : F µν = µ C ν ν C µ 1 Q m = Vol(S 2 F 2 ) S 2 Figure 8. 10

Lecture 9: RR-sector and D-branes

Lecture 9: RR-sector and D-branes Lecture 9: RR-sector and D-branes José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 6, 2013 José D. Edelstein (USC) Lecture 9: RR-sector and D-branes 6-mar-2013

More information

Lecturer: Bengt E W Nilsson

Lecturer: Bengt E W Nilsson 009 04 8 Lecturer: Bengt E W Nilsson Chapter 3: The closed quantised bosonic string. Generalised τ,σ gauges: n µ. For example n µ =,, 0,, 0).. X ±X ) =0. n x = α n p)τ n p)σ =π 0σ n P τ τ,σ )dσ σ 0, π]

More information

Lecturer: Bengt E W Nilsson

Lecturer: Bengt E W Nilsson 9 3 19 Lecturer: Bengt E W Nilsson Last time: Relativistic physics in any dimension. Light-cone coordinates, light-cone stuff. Extra dimensions compact extra dimensions (here we talked about fundamental

More information

Exercise 1 Classical Bosonic String

Exercise 1 Classical Bosonic String Exercise 1 Classical Bosonic String 1. The Relativistic Particle The action describing a free relativistic point particle of mass m moving in a D- dimensional Minkowski spacetime is described by ) 1 S

More information

String Theory II GEORGE SIOPSIS AND STUDENTS

String Theory II GEORGE SIOPSIS AND STUDENTS String Theory II GEORGE SIOPSIS AND STUDENTS Department of Physics and Astronomy The University of Tennessee Knoxville, TN 37996-1200 U.S.A. e-mail: siopsis@tennessee.edu Last update: 2006 ii Contents

More information

Quantization of the open string on exact plane waves and non-commutative wave fronts

Quantization of the open string on exact plane waves and non-commutative wave fronts Quantization of the open string on exact plane waves and non-commutative wave fronts F. Ruiz Ruiz (UCM Madrid) Miami 2007, December 13-18 arxiv:0711.2991 [hep-th], with G. Horcajada Motivation On-going

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.821 String Theory Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.821 F2008 Lecture 02: String theory

More information

General Relativity (j µ and T µν for point particles) van Nieuwenhuizen, Spring 2018

General Relativity (j µ and T µν for point particles) van Nieuwenhuizen, Spring 2018 Consistency of conservation laws in SR and GR General Relativity j µ and for point particles van Nieuwenhuizen, Spring 2018 1 Introduction The Einstein equations for matter coupled to gravity read Einstein

More information

Outline 1. Introduction 1.1. Historical Overview 1.2. The Theory 2. The Relativistic String 2.1. Set Up 2.2. The Relativistic Point Particle 2.3. The

Outline 1. Introduction 1.1. Historical Overview 1.2. The Theory 2. The Relativistic String 2.1. Set Up 2.2. The Relativistic Point Particle 2.3. The Classical String Theory Proseminar in Theoretical Physics David Reutter ETH Zürich April 15, 2013 Outline 1. Introduction 1.1. Historical Overview 1.2. The Theory 2. The Relativistic String 2.1. Set Up

More information

Lecture 8: 1-loop closed string vacuum amplitude

Lecture 8: 1-loop closed string vacuum amplitude Lecture 8: 1-loop closed string vacuum amplitude José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 5, 2013 José D. Edelstein (USC) Lecture 8: 1-loop vacuum

More information

Linearized Gravity Return to Linearized Field Equations

Linearized Gravity Return to Linearized Field Equations Physics 411 Lecture 28 Linearized Gravity Lecture 28 Physics 411 Classical Mechanics II November 7th, 2007 We have seen, in disguised form, the equations of linearized gravity. Now we will pick a gauge

More information

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS 8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS Lecturer: McGreevy Scribe: Francesco D Eramo October 16, 2008 Today: 1. the boundary of AdS 2. Poincaré patch 3. motivate boundary

More information

MIFPA PiTP Lectures. Katrin Becker 1. Department of Physics, Texas A&M University, College Station, TX 77843, USA. 1

MIFPA PiTP Lectures. Katrin Becker 1. Department of Physics, Texas A&M University, College Station, TX 77843, USA. 1 MIFPA-10-34 PiTP Lectures Katrin Becker 1 Department of Physics, Texas A&M University, College Station, TX 77843, USA 1 kbecker@physics.tamu.edu Contents 1 Introduction 2 2 String duality 3 2.1 T-duality

More information

e θ 1 4 [σ 1,σ 2 ] = e i θ 2 σ 3

e θ 1 4 [σ 1,σ 2 ] = e i θ 2 σ 3 Fermions Consider the string world sheet. We have bosons X µ (σ,τ) on this world sheet. We will now also put ψ µ (σ,τ) on the world sheet. These fermions are spin objects on the worldsheet. In higher dimensions,

More information

(a p (t)e i p x +a (t)e ip x p

(a p (t)e i p x +a (t)e ip x p 5/29/3 Lecture outline Reading: Zwiebach chapters and. Last time: quantize KG field, φ(t, x) = (a (t)e i x +a (t)e ip x V ). 2Ep H = ( ȧ ȧ(t)+ 2E 2 E pa a) = p > E p a a. P = a a. [a p,a k ] = δ p,k, [a

More information

SUPERSTRING REALIZATIONS OF SUPERGRAVITY IN TEN AND LOWER DIMENSIONS. John H. Schwarz. Dedicated to the memory of Joël Scherk

SUPERSTRING REALIZATIONS OF SUPERGRAVITY IN TEN AND LOWER DIMENSIONS. John H. Schwarz. Dedicated to the memory of Joël Scherk SUPERSTRING REALIZATIONS OF SUPERGRAVITY IN TEN AND LOWER DIMENSIONS John H. Schwarz Dedicated to the memory of Joël Scherk SOME FAMOUS SCHERK PAPERS Dual Models For Nonhadrons J. Scherk, J. H. Schwarz

More information

Overthrows a basic assumption of classical physics - that lengths and time intervals are absolute quantities, i.e., the same for all observes.

Overthrows a basic assumption of classical physics - that lengths and time intervals are absolute quantities, i.e., the same for all observes. Relativistic Electrodynamics An inertial frame = coordinate system where Newton's 1st law of motion - the law of inertia - is true. An inertial frame moves with constant velocity with respect to any other

More information

On the world sheet we have used the coordinates τ,σ. We will see however that the physics is simpler in light cone coordinates + (3) ξ + ξ

On the world sheet we have used the coordinates τ,σ. We will see however that the physics is simpler in light cone coordinates + (3) ξ + ξ 1 Light cone coordinates on the world sheet On the world sheet we have used the coordinates τ,σ. We will see however that the physics is simpler in light cone coordinates ξ + = τ + σ, ξ = τ σ (1) Then

More information

String Theory Compactifications with Background Fluxes

String Theory Compactifications with Background Fluxes String Theory Compactifications with Background Fluxes Mariana Graña Service de Physique Th Journées Physique et Math ématique IHES -- Novembre 2005 Motivation One of the most important unanswered question

More information

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are.

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are. GRAVITATION F0 S. G. RAJEEV Lecture. Maxwell s Equations in Curved Space-Time.. Recall that Maxwell equations in Lorentz covariant form are. µ F µν = j ν, F µν = µ A ν ν A µ... They follow from the variational

More information

Übungen zur Elektrodynamik (T3)

Übungen zur Elektrodynamik (T3) Arnold Sommerfeld Center Ludwig Maximilians Universität München Prof. Dr. Ivo Sachs SoSe 17 Übungen zur Elektrodynamik T3) Lösungen zum Übungsblatt 6 1 Lorentz Force The equations of motion for the trajectory

More information

Übungen zur Elektrodynamik (T3)

Übungen zur Elektrodynamik (T3) Arnold Sommerfeld Center Ludwig Maximilians Universität München Prof. Dr. Ivo Sachs SoSe 08 Übungen zur Elektrodynamik (T3) Lösungen zum Übungsblatt 7 Lorentz Force Calculate dx µ and ds explicitly in

More information

Solutions to problem set 6

Solutions to problem set 6 Solutions to problem set 6 Donal O Connell February 3, 006 1 Problem 1 (a) The Lorentz transformations are just t = γ(t vx) (1) x = γ(x vt). () In S, the length δx is at the points x = 0 and x = δx for

More information

Chapter 2 General Relativity and Black Holes

Chapter 2 General Relativity and Black Holes Chapter 2 General Relativity and Black Holes In this book, black holes frequently appear, so we will describe the simplest black hole, the Schwarzschild black hole and its physics. Roughly speaking, a

More information

Théorie des cordes: quelques applications. Cours II: 4 février 2011

Théorie des cordes: quelques applications. Cours II: 4 février 2011 Particules Élémentaires, Gravitation et Cosmologie Année 2010-11 Théorie des cordes: quelques applications Cours II: 4 février 2011 Résumé des cours 2009-10: deuxième partie 04 février 2011 G. Veneziano,

More information

1 Canonical quantization conformal gauge

1 Canonical quantization conformal gauge Contents 1 Canonical quantization conformal gauge 1.1 Free field space of states............................... 1. Constraints..................................... 3 1..1 VIRASORO ALGEBRA...........................

More information

Lecture 16 March 29, 2010

Lecture 16 March 29, 2010 Lecture 16 March 29, 2010 We know Maxwell s equations the Lorentz force. Why more theory? Newton = = Hamiltonian = Quantum Mechanics Elegance! Beauty! Gauge Fields = Non-Abelian Gauge Theory = Stard Model

More information

Classical membranes. M. Groeneveld Introduction. 2. The principle of least action

Classical membranes. M. Groeneveld Introduction. 2. The principle of least action Classical membranes M. Groeneveld 398253 With the use of the principle of least action the equation of motion of a relativistic particle can be derived. With the Nambu-Goto action, we are able to derive

More information

Exact solutions in supergravity

Exact solutions in supergravity Exact solutions in supergravity James T. Liu 25 July 2005 Lecture 1: Introduction and overview of supergravity Lecture 2: Conditions for unbroken supersymmetry Lecture 3: BPS black holes and branes Lecture

More information

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor. Übungen zu RT2 SS 2010 (1) Show that the tensor field g µν (x) = η µν is invariant under Poincaré transformations, i.e. x µ x µ = L µ νx ν + c µ, where L µ ν is a constant matrix subject to L µ ρl ν ση

More information

MATH 423 January 2011

MATH 423 January 2011 MATH 423 January 2011 Examiner: Prof. A.E. Faraggi, Extension 43774. Time allowed: Two and a half hours Full marks can be obtained for complete answers to FIVE questions. Only the best FIVE answers will

More information

Quantum Fields in Curved Spacetime

Quantum Fields in Curved Spacetime Quantum Fields in Curved Spacetime Lecture 3 Finn Larsen Michigan Center for Theoretical Physics Yerevan, August 22, 2016. Recap AdS 3 is an instructive application of quantum fields in curved space. The

More information

Problem Set 1 Classical Worldsheet Dynamics

Problem Set 1 Classical Worldsheet Dynamics MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics String Theory (8.821) Prof. J. McGreevy Fall 2007 Problem Set 1 Classical Worldsheet Dynamics Reading: GSW 2.1, Polchinski 1.2-1.4. Try 3.2-3.3.

More information

General Relativity (225A) Fall 2013 Assignment 2 Solutions

General Relativity (225A) Fall 2013 Assignment 2 Solutions University of California at San Diego Department of Physics Prof. John McGreevy General Relativity 5A) Fall 13 Assignment Solutions Posted October 3, 13 Due Monday, October 15, 13 1. Special relativity

More information

Light Cone Gauge Quantization of Strings, Dynamics of D-brane and String dualities.

Light Cone Gauge Quantization of Strings, Dynamics of D-brane and String dualities. Light Cone Gauge Quantization of Strings, Dynamics of D-brane and String dualities. Muhammad Ilyas Department of Physics Government College University Lahore, Pakistan Abstract This review aims to show

More information

Contact interactions in string theory and a reformulation of QED

Contact interactions in string theory and a reformulation of QED Contact interactions in string theory and a reformulation of QED James Edwards QFT Seminar November 2014 Based on arxiv:1409.4948 [hep-th] and arxiv:1410.3288 [hep-th] Outline Introduction Worldline formalism

More information

On Special Geometry of Generalized G Structures and Flux Compactifications. Hu Sen, USTC. Hangzhou-Zhengzhou, 2007

On Special Geometry of Generalized G Structures and Flux Compactifications. Hu Sen, USTC. Hangzhou-Zhengzhou, 2007 On Special Geometry of Generalized G Structures and Flux Compactifications Hu Sen, USTC Hangzhou-Zhengzhou, 2007 1 Dreams of A. Einstein: Unifications of interacting forces of nature 1920 s known forces:

More information

Holographic Entanglement Entropy for Surface Operators and Defects

Holographic Entanglement Entropy for Surface Operators and Defects Holographic Entanglement Entropy for Surface Operators and Defects Michael Gutperle UCLA) UCSB, January 14th 016 Based on arxiv:1407.569, 1506.0005, 151.04953 with Simon Gentle and Chrysostomos Marasinou

More information

Physics 411 Lecture 22. E&M and Sources. Lecture 22. Physics 411 Classical Mechanics II

Physics 411 Lecture 22. E&M and Sources. Lecture 22. Physics 411 Classical Mechanics II Physics 411 Lecture 22 E&M and Sources Lecture 22 Physics 411 Classical Mechanics II October 24th, 2007 E&M is a good place to begin talking about sources, since we already know the answer from Maxwell

More information

String Phenomenology. Liam.P.Talbot

String Phenomenology. Liam.P.Talbot String Phenomenology Liam.P.Talbot April 18, 2010 Abstract A study of string theory as a viable model of particle physics. Contents 1 Introduction 2 1.1 The Standard Model....................... 2 1.2

More information

BRANE COSMOLOGY and Randall-Sundrum model

BRANE COSMOLOGY and Randall-Sundrum model BRANE COSMOLOGY and Randall-Sundrum model M. J. Guzmán June 16, 2009 Standard Model of Cosmology CMB and large-scale structure observations provide us a high-precision estimation of the cosmological parameters:

More information

Dynamics of branes in DFT

Dynamics of branes in DFT Dynamics of branes in DFT Edvard Musaev Moscow Inst of Physics and Technology based on works with Eric Bergshoeff, Chris Blair, Axel Kleinschmidt, Fabio Riccioni Dualities Corfu, 2018 Web of (some) branes

More information

PAPER 309 GENERAL RELATIVITY

PAPER 309 GENERAL RELATIVITY MATHEMATICAL TRIPOS Part III Monday, 30 May, 2016 9:00 am to 12:00 pm PAPER 309 GENERAL RELATIVITY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

Problem 1, Lorentz transformations of electric and magnetic

Problem 1, Lorentz transformations of electric and magnetic Problem 1, Lorentz transformations of electric and magnetic fields We have that where, F µν = F µ ν = L µ µ Lν ν F µν, 0 B 3 B 2 ie 1 B 3 0 B 1 ie 2 B 2 B 1 0 ie 3 ie 2 ie 2 ie 3 0. Note that we use the

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.81 String Theory Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.81 F008 Lecture 1: Boundary of AdS;

More information

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams III. Quantization of constrained systems and Maxwell s theory 1. The

More information

Introduction to String Theory ETH Zurich, HS11. 9 String Backgrounds

Introduction to String Theory ETH Zurich, HS11. 9 String Backgrounds Introduction to String Theory ETH Zurich, HS11 Chapter 9 Prof. N. Beisert 9 String Backgrounds Have seen that string spectrum contains graviton. Graviton interacts according to laws of General Relativity.

More information

How I learned to stop worrying and love the tachyon

How I learned to stop worrying and love the tachyon love the tachyon Max Planck Institute for Gravitational Physics Potsdam 6-October-2008 Historical background Open string field theory Closed string field theory Experimental Hadron physics Mesons mass

More information

arxiv: v1 [hep-th] 11 Sep 2008

arxiv: v1 [hep-th] 11 Sep 2008 The Hubble parameters in the D-brane models arxiv:009.1997v1 [hep-th] 11 Sep 200 Pawel Gusin University of Silesia, Institute of Physics, ul. Uniwersytecka 4, PL-40007 Katowice, Poland, e-mail: pgusin@us.edu.pl

More information

Generalized N = 1 orientifold compactifications

Generalized N = 1 orientifold compactifications Generalized N = 1 orientifold compactifications Thomas W. Grimm University of Wisconsin, Madison based on: [hep-th/0602241] Iman Benmachiche, TWG [hep-th/0507153] TWG Madison, Wisconsin, November 2006

More information

D-brane Interactions in the IIA Plane-Wave Background

D-brane Interactions in the IIA Plane-Wave Background hep-th/040408 KAIST-TH 004/0 D-brane Interactions in the IIA Plane-Wave Background arxiv:hep-th/040408v 9 Jun 004 Yeonjung Kim, a and Jaemo Park b a Department of Physics, KAIST, Taejon 05-70, Korea b

More information

A Higher Derivative Extension of the Salam-Sezgin Model from Superconformal Methods

A Higher Derivative Extension of the Salam-Sezgin Model from Superconformal Methods A Higher Derivative Extension of the Salam-Sezgin Model from Superconformal Methods Frederik Coomans KU Leuven Workshop on Conformal Field Theories Beyond Two Dimensions 16/03/2012, Texas A&M Based on

More information

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University TAADI Electromagnetic Theory

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University TAADI Electromagnetic Theory TAAD1 Electromagnetic Theory G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University 8-31-12 Classical Electrodynamics A main physics discovery of the last half of the 2 th

More information

arxiv:hep-th/ v1 10 Apr 2006

arxiv:hep-th/ v1 10 Apr 2006 Gravitation with Two Times arxiv:hep-th/0604076v1 10 Apr 2006 W. Chagas-Filho Departamento de Fisica, Universidade Federal de Sergipe SE, Brazil February 1, 2008 Abstract We investigate the possibility

More information

Boundary conformal field theory and D-branes

Boundary conformal field theory and D-branes Boundary conformal field theory and D-branes Matthias R. Gaberdiel Institute for Theoretical Physics ETH Hönggerberg CH-8093 Zürich Switzerland July 2003 Abstract An introduction to boundary conformal

More information

Half BPS solutions in type IIB and M-theory

Half BPS solutions in type IIB and M-theory Half BPS solutions in type IIB and M-theory Based on work done in collaboration with Eric D Hoker, John Estes, Darya Krym (UCLA) and Paul Sorba (Annecy) E.D'Hoker, J.Estes and M.G., Exact half-bps type

More information

Théorie des cordes: quelques applications. Cours IV: 11 février 2011

Théorie des cordes: quelques applications. Cours IV: 11 février 2011 Particules Élémentaires, Gravitation et Cosmologie Année 2010-11 Théorie des cordes: quelques applications Cours IV: 11 février 2011 Résumé des cours 2009-10: quatrième partie 11 février 2011 G. Veneziano,

More information

WHY BLACK HOLES PHYSICS?

WHY BLACK HOLES PHYSICS? WHY BLACK HOLES PHYSICS? Nicolò Petri 13/10/2015 Nicolò Petri 13/10/2015 1 / 13 General motivations I Find a microscopic description of gravity, compatibile with the Standard Model (SM) and whose low-energy

More information

Discussing string extensions of the Standard Model in D brane world

Discussing string extensions of the Standard Model in D brane world NORDITA-2008-49 arxiv:0811.0179v1 [hep-ph] 2 Nov 2008 Discussing string extensions of the Standard Model in D brane world P. Di Vecchia a,b a The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen

More information

Citation for published version (APA): de Wit, T. C. (2003). Domain-walls and gauged supergravities Groningen: s.n.

Citation for published version (APA): de Wit, T. C. (2003). Domain-walls and gauged supergravities Groningen: s.n. University of Groningen Domain-walls and gauged supergravities de Wit, Tim Cornelis IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please

More information

Glue Functions in High-T c Superconductors and the Search for a Gravity dual

Glue Functions in High-T c Superconductors and the Search for a Gravity dual Master s Thesis Glue Functions in High-T c Superconductors and the Search for a Gravity dual Author: P. J. Hofman Supervisor Prof. dr J. de Boer Understanding the pairing mechanism in high-t c superconductors

More information

Variational Principle and Einstein s equations

Variational Principle and Einstein s equations Chapter 15 Variational Principle and Einstein s equations 15.1 An useful formula There exists an useful equation relating g µν, g µν and g = det(g µν ) : g x α = ggµν g µν x α. (15.1) The proof is the

More information

γγ αβ α X µ β X µ (1)

γγ αβ α X µ β X µ (1) Week 3 Reading material from the books Zwiebach, Chapter 12, 13, 21 Polchinski, Chapter 1 Becker, Becker, Schwartz, Chapter 2 Green, Schwartz, Witten, chapter 2 1 Polyakov action We have found already

More information

Chapter 3: Duality Toolbox

Chapter 3: Duality Toolbox 3.: GENEAL ASPECTS 3..: I/UV CONNECTION Chapter 3: Duality Toolbox MIT OpenCourseWare Lecture Notes Hong Liu, Fall 04 Lecture 8 As seen before, equipped with holographic principle, we can deduce N = 4

More information

Lecture Notes on Electromagnetism

Lecture Notes on Electromagnetism Lecture Notes on Electromagnetism Abstract. The contents of this text is based on the class notes on Electromagnetism for the PH412 course by Prof. Ananda Dasgupta, IISER Kolkata. Contents Chapter 1. Introduction

More information

THE LANDSCAPE OF THEORETICAL PHYSICS: A GLOBAL VIEW. From Point Particles to the Brane World and Beyond, in Search of a Unifying Principle

THE LANDSCAPE OF THEORETICAL PHYSICS: A GLOBAL VIEW. From Point Particles to the Brane World and Beyond, in Search of a Unifying Principle THE LANDSCAPE OF THEORETICAL PHYSICS: A GLOBAL VIEW From Point Particles to the Brane World and Beyond, in Search of a Unifying Principle MATEJ PAVŠIČ Department of Theoretical Physics Jožef Stefan Institute

More information

arxiv: v2 [hep-th] 13 Nov 2007

arxiv: v2 [hep-th] 13 Nov 2007 Strings in pp-wave background and background B-field from membrane and its symplectic quantization arxiv:7.42v2 [hep-th] 3 Nov 27 Sunandan Gangopadhyay S. N. Bose National Centre for Basic Sciences, JD

More information

Coordinate/Field Duality in Gauge Theories: Emergence of Matrix Coordinates

Coordinate/Field Duality in Gauge Theories: Emergence of Matrix Coordinates Coordinate/Field Duality in Gauge Theories: Emergence of Matrix Coordinates Amir H. Fatollahi Department of Physics, Alzahra University, P. O. Box 19938, Tehran 91167, Iran fath@alzahra.ac.ir Abstract

More information

The integral equations of Yang-Mills and its gauge invariant conserved charges

The integral equations of Yang-Mills and its gauge invariant conserved charges The integral equations of Yang-Mills and its gauge invariant conserved charges L. A. Ferreira 1 and G. Luchini 2 arxiv:1205.2088v2 [hep-th] 10 Oct 2012 Instituto de Física de São Carlos; IFSC/USP; Universidade

More information

arxiv:hep-th/ v1 25 Aug 1997

arxiv:hep-th/ v1 25 Aug 1997 CERN-TH/97-27 hep-th/970830 INTRODUCTION TO NON-PERTURBATIVE STRING THEORY arxiv:hep-th/970830v 25 Aug 997 Elias Kiritsis Theory Division, CERN, CH-2 Geneva 23, SWITZERLAND Abstract A brief introduction

More information

String Theory: a mini-course

String Theory: a mini-course String Theory: a mini-course C. Damian and O. Loaiza-Brito 1 Departamento de Física, DCI, Campus León, Universidad de Guanajuato, C.P. 37150, Guanuajuato, Mexico E-mail: cesaredas@fisica.ugto.mx, oloaiza@fisica.ugto.mx

More information

A note on the principle of least action and Dirac matrices

A note on the principle of least action and Dirac matrices AEI-2012-051 arxiv:1209.0332v1 [math-ph] 3 Sep 2012 A note on the principle of least action and Dirac matrices Maciej Trzetrzelewski Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,

More information

Newman-Penrose formalism in higher dimensions

Newman-Penrose formalism in higher dimensions Newman-Penrose formalism in higher dimensions V. Pravda various parts in collaboration with: A. Coley, R. Milson, M. Ortaggio and A. Pravdová Introduction - algebraic classification in four dimensions

More information

arxiv:hep-th/ v2 26 Aug 1999

arxiv:hep-th/ v2 26 Aug 1999 NEIP-9909 May 1999 Stable non-bps states in string theory: a pedagogical review arxiv:hep-th/9905006v 6 Aug 1999 Alberto Lerda a and Rodolfo Russo b a Dipartimento di Scienze e Tecnologie Avanzate Università

More information

Weyl anomaly for Wilson surfaces

Weyl anomaly for Wilson surfaces SPIN-1999/12 Göteborg ITP 99-05 hep-th/9905163 Weyl anomaly for Wilson surfaces Måns Henningson 1 and Kostas Skenderis 2 Institute of Theoretical Physics, Chalmers University of Technology, S-412 96 Göteborg,

More information

Spinning strings and QED

Spinning strings and QED Spinning strings and QED James Edwards Oxford Particles and Fields Seminar January 2015 Based on arxiv:1409.4948 [hep-th] and arxiv:1410.3288 [hep-th] Outline Introduction Various relationships between

More information

The Lorentz Force and Energy-Momentum for Off-Shell Electromagnetism

The Lorentz Force and Energy-Momentum for Off-Shell Electromagnetism TAUP 1824-90 The Lorentz Force and Energy-Momentum for Off-Shell Electromagnetism M.C. Land 1 and L.P. Horwitz 2 School of Physics and Astronomy Raymond and Beverly Sackler Faculty of Exact Sciences Tel

More information

arxiv:hep-th/ v2 23 Apr 1997

arxiv:hep-th/ v2 23 Apr 1997 TASI LECTURES ON D-BRANES arxiv:hep-th/9611050v2 23 Apr 1997 JOSEPH POLCHINSKI Institute for Theoretical Physics University of California, Santa Barbara, CA 93106-4030 This is an introduction to the properties

More information

M-Theory and Matrix Models

M-Theory and Matrix Models Department of Mathematical Sciences, University of Durham October 31, 2011 1 Why M-Theory? Whats new in M-Theory The M5-Brane 2 Superstrings Outline Why M-Theory? Whats new in M-Theory The M5-Brane There

More information

Solution Set 1 Classical Worldsheet Dynamics

Solution Set 1 Classical Worldsheet Dynamics MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics String Theory (8.81) Prof. J. McGreevy Fall 7 Solution Set 1 Classical Worldsheet Dynamics Reading: GSW.1, Polchinski 1.-1.4. Try 3.-3.3. Due:

More information

Relativistic Mechanics

Relativistic Mechanics Physics 411 Lecture 9 Relativistic Mechanics Lecture 9 Physics 411 Classical Mechanics II September 17th, 2007 We have developed some tensor language to describe familiar physics we reviewed orbital motion

More information

Chapter 2: Deriving AdS/CFT

Chapter 2: Deriving AdS/CFT Chapter 8.8/8.87 Holographic Duality Fall 04 Chapter : Deriving AdS/CFT MIT OpenCourseWare Lecture Notes Hong Liu, Fall 04 Lecture 0 In this chapter, we will focus on:. The spectrum of closed and open

More information

1 Superstrings. 1.1 Classical theory

1 Superstrings. 1.1 Classical theory Contents 1 Superstrings 1.1 Classical theory................................... 1.1.1 ANTI-COMMUTING ψ S.......................... 1.1. FINAL ACTION............................... 1. Eq.m. and b.c.....................................

More information

String Phenomenology ???

String Phenomenology ??? String Phenomenology Andre Lukas Oxford, Theoretical Physics d=11 SUGRA IIB M IIA??? I E x E 8 8 SO(32) Outline A (very) basic introduction to string theory String theory and the real world? Recent work

More information

Lectures on gauge-gravity duality

Lectures on gauge-gravity duality Lectures on gauge-gravity duality Annamaria Sinkovics Department of Applied Mathematics and Theoretical Physics Cambridge University Tihany, 25 August 2009 1. Review of AdS/CFT i. D-branes: open and closed

More information

arxiv:hep-th/ v2 8 Apr 1999

arxiv:hep-th/ v2 8 Apr 1999 Type IIB Random Superstrings KEK-TH-618 March 1999 ariv:hep-th/9903216 v2 8 Apr 1999 Satsuki Oda y and Tetsuyuki Yukawa z;x y Nara Women's University, Nara 630-8506, Japan z Coordination Center for Research

More information

Phase transitions in separated braneantibrane at finite temperature

Phase transitions in separated braneantibrane at finite temperature Phase transitions in separated braneantibrane at finite temperature Vincenzo Calo PhD Student, Queen Mary College London V.C., S. Thomas, arxiv:0802.2453 [hep-th] JHEP-06(2008)063 Superstrings @ AYIA NAPA

More information

Lecture 3: Vectors. Any set of numbers that transform under a rotation the same way that a point in space does is called a vector.

Lecture 3: Vectors. Any set of numbers that transform under a rotation the same way that a point in space does is called a vector. Lecture 3: Vectors Any set of numbers that transform under a rotation the same way that a point in space does is called a vector i.e., A = λ A i ij j j In earlier courses, you may have learned that a vector

More information

On two dimensional black holes. and matrix models

On two dimensional black holes. and matrix models On two dimensional black holes and matrix models Based on: On Black Hole Thermodynamics of 2-D Type 0A, JHEP 0403 (04) 007, hep-th/0402152 with J. L. Davis and D. Vaman Madison April, 2004 Motivation:

More information

Tachyon Condensation in String Theory and Field Theory

Tachyon Condensation in String Theory and Field Theory Tachyon Condensation in String Theory and Field Theory N.D. Lambert 1 and I. Sachs 2 1 Dept. of Physics and Astronomy Rutgers University Piscataway, NJ 08855 USA nlambert@physics.rutgers.edu 2 School of

More information

Théorie des cordes: quelques applications. Cours III: 11 février 2011

Théorie des cordes: quelques applications. Cours III: 11 février 2011 Particules Élémentaires, Gravitation et Cosmologie Année 2010-11 Théorie des cordes: quelques applications Cours III: 11 février 2011 Résumé des cours 2009-10: troisième partie 11 février 2011 G. Veneziano,

More information

Strings on curved backgrounds

Strings on curved backgrounds CPHT-C053.0905 Strings on curved backgrounds Domenico Orlando Marios Petropoulos In these introductory lectures we summarize some basic facts and techniques about perturbative string theory (chapters 1

More information

Lienard-Wiechert for constant velocity

Lienard-Wiechert for constant velocity Problem 1. Lienard-Wiechert for constant velocity (a) For a particle moving with constant velocity v along the x axis show using Lorentz transformation that gauge potential from a point particle is A x

More information

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/ Twistor Strings, Gauge Theory and Gravity Abou Zeid, Hull and Mason hep-th/0606272 Amplitudes for YM, Gravity have elegant twistor space structure: Twistor Geometry Amplitudes for YM, Gravity have elegant

More information

Cosmology from Brane Backreaction

Cosmology from Brane Backreaction Cosmology from Brane Backreaction Higher codimension branes and their bulk interactions w Leo van Nierop Outline Motivation Extra-dimensional cosmology Setup A 6D example Calculation Maximally symmetric

More information

String Theory I Mock Exam

String Theory I Mock Exam String Theory I Mock Exam Ludwig Maximilians Universität München Prof. Dr. Dieter Lüst 15 th December 2015 16:00 18:00 Name: Student ID no.: E-mail address: Please write down your name and student ID number

More information

Notes on General Relativity Linearized Gravity and Gravitational waves

Notes on General Relativity Linearized Gravity and Gravitational waves Notes on General Relativity Linearized Gravity and Gravitational waves August Geelmuyden Universitetet i Oslo I. Perturbation theory Solving the Einstein equation for the spacetime metric is tremendously

More information

Show, for infinitesimal variations of nonabelian Yang Mills gauge fields:

Show, for infinitesimal variations of nonabelian Yang Mills gauge fields: Problem. Palatini Identity Show, for infinitesimal variations of nonabelian Yang Mills gauge fields: δf i µν = D µ δa i ν D ν δa i µ..) Begin by considering the following form of the field strength tensor

More information

FYS 3120: Classical Mechanics and Electrodynamics

FYS 3120: Classical Mechanics and Electrodynamics FYS 3120: Classical Mechanics and Electrodynamics Formula Collection Spring semester 2014 1 Analytical Mechanics The Lagrangian L = L(q, q, t), (1) is a function of the generalized coordinates q = {q i

More information

ABSTRACT K-THEORETIC ASPECTS OF STRING THEORY DUALITIES

ABSTRACT K-THEORETIC ASPECTS OF STRING THEORY DUALITIES ABSTRACT Title of dissertation: K-THEORETIC ASPECTS OF STRING THEORY DUALITIES Stefan Méndez-Diez, Doctor of Philosophy, 2010 Dissertation directed by: Professor Jonathan Rosenberg Department of Mathematics

More information