(a p (t)e i p x +a (t)e ip x p

Size: px
Start display at page:

Download "(a p (t)e i p x +a (t)e ip x p"

Transcription

1 5/29/3 Lecture outline Reading: Zwiebach chapters and. Last time: quantize KG field, φ(t, x) = (a (t)e i x +a (t)e ip x V ). 2Ep H = ( ȧ ȧ(t)+ 2E 2 E pa a) = p > E p a a. P = a a. [a p,a k ] = δ p,k, [a p,a k ] = [a p,a k ] =. Likewise, for the Maxwell field A µ ; gauge invariance δa µ (p) = ip µ ǫ(p). In light cone gauge, since p +, can set A + (p) =. Then get A = (p I A I )/p +, i.e. A is not an independent d.o.f., but rather constrained, and the Maxewell EOM gives p 2 A µ (p) =. For p 2, require A µ (p) =, and for p 2 = get that there are D 2 physical transverse d.o.f., the A I (p). The one-photon states are D I=2 ξ I a I p +,p T ω. Gravitational light cone gauge conditions: h ++ = h + = h +I =. Other light cone components are constrained. So physical d.o.f. are specified by a traceless symmetric matrix h IJ in the D 2 transverse directions. So 2D(D 3) d.o.f.. Recalltherelativisticpointparticle, withs = Ldτ andl = m ẋ 2, where d dτ. (τ is taken to be dimensionless.) The momentum is p µ = L/ ẋ µ = mẋ µ / ẋ 2 and the EOM is ṗ µ =. In light cone gauge we take x + = p + τ/m 2. Then p + = mẋ + / ẋ 2 and the light cone gauge condition implies ẋ 2 = /m 2, so p µ = m 2 ẋ µ. Also, p 2 + m 2 = yields p = (p I p I +m 2 )/2p +, which is solved for p and then ẋ = p /m 2 is integrated to x = p τ/m 2 +x. Also, xi = x I +p I τ/m 2. The dynamical variables are (x I,x,pI,p + ). Heisenberg picture: put time dependence in the operators rather than the states, with [q(t),p(t)] = i and i d O(t) = i O dt t +[O,H]. For time independent Hamiltonian, we have ψ(t) S = e iht ψ H and O H = e iht O S e iht.

2 Quantize the point particle in light cone gauge by taking the independent operators (x I,x,pI,p + ), with [x I,p J ] = iη IJ and [x,p+ ] = iη + = i. These commutators are for either S or H picture, with the operators being functions of τ in the H picture. The remaining variables are defined by x + (τ) = p + τ/m 2, x (τ) = x + p τ/m 2, p = (p I p I +m 2 )/2p + (the first two are explicitly τ dependent even in the S picture). The Hamiltonian is p, which generates x + translations. Since τ = p+ m 2 p + m 2 p the Hamiltonian is Verify e.g. H = p+ p m 2 = 2m 2(pI p I +m 2 ). i d dτ pµ = [p µ,h] =, i dxi dτ = [xi,h] = i pi m 2, x + reproducing the correct EOM. Likewise, verify ẋ = and ẋ + = τ x + = p + /m 2. The momentum eigenstates are labeled by p +,p I and these are also energy eigenstates, H p +,p I = 2m 2 (p I p I +m 2 ) p +,p I. Connect the quantized point particle with the excitations of scalar field theory via p +,p I a p +,p I Ω. The S.E. of the quantum point particle wavefunction maps to the classical scalar field equations, e.g. in light cone gauge: (i τ 2m 2(pI p I +m 2 ))φ(τ,p +,p I ) = is either the quantum S.E. of the point particle or the classical field equations of a scalar field. (Aside: the light cone is here used as a trick to get to second quantization. First quantization is what you learn the first time you study (non-relativisitic) QM: replace coordinates and momenta with operators, and Poisson brackets with commutators. Second quantization is for field theory, replacing the fields and their conjugate momenta with operators, and their PBs with commutators, leading to multi-particle states. Here lightcone first quantization of the point particle leads to a Schrodinger equation that agrees with the classical EOM of a light-cone field theory, which we then need to quantize again to get second quantization. 2

3 Lorentz transformations correspond to the inf. transformations δx µ = ǫ µν x ν, and the corresponding conserved Noether charges are the generalized angular momenta M µν = x µ p ν x ν p µ. These generate rotations and boosts. Have e.g. [M µν,x ρ ] = iη µρ x ν iη νρ x µ and [M µν,m ρσ ] = iη µρ M νσ ±(perms). In light cone coordinates, have M IJ, M ±I, M +, with e.g. [M +,M +I ] = im +I and [M I,M J ] =. There are some ordering issues for some of these, where operators which don t commute need to be replaced with symmetrized averages, e.g. M + = 2 (x p+ + p + x ) and M I = x pi 2 (xi p +p x I ). Open string. Imposed constraints (Ẋ ±X ) 2 = to get P σµ = 2πα Xµ, P τµ = 2πα Ẋµ. In light cone gauge, much as with the point particle, the independent variables are (X I,(σ)x,PτI (σ),p + ). In the H picture the capitalized ones depend (implicitly) on τ too. The commutation relations are [X I (σ),p τj (σ )] = iη IJ δ(σ σ ), [x,p+ ] = i. The Hamiltonian is taken to be π π H = 2α p + p = 2α p + dσp τ = πα dσ(p τi P τi +X I X I (2πα ) 2 ) Can write H = L since L = 2α p + p. This H properly yields the expected time derivatives, e.g. Ẋ I = 2πα P τi. Recall the solution with N BCs: X I (τ,σ) = x I + 2α α I τ +i 2α n The needed commutators are ensured by n αi n cosnσe inτ. () [α I m,αj n ] = mηij δ n+m,. Also, as before, we define α I 2α p I. Now define α µ n> = na µ n and αµ n = aµ n n to rewrite the above as [a I m,aj ] = δ m,n η IJ. (2) 3

4 The transverse light cone coordinates can be described by S l.c. = dτdσ Ẋ I X I X I ). 4πα (ẊI Gives correct P τi = L/ ẊI and correct H = dσ(p τi Ẋ I L). WritingX I (τ,σ) = q I (τ)+2 α qi N (τ)n /2 cosnσ andplugginginto theaction above gives S = dτ[ 4α qi q I + ( 2n qi n qi n n 2 qi n qi n )] and H = α p I p I + n 2 (pi np I n +q I nq I m). A bunch of harmonic oscillators. Relate to () and (2), showing that the a m can be interpreted as the usual harmonic oscillator annihilation operators. Summary: we fix X + to be simply related to τ, find that the X I are given by simple harmonic oscillators, and X is a complicated expression, fully determined in terms of the transverse direction quantities: X + (τσ) = 2α p + τ = 2α α + τ. For X recall expansion, with 2α α n = p L + n, where L n 2 p αi n p αi p is the transverse Virasoro operator. Recall [αi m,αj n ] = mδ IJ δ m+n,. There is an ordering ambiguity here, only for L : L = 2 α α + 2 α I p αi p + 2 p= α I p αi p. The ordering in the last terms need to be fixed, so the annihilation operator α p is on the right, using α I p αi p = αi p αi p +[αi p,αi p ], which gives L = α p I p I + where the normal ordering constant has been put into p= na I n ai n, 2α p = p +(L +a), a = 2 (D 2) p. p= This leads to M 2 = α (a+ na I n a I n). 4

5 The divergent sum for a is regulatedby using ζ(s) = n s and analyticallycontinuing to get ζ( ) = /2. So a = 24 (D 2). Virasoro generators and algebra (corresponds to worldsheet energy-momentum tensor). Since (α I n ) = α I n, get L n = L n. Also, [L m,αi n ] = nαi n+m. [L m,l n ] = (m n)l n+m + D 2 2 (m3 m)δ m+n,. Spacetime Lorentz symmetry corresponds to conserved currents on worldsheet, with conserved charges M µν = π (X µ P τ ν (µ ν))dσ. Plug in P τ ν = 2α Ẋ µ and plug in oscillator expansion of X µ to get M µν = x µ pν x ν p µ i n (αµ nα ν n α ν nα µ n). In light cone gauge, have to be careful with M I, since X is constrained to something complicated, X (τ,σ) = x + 2α α τ +i 2α n n α n e inτ cosnσ, 2α α n = p +L n. and also careful to ensure that [M I,M J ] =. Find, after appropriately ordering terms, M I = x pi ( x I 4α p + (L ) i +a)+(l +a)xi 2α p + n (L n αi n αi n L n ). Then get [M I,M J ] = α p +2 (α I m αj m (I J))[m( ((D 2)/24))+m (((D 2)/24)+a)]. m= Since this must be zero, get D = 26 and a =. The worldsheet Hamiltonian is thus H = 2α p + p = L. 5

Exercise 1 Classical Bosonic String

Exercise 1 Classical Bosonic String Exercise 1 Classical Bosonic String 1. The Relativistic Particle The action describing a free relativistic point particle of mass m moving in a D- dimensional Minkowski spacetime is described by ) 1 S

More information

Outline 1. Introduction 1.1. Historical Overview 1.2. The Theory 2. The Relativistic String 2.1. Set Up 2.2. The Relativistic Point Particle 2.3. The

Outline 1. Introduction 1.1. Historical Overview 1.2. The Theory 2. The Relativistic String 2.1. Set Up 2.2. The Relativistic Point Particle 2.3. The Classical String Theory Proseminar in Theoretical Physics David Reutter ETH Zürich April 15, 2013 Outline 1. Introduction 1.1. Historical Overview 1.2. The Theory 2. The Relativistic String 2.1. Set Up

More information

Quantization of a Scalar Field

Quantization of a Scalar Field Quantization of a Scalar Field Required reading: Zwiebach 0.-4,.4 Suggested reading: Your favorite quantum text Any quantum field theory text Quantizing a harmonic oscillator: Let s start by reviewing

More information

1 Covariant quantization of the Bosonic string

1 Covariant quantization of the Bosonic string Covariant quantization of the Bosonic string The solution of the classical string equations of motion for the open string is X µ (σ) = x µ + α p µ σ 0 + i α n 0 where (α µ n) = α µ n.and the non-vanishing

More information

On the world sheet we have used the coordinates τ,σ. We will see however that the physics is simpler in light cone coordinates + (3) ξ + ξ

On the world sheet we have used the coordinates τ,σ. We will see however that the physics is simpler in light cone coordinates + (3) ξ + ξ 1 Light cone coordinates on the world sheet On the world sheet we have used the coordinates τ,σ. We will see however that the physics is simpler in light cone coordinates ξ + = τ + σ, ξ = τ σ (1) Then

More information

1 Canonical quantization conformal gauge

1 Canonical quantization conformal gauge Contents 1 Canonical quantization conformal gauge 1.1 Free field space of states............................... 1. Constraints..................................... 3 1..1 VIRASORO ALGEBRA...........................

More information

Light-Cone Fields and Particles

Light-Cone Fields and Particles Chapter 10 Light-Cone Fields and Particles We study the classical equations of motion for scalar fields, Maxwell fields, and gravitational fields. We use the light-cone gauge to find plane-wave solutions

More information

Lecturer: Bengt E W Nilsson

Lecturer: Bengt E W Nilsson 009 04 8 Lecturer: Bengt E W Nilsson Chapter 3: The closed quantised bosonic string. Generalised τ,σ gauges: n µ. For example n µ =,, 0,, 0).. X ±X ) =0. n x = α n p)τ n p)σ =π 0σ n P τ τ,σ )dσ σ 0, π]

More information

Light Cone Gauge Quantization of Strings, Dynamics of D-brane and String dualities.

Light Cone Gauge Quantization of Strings, Dynamics of D-brane and String dualities. Light Cone Gauge Quantization of Strings, Dynamics of D-brane and String dualities. Muhammad Ilyas Department of Physics Government College University Lahore, Pakistan Abstract This review aims to show

More information

Week 1. 1 The relativistic point particle. 1.1 Classical dynamics. Reading material from the books. Zwiebach, Chapter 5 and chapter 11

Week 1. 1 The relativistic point particle. 1.1 Classical dynamics. Reading material from the books. Zwiebach, Chapter 5 and chapter 11 Week 1 1 The relativistic point particle Reading material from the books Zwiebach, Chapter 5 and chapter 11 Polchinski, Chapter 1 Becker, Becker, Schwartz, Chapter 2 1.1 Classical dynamics The first thing

More information

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams III. Quantization of constrained systems and Maxwell s theory 1. The

More information

Maxwell s equations. based on S-54. electric field charge density. current density

Maxwell s equations. based on S-54. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Lorentz-covariant spectrum of single-particle states and their field theory Physics 230A, Spring 2007, Hitoshi Murayama

Lorentz-covariant spectrum of single-particle states and their field theory Physics 230A, Spring 2007, Hitoshi Murayama Lorentz-covariant spectrum of single-particle states and their field theory Physics 30A, Spring 007, Hitoshi Murayama 1 Poincaré Symmetry In order to understand the number of degrees of freedom we need

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.323: Relativistic Quantum Field Theory I PROBLEM SET 2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.323: Relativistic Quantum Field Theory I PROBLEM SET 2 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.323: Relativistic Quantum Field Theory I PROBLEM SET 2 REFERENCES: Peskin and Schroeder, Chapter 2 Problem 1: Complex scalar fields Peskin and

More information

8.821 F2008 Lecture 09: Preview of Strings in N = 4 SYM; Hierarchy of Scaling dimensions; Conformal Symmetry in QFT

8.821 F2008 Lecture 09: Preview of Strings in N = 4 SYM; Hierarchy of Scaling dimensions; Conformal Symmetry in QFT 8.821 F2008 Lecture 09: Preview of Strings in N = 4 SYM; Hierarchy of Scaling dimensions; Conformal Symmetry in QFT Lecturer: McGreevy Scribe: Tarun Grover October 8, 2008 1 Emergence of Strings from Gauge

More information

where P a is a projector to the eigenspace of A corresponding to a. 4. Time evolution of states is governed by the Schrödinger equation

where P a is a projector to the eigenspace of A corresponding to a. 4. Time evolution of states is governed by the Schrödinger equation 1 Content of the course Quantum Field Theory by M. Srednicki, Part 1. Combining QM and relativity We are going to keep all axioms of QM: 1. states are vectors (or rather rays) in Hilbert space.. observables

More information

Introduction to string theory 2 - Quantization

Introduction to string theory 2 - Quantization Remigiusz Durka Institute of Theoretical Physics Wroclaw / 34 Table of content Introduction to Quantization Classical String Quantum String 2 / 34 Classical Theory In the classical mechanics one has dynamical

More information

Spin one matter elds. November 2015

Spin one matter elds. November 2015 Spin one matter elds M. Napsuciale, S. Rodriguez, R.Ferro-Hernández, S. Gomez-Ávila Universidad de Guanajuato Mexican Workshop on Particles and Fields November 2015 M. Napsuciale, S. Rodriguez, R.Ferro-Hernández,

More information

Théorie des cordes: quelques applications. Cours II: 4 février 2011

Théorie des cordes: quelques applications. Cours II: 4 février 2011 Particules Élémentaires, Gravitation et Cosmologie Année 2010-11 Théorie des cordes: quelques applications Cours II: 4 février 2011 Résumé des cours 2009-10: deuxième partie 04 février 2011 G. Veneziano,

More information

The Conformal Algebra

The Conformal Algebra The Conformal Algebra Dana Faiez June 14, 2017 Outline... Conformal Transformation/Generators 2D Conformal Algebra Global Conformal Algebra and Mobius Group Conformal Field Theory 2D Conformal Field Theory

More information

arxiv:hep-th/ v1 10 Apr 2006

arxiv:hep-th/ v1 10 Apr 2006 Gravitation with Two Times arxiv:hep-th/0604076v1 10 Apr 2006 W. Chagas-Filho Departamento de Fisica, Universidade Federal de Sergipe SE, Brazil February 1, 2008 Abstract We investigate the possibility

More information

γγ αβ α X µ β X µ (1)

γγ αβ α X µ β X µ (1) Week 3 Reading material from the books Zwiebach, Chapter 12, 13, 21 Polchinski, Chapter 1 Becker, Becker, Schwartz, Chapter 2 Green, Schwartz, Witten, chapter 2 1 Polyakov action We have found already

More information

Preliminaries: what you need to know

Preliminaries: what you need to know January 7, 2014 Preliminaries: what you need to know Asaf Pe er 1 Quantum field theory (QFT) is the theoretical framework that forms the basis for the modern description of sub-atomic particles and their

More information

Lecturer: Bengt E W Nilsson

Lecturer: Bengt E W Nilsson 2009 05 07 Lecturer: Bengt E W Nilsson From the previous lecture: Example 3 Figure 1. Some x µ s will have ND or DN boundary condition half integer mode expansions! Recall also: Half integer mode expansions

More information

1 Free real scalar field

1 Free real scalar field 1 Free real scalar field The Hamiltonian is H = d 3 xh = 1 d 3 x p(x) +( φ) + m φ Let us expand both φ and p in Fourier series: d 3 p φ(t, x) = ω(p) φ(t, x)e ip x, p(t, x) = ω(p) p(t, x)eip x. where ω(p)

More information

Liverpool Lectures on String Theory The Free Bosonic String Summary Notes Thomas Mohaupt Semester 1, 2008/2009

Liverpool Lectures on String Theory The Free Bosonic String Summary Notes Thomas Mohaupt Semester 1, 2008/2009 Liverpool Lectures on String Theory The Free Bosonic String Summary Notes Thomas Mohaupt Semester 1, 2008/2009 Contents 1 The classical relativistic particle 2 1.1 Relativistic kinematics and dynamics................

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

The Hamiltonian operator and states

The Hamiltonian operator and states The Hamiltonian operator and states March 30, 06 Calculation of the Hamiltonian operator This is our first typical quantum field theory calculation. They re a bit to keep track of, but not really that

More information

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 6: Lectures 11, 12

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 6: Lectures 11, 12 As usual, these notes are intended for use by class participants only, and are not for circulation Week 6: Lectures, The Dirac equation and algebra March 5, 0 The Lagrange density for the Dirac equation

More information

Problem Set 1 Classical Worldsheet Dynamics

Problem Set 1 Classical Worldsheet Dynamics MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics String Theory (8.821) Prof. J. McGreevy Fall 2007 Problem Set 1 Classical Worldsheet Dynamics Reading: GSW 2.1, Polchinski 1.2-1.4. Try 3.2-3.3.

More information

Quantization of scalar fields

Quantization of scalar fields Quantization of scalar fields March 8, 06 We have introduced several distinct types of fields, with actions that give their field equations. These include scalar fields, S α ϕ α ϕ m ϕ d 4 x and complex

More information

Solution Set 1 Classical Worldsheet Dynamics

Solution Set 1 Classical Worldsheet Dynamics MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics String Theory (8.81) Prof. J. McGreevy Fall 7 Solution Set 1 Classical Worldsheet Dynamics Reading: GSW.1, Polchinski 1.-1.4. Try 3.-3.3. Due:

More information

Solutions to problem set 6

Solutions to problem set 6 Solutions to problem set 6 Donal O Connell February 3, 006 1 Problem 1 (a) The Lorentz transformations are just t = γ(t vx) (1) x = γ(x vt). () In S, the length δx is at the points x = 0 and x = δx for

More information

String Theory I Mock Exam

String Theory I Mock Exam String Theory I Mock Exam Ludwig Maximilians Universität München Prof. Dr. Dieter Lüst 15 th December 2015 16:00 18:00 Name: Student ID no.: E-mail address: Please write down your name and student ID number

More information

Second quantization: where quantization and particles come from?

Second quantization: where quantization and particles come from? 110 Phys460.nb 7 Second quantization: where quantization and particles come from? 7.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system? 7.1.1.Lagrangian Lagrangian

More information

Chapter 1 LORENTZ/POINCARE INVARIANCE. 1.1 The Lorentz Algebra

Chapter 1 LORENTZ/POINCARE INVARIANCE. 1.1 The Lorentz Algebra Chapter 1 LORENTZ/POINCARE INVARIANCE 1.1 The Lorentz Algebra The requirement of relativistic invariance on any fundamental physical system amounts to invariance under Lorentz Transformations. These transformations

More information

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are.

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are. GRAVITATION F0 S. G. RAJEEV Lecture. Maxwell s Equations in Curved Space-Time.. Recall that Maxwell equations in Lorentz covariant form are. µ F µν = j ν, F µν = µ A ν ν A µ... They follow from the variational

More information

Non-associative Deformations of Geometry in Double Field Theory

Non-associative Deformations of Geometry in Double Field Theory Non-associative Deformations of Geometry in Double Field Theory Michael Fuchs Workshop Frontiers in String Phenomenology based on JHEP 04(2014)141 or arxiv:1312.0719 by R. Blumenhagen, MF, F. Haßler, D.

More information

Lecturer: Bengt E W Nilsson

Lecturer: Bengt E W Nilsson 9 3 19 Lecturer: Bengt E W Nilsson Last time: Relativistic physics in any dimension. Light-cone coordinates, light-cone stuff. Extra dimensions compact extra dimensions (here we talked about fundamental

More information

We would like to give a Lagrangian formulation of electrodynamics.

We would like to give a Lagrangian formulation of electrodynamics. Chapter 7 Lagrangian Formulation of Electrodynamics We would like to give a Lagrangian formulation of electrodynamics. Using Lagrangians to describe dynamics has a number of advantages It is a exceedingly

More information

Vector Fields. It is standard to define F µν = µ ϕ ν ν ϕ µ, so that the action may be written compactly as

Vector Fields. It is standard to define F µν = µ ϕ ν ν ϕ µ, so that the action may be written compactly as Vector Fields The most general Poincaré-invariant local quadratic action for a vector field with no more than first derivatives on the fields (ensuring that classical evolution is determined based on the

More information

3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 2016

3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 2016 3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 016 Corrections and suggestions should be emailed to B.C.Allanach@damtp.cam.ac.uk. Starred questions may be handed in to your supervisor for feedback

More information

Canonical Quantization

Canonical Quantization Canonical Quantization March 6, 06 Canonical quantization of a particle. The Heisenberg picture One of the most direct ways to quantize a classical system is the method of canonical quantization introduced

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 151 Lecture 4 Continuous Systems and Fields (Chapter 13) What We Did Last Time Built Lagrangian formalism for continuous system Lagrangian L Lagrange s equation = L dxdydz Derived simple

More information

Snyder noncommutative space-time from two-time physics

Snyder noncommutative space-time from two-time physics arxiv:hep-th/0408193v1 25 Aug 2004 Snyder noncommutative space-time from two-time physics Juan M. Romero and Adolfo Zamora Instituto de Ciencias Nucleares Universidad Nacional Autónoma de México Apartado

More information

Quantization of Scalar Field

Quantization of Scalar Field Quantization of Scalar Field Wei Wang 2017.10.12 Wei Wang(SJTU) Lectures on QFT 2017.10.12 1 / 41 Contents 1 From classical theory to quantum theory 2 Quantization of real scalar field 3 Quantization of

More information

1 The Quantum Anharmonic Oscillator

1 The Quantum Anharmonic Oscillator 1 The Quantum Anharmonic Oscillator Perturbation theory based on Feynman diagrams can be used to calculate observables in Quantum Electrodynamics, like the anomalous magnetic moment of the electron, and

More information

Comments on the global constraints in light-cone string and membrane theories

Comments on the global constraints in light-cone string and membrane theories Comments on the global constraints in light-cone string and membrane theories Shozo Uehara and Satoshi Yamada DPNU-2-41 hep-th/21248 December 22 arxiv:hep-th/21248v2 15 Dec 22 Department of Physics, Nagoya

More information

1 Quantum fields in Minkowski spacetime

1 Quantum fields in Minkowski spacetime 1 Quantum fields in Minkowski spacetime The theory of quantum fields in curved spacetime is a generalization of the well-established theory of quantum fields in Minkowski spacetime. To a great extent,

More information

3 Quantization of the Dirac equation

3 Quantization of the Dirac equation 3 Quantization of the Dirac equation 3.1 Identical particles As is well known, quantum mechanics implies that no measurement can be performed to distinguish particles in the same quantum state. Elementary

More information

Superstring in the plane-wave background with RR-flux as a conformal field theory

Superstring in the plane-wave background with RR-flux as a conformal field theory 0th December, 008 At Towards New Developments of QFT and Strings, RIKEN Superstring in the plane-wave background with RR-flux as a conformal field theory Naoto Yokoi Institute of Physics, University of

More information

REVIEW NOTES FOR TEST 2 Notes by Alan Guth

REVIEW NOTES FOR TEST 2 Notes by Alan Guth MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.5: String Theory for Undergraduates Prof.Barton Zwiebach April 3, 7 I. World-Sheet Currents: Noether s Theorem: REVIEW NOTES FOR TEST Notes by

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

Covariant quantization of a relativistic string

Covariant quantization of a relativistic string Covariant quantization of a relativistic string Paolo Di Vecchia Niels Bohr Instituttet, Copenhagen and Nordita, Stockholm Collège de France, 19.02.10 Paolo Di Vecchia (NBI+NO) Covariant quantization Collège

More information

Quantum Electrodynamics Test

Quantum Electrodynamics Test MSc in Quantum Fields and Fundamental Forces Quantum Electrodynamics Test Monday, 11th January 2010 Please answer all three questions. All questions are worth 20 marks. Use a separate booklet for each

More information

4.3 Lecture 18: Quantum Mechanics

4.3 Lecture 18: Quantum Mechanics CHAPTER 4. QUANTUM SYSTEMS 73 4.3 Lecture 18: Quantum Mechanics 4.3.1 Basics Now that we have mathematical tools of linear algebra we are ready to develop a framework of quantum mechanics. The framework

More information

Quantum Field Theory Notes. Ryan D. Reece

Quantum Field Theory Notes. Ryan D. Reece Quantum Field Theory Notes Ryan D. Reece November 27, 2007 Chapter 1 Preliminaries 1.1 Overview of Special Relativity 1.1.1 Lorentz Boosts Searches in the later part 19th century for the coordinate transformation

More information

Heisenberg-Euler effective lagrangians

Heisenberg-Euler effective lagrangians Heisenberg-Euler effective lagrangians Appunti per il corso di Fisica eorica 7/8 3.5.8 Fiorenzo Bastianelli We derive here effective lagrangians for the electromagnetic field induced by a loop of charged

More information

Quantization of the E-M field

Quantization of the E-M field Quantization of the E-M field 0.1 Classical E&M First we will wor in the transverse gauge where there are no sources. Then A = 0, nabla A = B, and E = 1 A and Maxwell s equations are B = 1 E E = 1 B E

More information

Relativistic Waves and Quantum Fields

Relativistic Waves and Quantum Fields Relativistic Waves and Quantum Fields (SPA7018U & SPA7018P) Gabriele Travaglini December 10, 2014 1 Lorentz group Lectures 1 3. Galileo s principle of Relativity. Einstein s principle. Events. Invariant

More information

Lorentz Invariance and Second Quantization

Lorentz Invariance and Second Quantization Lorentz Invariance and Second Quantization By treating electromagnetic modes in a cavity as a simple harmonic oscillator, with the oscillator level corresponding to the number of photons in the system

More information

2 Quantization of the Electromagnetic Field

2 Quantization of the Electromagnetic Field 2 Quantization of the Electromagnetic Field 2.1 Basics Starting point of the quantization of the electromagnetic field are Maxwell s equations in the vacuum (source free): where B = µ 0 H, D = ε 0 E, µ

More information

CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS

CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS 1.1 PARTICLES AND FIELDS The two great structures of theoretical physics, the theory of special relativity and quantum mechanics, have been combined

More information

From Particles to Fields

From Particles to Fields From Particles to Fields Tien-Tsan Shieh Institute of Mathematics Academic Sinica July 25, 2011 Tien-Tsan Shieh (Institute of MathematicsAcademic Sinica) From Particles to Fields July 25, 2011 1 / 24 Hamiltonian

More information

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Benjamin Hornberger 1/26/1 Phy 55, Classical Electrodynamics, Prof. Goldhaber Lecture notes from Oct. 26, 21 Lecture held by Prof. Weisberger

More information

e θ 1 4 [σ 1,σ 2 ] = e i θ 2 σ 3

e θ 1 4 [σ 1,σ 2 ] = e i θ 2 σ 3 Fermions Consider the string world sheet. We have bosons X µ (σ,τ) on this world sheet. We will now also put ψ µ (σ,τ) on the world sheet. These fermions are spin objects on the worldsheet. In higher dimensions,

More information

Maxwell s equations. electric field charge density. current density

Maxwell s equations. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Wednesday March 30 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Wednesday March 30 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Wednesday March 30 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

Page 684. Lecture 40: Coordinate Transformations: Time Transformations Date Revised: 2009/02/02 Date Given: 2009/02/02

Page 684. Lecture 40: Coordinate Transformations: Time Transformations Date Revised: 2009/02/02 Date Given: 2009/02/02 Page 684 Lecture 40: Coordinate Transformations: Time Transformations Date Revised: 2009/02/02 Date Given: 2009/02/02 Time Transformations Section 12.5 Symmetries: Time Transformations Page 685 Time Translation

More information

We start by recalling electrodynamics which is the first classical field theory most of us have encountered in theoretical physics.

We start by recalling electrodynamics which is the first classical field theory most of us have encountered in theoretical physics. Quantum Field Theory I ETH Zurich, HS12 Chapter 6 Prof. N. Beisert 6 Free Vector Field Next we want to find a formulation for vector fields. This includes the important case of the electromagnetic field

More information

arxiv: v2 [hep-th] 13 Nov 2007

arxiv: v2 [hep-th] 13 Nov 2007 Strings in pp-wave background and background B-field from membrane and its symplectic quantization arxiv:7.42v2 [hep-th] 3 Nov 27 Sunandan Gangopadhyay S. N. Bose National Centre for Basic Sciences, JD

More information

Quantization of the open string on exact plane waves and non-commutative wave fronts

Quantization of the open string on exact plane waves and non-commutative wave fronts Quantization of the open string on exact plane waves and non-commutative wave fronts F. Ruiz Ruiz (UCM Madrid) Miami 2007, December 13-18 arxiv:0711.2991 [hep-th], with G. Horcajada Motivation On-going

More information

Canonical Quantization C6, HT 2016

Canonical Quantization C6, HT 2016 Canonical Quantization C6, HT 016 Uli Haisch a a Rudolf Peierls Centre for Theoretical Physics University of Oxford OX1 3PN Oxford, United Kingdom Please send corrections to u.haisch1@physics.ox.ac.uk.

More information

Eigenmodes for coupled harmonic vibrations. Algebraic Method for Harmonic Oscillator.

Eigenmodes for coupled harmonic vibrations. Algebraic Method for Harmonic Oscillator. PHYS208 spring 2008 Eigenmodes for coupled harmonic vibrations. Algebraic Method for Harmonic Oscillator. 07.02.2008 Adapted from the text Light - Atom Interaction PHYS261 autumn 2007 Go to list of topics

More information

( r) = 1 Z. e Zr/a 0. + n +1δ n', n+1 ). dt ' e i ( ε n ε i )t'/! a n ( t) = n ψ t = 1 i! e iε n t/! n' x n = Physics 624, Quantum II -- Exam 1

( r) = 1 Z. e Zr/a 0. + n +1δ n', n+1 ). dt ' e i ( ε n ε i )t'/! a n ( t) = n ψ t = 1 i! e iε n t/! n' x n = Physics 624, Quantum II -- Exam 1 Physics 624, Quantum II -- Exam 1 Please show all your work on the separate sheets provided (and be sure to include your name) You are graded on your work on those pages, with partial credit where it is

More information

Topological insulator part II: Berry Phase and Topological index

Topological insulator part II: Berry Phase and Topological index Phys60.nb 11 3 Topological insulator part II: Berry Phase and Topological index 3.1. Last chapter Topological insulator: an insulator in the bulk and a metal near the boundary (surface or edge) Quantum

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II T. Nguyen PHY 391 Independent Study Term Paper Prof. S.G. Rajeev University of Rochester April 2, 218 1 Introduction The purpose of this independent study is to familiarize ourselves

More information

Conformal Field Theory with Two Kinds of Bosonic Fields and Two Linear Dilatons

Conformal Field Theory with Two Kinds of Bosonic Fields and Two Linear Dilatons Brazilian Journal of Physics, vol. 40, no. 4, December, 00 375 Conformal Field Theory with Two Kinds of Bosonic Fields and Two Linear Dilatons Davoud Kamani Faculty of Physics, Amirkabir University of

More information

11 Spinor solutions and CPT

11 Spinor solutions and CPT 11 Spinor solutions and CPT 184 In the previous chapter, we cataloged the irreducible representations of the Lorentz group O(1, 3. We found that in addition to the obvious tensor representations, φ, A

More information

Lagrangian. µ = 0 0 E x E y E z 1 E x 0 B z B y 2 E y B z 0 B x 3 E z B y B x 0. field tensor. ν =

Lagrangian. µ = 0 0 E x E y E z 1 E x 0 B z B y 2 E y B z 0 B x 3 E z B y B x 0. field tensor. ν = Lagrangian L = 1 4 F µνf µν j µ A µ where F µν = µ A ν ν A µ = F νµ. F µν = ν = 0 1 2 3 µ = 0 0 E x E y E z 1 E x 0 B z B y 2 E y B z 0 B x 3 E z B y B x 0 field tensor. Note that F µν = g µρ F ρσ g σν

More information

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz Michael Dine Department of Physics University of California, Santa Cruz October 2013 Lorentz Transformation Properties of the Dirac Field First, rotations. In ordinary quantum mechanics, ψ σ i ψ (1) is

More information

2 Quantization of the scalar field

2 Quantization of the scalar field 22 Quantum field theory 2 Quantization of the scalar field Commutator relations. The strategy to quantize a classical field theory is to interpret the fields Φ(x) and Π(x) = Φ(x) as operators which satisfy

More information

Notes on General Relativity Linearized Gravity and Gravitational waves

Notes on General Relativity Linearized Gravity and Gravitational waves Notes on General Relativity Linearized Gravity and Gravitational waves August Geelmuyden Universitetet i Oslo I. Perturbation theory Solving the Einstein equation for the spacetime metric is tremendously

More information

Introduction to quantum field theory I

Introduction to quantum field theory I June 2012 Introduction to quantum field theory I lectures by Horatiu Nastase Instituto de Física Teórica, UNESP São Paulo 01140-070, SP, Brazil 1 Contents 1 Lecture 1: Review of classical field theory:

More information

PHY 396 K. Problem set #3. Due September 29, 2011.

PHY 396 K. Problem set #3. Due September 29, 2011. PHY 396 K. Problem set #3. Due September 29, 2011. 1. Quantum mechanics of a fixed number of relativistic particles may be a useful approximation for some systems, but it s inconsistent as a complete theory.

More information

General Relativity in a Nutshell

General Relativity in a Nutshell General Relativity in a Nutshell (And Beyond) Federico Faldino Dipartimento di Matematica Università degli Studi di Genova 27/04/2016 1 Gravity and General Relativity 2 Quantum Mechanics, Quantum Field

More information

THE QFT NOTES 5. Badis Ydri Department of Physics, Faculty of Sciences, Annaba University, Annaba, Algeria. December 9, 2011

THE QFT NOTES 5. Badis Ydri Department of Physics, Faculty of Sciences, Annaba University, Annaba, Algeria. December 9, 2011 THE QFT NOTES 5 Badis Ydri Department of Physics, Faculty of Sciences, Annaba University, Annaba, Algeria. December 9, 2011 Contents 1 The Electromagnetic Field 2 1.1 Covariant Formulation of Classical

More information

Problem 1(a): As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as L (D µ φ) L

Problem 1(a): As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as L (D µ φ) L PHY 396 K. Solutions for problem set #. Problem a: As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as D µ D µ φ φ = 0. S. In particularly,

More information

P3317 HW from Lecture and Recitation 7

P3317 HW from Lecture and Recitation 7 P3317 HW from Lecture 1+13 and Recitation 7 Due Oct 16, 018 Problem 1. Separation of variables Suppose we have two masses that can move in 1D. They are attached by a spring, yielding a Hamiltonian where

More information

arxiv: v2 [hep-th] 8 Apr 2011

arxiv: v2 [hep-th] 8 Apr 2011 Dual DSR Jose A. Magpantay National Institute of Physics and Technology Management Center, University of the Philippines, Quezon City, Philippines arxiv:1011.3888v2 [hep-th 8 Apr 2011 (Dated: April 11,

More information

Curves in the configuration space Q or in the velocity phase space Ω satisfying the Euler-Lagrange (EL) equations,

Curves in the configuration space Q or in the velocity phase space Ω satisfying the Euler-Lagrange (EL) equations, Physics 6010, Fall 2010 Hamiltonian Formalism: Hamilton s equations. Conservation laws. Reduction. Poisson Brackets. Relevant Sections in Text: 8.1 8.3, 9.5 The Hamiltonian Formalism We now return to formal

More information

Plan for the rest of the semester. ψ a

Plan for the rest of the semester. ψ a Plan for the rest of the semester ϕ ψ a ϕ(x) e iα(x) ϕ(x) 167 Representations of Lorentz Group based on S-33 We defined a unitary operator that implemented a Lorentz transformation on a scalar field: and

More information

STRING THEORY. Paul K. Townsend. Abstract: Part III Course Notes. 24 Lectures.

STRING THEORY. Paul K. Townsend. Abstract: Part III Course Notes. 24 Lectures. Preprint typeset in JHEP style - PAPER VERSION STRING THEORY Paul K. Townsend Department of Applied Mathematics and Theoretical Physics Centre for Mathematical Sciences, University of Cambridge Wilberforce

More information

University of Groningen. String theory limits and dualities Schaar, Jan Pieter van der

University of Groningen. String theory limits and dualities Schaar, Jan Pieter van der University of Groningen String theory limits and dualities Schaar, Jan Pieter van der IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please

More information

Lecture notes for QFT I (662)

Lecture notes for QFT I (662) Preprint typeset in JHEP style - PAPER VERSION Lecture notes for QFT I (66) Martin Kruczenski Department of Physics, Purdue University, 55 Northwestern Avenue, W. Lafayette, IN 47907-036. E-mail: markru@purdue.edu

More information

Hamiltonian Field Theory

Hamiltonian Field Theory Hamiltonian Field Theory August 31, 016 1 Introduction So far we have treated classical field theory using Lagrangian and an action principle for Lagrangian. This approach is called Lagrangian field theory

More information

Problem 1, Lorentz transformations of electric and magnetic

Problem 1, Lorentz transformations of electric and magnetic Problem 1, Lorentz transformations of electric and magnetic fields We have that where, F µν = F µ ν = L µ µ Lν ν F µν, 0 B 3 B 2 ie 1 B 3 0 B 1 ie 2 B 2 B 1 0 ie 3 ie 2 ie 2 ie 3 0. Note that we use the

More information

Lecture: Lorentz Invariant Dynamics

Lecture: Lorentz Invariant Dynamics Chapter 5 Lecture: Lorentz Invariant Dynamics In the preceding chapter we introduced the Minkowski metric and covariance with respect to Lorentz transformations between inertial systems. This was shown

More information

Lecturer: Bengt E W Nilsson

Lecturer: Bengt E W Nilsson 9 4 3 Leturer: Bengt E W Nilsson 8::: Leturer absent, three students present. 8::9: Leturer present, three students. 8::: Six students. 8::8: Five students. Waiting a ouple of minutes to see if more ome.

More information

Question 1: Axiomatic Newtonian mechanics

Question 1: Axiomatic Newtonian mechanics February 9, 017 Cornell University, Department of Physics PHYS 4444, Particle physics, HW # 1, due: //017, 11:40 AM Question 1: Axiomatic Newtonian mechanics In this question you are asked to develop Newtonian

More information