6.5 Cables: Concentrated Loads

Size: px
Start display at page:

Download "6.5 Cables: Concentrated Loads"

Transcription

1 6.5 ables: oncentrated Loads

2 6.5 ables: oncentrated Loads Procedures and Strategies, page 1 of 3 Procedures and Strategies for Solving Problems Involving ables With oncentrated Loads 1. Pass sections through the cable at points where something about the cable geometry is known. For example, consider the following situations: 4 m a) The location of a load point is known. Pass a section through the cable close to the point, draw a free-body diagram of either the portion of the cable to the left or to the right of the section, and write M = 0 about the point. This gives an equation involving the reaction components at one of the supports. Then writing three equilibrium equations for a free body of the entire cable will allow you to solve simultaneously for all reaction components x y Fx = 0 F y = 0 M = 0 4 m 3 kn x Three equations involving x, y, x, and y. T 3 kn 1.6 kn y Section M = 0 quation involving x and y only 3 kn 1.6 kn y x

3 6.5 ables: oncentrated Loads Procedures and Strategies, page 2 of 3 b) The horizontal and vertical distances between two adjacent load points are known. onsider a free body of the cable segment between the load points (o not include the load points in the free body.) and sum moments about either end to obtain an equation relating the x and y components of the tension in the cable segment. Next pass a section through the segment, and consider a free body of either the part of the cable to the left or right of the section. Write Fx = 0 and Fy = 0. These equations, together with three equilibrium equations for a free body of the entire cable, will allow you to solve for the support reactions. T x 1.5 m T y T y T x 1.5 m 3 kn 1.6 kn Section Point on just to left of Point on just to right of M = 0 quation involving T x and T y only. y x T y 3 kn T x Fx = 0 F y = 0 Two equations involving x, y, T x, and T y.

4 6.5 ables: oncentrated Loads Procedures and Strategies, page 3 of 3 2. Once the support-reaction components are known, you can determine the elevation of any load point by passing a section through the cable Now known near the load point, considering a free-body diagram of the part of the cable on either side of the section, and then writing M = 0 about the section. The unknown elevation will occur as a moment arm in this equation and can thus be found. x y y T M = 0 quation involving y.

5 6.5 ables: oncentrated Loads Problem Statement for xample 1 1. For the cable system shown, determine the reactions at support and the distance y. 4 m 2.5 m y 1.4 kn

6 6.5 ables: oncentrated Loads Problem Statement for xample 2 2. The horizontal force P is applied to end of the cable as shown. etermine the value of P and the distance d required to keep the cable system in the configuration shown. lso determine the total length of the cable. 4 m d 1 15 m P 3.5 kn

7 6.5 ables: oncentrated Loads Problem Statement for xample 3 3. The cable supports the 150 N and 500 N loads shown. etermine the distance x and the tension in each segment of the cable. 4 m 150 N 6 m 500 N x

8 6.5 ables: oncentrated Loads Problem Statement for xample 4 4. For the cable system shown, determine the distance y for which segment will be horizontal. lso determine y. y y kn 0.25 m 0.5 m

9 6.5 ables: oncentrated Loads Problem Statement for xample 5 5. For the cable system shown, determine the value of the forces P and P necessary to maintain the given configuration. P 5 m 200 N 7 m P 4 m 4 m

10 6.5 ables: oncentrated Loads Problem Statement for xample 6 6. For the cable system shown, determine distance y and the tension in each segment. 1.5 ft 3.5 ft y 50 lb 80 lb 2 ft 3.5 ft 5 ft

11 6.5 ables: oncentrated Loads Problem Statement for xample 7 7. The cable supports the four forces shown. etermine the maximum tension in the cable. 18 ft 18 ft 18 ft 18 ft 18 ft 15 ft 35 ft F 2 kip 2 kip 2 kip 2 kip

12

8.1 Internal Forces in Structural Members

8.1 Internal Forces in Structural Members 8.1 Internal Forces in Structural Members 8.1 Internal Forces in Structural Members xample 1, page 1 of 4 1. etermine the normal force, shear force, and moment at sections passing through a) and b). 4

More information

5.2 Rigid Bodies and Two-Dimensional Force Systems

5.2 Rigid Bodies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems Procedures and Strategies, page 1 of 1 Procedures and Strategies for Solving Problems Involving Equilibrium

More information

0.3 m. 0.4 m. 0.3 m. A 2 kn. 0.4 m. tan γ = 7. (BC = kn) γ = Fx = BC cos θ + AC cos γ =0

0.3 m. 0.4 m. 0.3 m. A 2 kn. 0.4 m. tan γ = 7. (BC = kn) γ = Fx = BC cos θ + AC cos γ =0 Problem 6.4 etermine the aial forces in the members of the truss. kn 0.3 m 0.4 m 0.6 m 1. m Solution: irst, solve for the support reactions at and, and then use the method of joints to solve for the forces

More information

MT225 Homework 6 - Solution. Problem 1: [34] 5 ft 5 ft 5 ft A B C D. 12 kips. 10ft E F G

MT225 Homework 6 - Solution. Problem 1: [34] 5 ft 5 ft 5 ft A B C D. 12 kips. 10ft E F G MT225 Homework 6 - Solution Problem 1: [34] 5 ft 5 ft 5 ft C D 10ft 12 kips E G To begin, we need to find the reaction forces at supports and E. To do so, we draw a free-body diagram of the entire structure

More information

CHAPTER 2: EQUILIBRIUM OF RIGID BODIES

CHAPTER 2: EQUILIBRIUM OF RIGID BODIES For a rigid body to be in equilibrium, the net force as well as the net moment about any arbitrary point O must be zero Summation of all external forces. Equilibrium: Sum of moments of all external forces.

More information

Laith Batarseh. internal forces

Laith Batarseh. internal forces Next Previous 1/8/2016 Chapter seven Laith Batarseh Home End Definitions When a member is subjected to external load, an and/or moment are generated inside this member. The value of the generated internal

More information

TYPES OF STRUCUTRES. HD in Civil Engineering Page 1-1

TYPES OF STRUCUTRES. HD in Civil Engineering Page 1-1 E2027 Structural nalysis I TYPES OF STRUUTRES H in ivil Engineering Page 1-1 E2027 Structural nalysis I SUPPORTS Pin or Hinge Support pin or hinge support is represented by the symbol H or H V V Prevented:

More information

Chapter 7 FORCES IN BEAMS AND CABLES

Chapter 7 FORCES IN BEAMS AND CABLES hapter 7 FORES IN BEAMS AN ABLES onsider a straight two-force member AB subjected at A and B to equal and opposite forces F and -F directed along AB. utting the member AB at and drawing the free-body B

More information

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns, and, b) Recognize two-force members. In-Class

More information

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a.

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a. E X M P L E 1.1 Determine the resultant internal loadings acting on the cross section at of the beam shown in Fig. 1 a. 70 N/m m 6 m Fig. 1 Support Reactions. This problem can be solved in the most direct

More information

Chapter 7: Internal Forces

Chapter 7: Internal Forces Chapter 7: Internal Forces Chapter Objectives To show how to use the method of sections for determining the internal loadings in a member. To generalize this procedure by formulating equations that can

More information

Method of Consistent Deformation

Method of Consistent Deformation Method of onsistent eformation Structural nalysis y R.. Hibbeler Theory of Structures-II M Shahid Mehmood epartment of ivil Engineering Swedish ollege of Engineering and Technology, Wah antt FRMES Method

More information

Truss Analysis Method of Joints. Steven Vukazich San Jose State University

Truss Analysis Method of Joints. Steven Vukazich San Jose State University Truss nalysis Method of Joints Steven Vukazich San Jose State University General Procedure for the nalysis of Simple Trusses using the Method of Joints 1. raw a Free Body iagram (FB) of the entire truss

More information

Determinate portal frame

Determinate portal frame eterminate portal frame onsider the frame shown in the figure below with the aim of calculating the bending moment diagram (M), shear force diagram (SF), and axial force diagram (F). P H y R x x R y L

More information

Chapter 04 Equilibrium of Rigid Bodies

Chapter 04 Equilibrium of Rigid Bodies Chapter 04 Equilibrium of Rigid Bodies Application Engineers designing this crane will need to determine the forces that act on this body under various conditions. 4-2 Introduction For a rigid body, the

More information

3D Force Couple System and Resultant. Q.No.1: Replace the force system by an equivalent force and couple moment at point A.

3D Force Couple System and Resultant. Q.No.1: Replace the force system by an equivalent force and couple moment at point A. 3D Force Couple System and Resultant Q.No.1: Replace the force system by an equivalent force and couple moment at point A. Q.No.2: Handle forces F1 and F2 are applied to the electric drill. Replace this

More information

11.1 Virtual Work Procedures and Strategies, page 1 of 2

11.1 Virtual Work Procedures and Strategies, page 1 of 2 11.1 Virtual Work 11.1 Virtual Work rocedures and Strategies, page 1 of 2 rocedures and Strategies for Solving roblems Involving Virtual Work 1. Identify a single coordinate, q, that will completely define

More information

6.6 FRAMES AND MACHINES APPLICATIONS. Frames are commonly used to support various external loads.

6.6 FRAMES AND MACHINES APPLICATIONS. Frames are commonly used to support various external loads. 6.6 FRAMES AND MACHINES APPLICATIONS Frames are commonly used to support various external loads. How is a frame different than a truss? How can you determine the forces at the joints and supports of a

More information

Calculating Truss Forces Unit 2 Lesson 2.1 Statics

Calculating Truss Forces Unit 2 Lesson 2.1 Statics alculating Truss Forces alculating Truss Forces Principles of Engineering 22 Forces ompression body being squeezed Tension body being stretched Truss truss is composed of slender members joined together

More information

Method of Sections for Truss Analysis

Method of Sections for Truss Analysis RH 331 Note Set 5.2 F2013abn Method of Sections for Truss nalysis Notation: () = shorthand for compression = name for load or axial force vector (T) = shorthand for tension Joint onfigurations (special

More information

Unit 1. (a) tan α = (b) tan α = (c) tan α = (d) tan α =

Unit 1. (a) tan α = (b) tan α = (c) tan α = (d) tan α = Unit 1 1. The subjects Engineering Mechanics deals with (a) Static (b) kinematics (c) Kinetics (d) All of the above 2. If the resultant of two forces P and Q is acting at an angle α with P, then (a) tan

More information

P.E. Civil Exam Review:

P.E. Civil Exam Review: P.E. Civil Exam Review: Structural Analysis J.P. Mohsen Email: jpm@louisville.edu Structures Determinate Indeterminate STATICALLY DETERMINATE STATICALLY INDETERMINATE Stability and Determinacy of Trusses

More information

8.3 Shear and Bending-Moment Diagrams Constructed by Areas

8.3 Shear and Bending-Moment Diagrams Constructed by Areas 8.3 Shear and ending-moment Diagrams Constructed by reas 8.3 Shear and ending-moment Diagrams Constructed by reas Procedures and Strategies, page 1 of 3 Procedures and Strategies for Solving Problems Involving

More information

Method of Least Work. Theory of Structures II M Shahid Mehmood Department of Civil Engineering Swedish College of Engineering & Technology, Wah Cantt

Method of Least Work. Theory of Structures II M Shahid Mehmood Department of Civil Engineering Swedish College of Engineering & Technology, Wah Cantt Method of east Work Theor of Structures II M Shahid Mehmood epartment of ivil Engineering Swedish ollege of Engineering & Technolog, Wah antt Method of east Work / astigliano s Second Theorem Staticall

More information

INTERNAL FORCES Today s Objective: Students will be able to: 1. Use the method of sections for determining internal forces in 2-D load cases.

INTERNAL FORCES Today s Objective: Students will be able to: 1. Use the method of sections for determining internal forces in 2-D load cases. INTERNAL FORCES Today s Objective: Students will be able to: 1. Use the method of sections for determining internal forces in 2-D load cases. In-Class Activities: Check Homework, if any Reading Quiz Applications

More information

Chapter 5: Equilibrium of a Rigid Body

Chapter 5: Equilibrium of a Rigid Body Chapter 5: Equilibrium of a Rigid Body Chapter Objectives To develop the equations of equilibrium for a rigid body. To introduce the concept of a free-body diagram for a rigid body. To show how to solve

More information

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y.

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y. 014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently 9 7. Determine the normal stress and shear stress acting

More information

Types of Structures & Loads

Types of Structures & Loads Structure Analysis I Chapter 4 1 Types of Structures & Loads 1Chapter Chapter 4 Internal lloading Developed in Structural Members Internal loading at a specified Point In General The loading for coplanar

More information

Check Homework. Reading Quiz Applications Equations of Equilibrium Example Problems Concept Questions Group Problem Solving Attention Quiz

Check Homework. Reading Quiz Applications Equations of Equilibrium Example Problems Concept Questions Group Problem Solving Attention Quiz THREE-DIMENSIONAL FORCE SYSTEMS Today s Objectives: Students will be able to solve 3-D particle equilibrium problems by a) Drawing a 3-D free body diagram, and, b) Applying the three scalar equations (based

More information

Name. MECH 223 Engineering Statics. Midterm 1, February 24 th 2015

Name. MECH 223 Engineering Statics. Midterm 1, February 24 th 2015 1 Name MECH 223 Engineering Statics Midterm 1, February 24 th 2015 Question 1 (20 + 5 points) (a) (5 points) Form the vector products B C and B C (where B = B ) and use the result to prove the identity

More information

Equilibrium Equilibrium and Trusses Trusses

Equilibrium Equilibrium and Trusses Trusses Equilibrium and Trusses ENGR 221 February 17, 2003 Lecture Goals 6-4 Equilibrium in Three Dimensions 7-1 Introduction to Trusses 7-2Plane Trusses 7-3 Space Trusses 7-4 Frames and Machines Equilibrium Problem

More information

Equilibrium of Rigid Bodies

Equilibrium of Rigid Bodies RCH 331 Note Set 5.1 Su2016abn Equilibrium of Rigid odies Notation: k = spring constant F = name for force vectors, as is P Fx = force component in the x direction Fy = force component in the y direction

More information

RODS: THERMAL STRESS AND STRESS CONCENTRATION

RODS: THERMAL STRESS AND STRESS CONCENTRATION RODS: HERML SRESS ND SRESS CONCENRION Example 5 rod of length L, cross-sectional area, and modulus of elasticity E, has been placed inside a tube of the same length L, but of cross-sectional area and modulus

More information

Framed Structures PLANE FRAMES. Objectives:

Framed Structures PLANE FRAMES. Objectives: Framed Structures 2 Objectives: ifferentiate between perfect, imperfect and redundant frames. To compute the member forces in a frame by graphical method. To compute the forces in a truss by method of

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 6 Shearing MECHANCS OF MATERALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University Stresses in Beams and Thin- Walled Members Shearing

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 23

ENGR-1100 Introduction to Engineering Analysis. Lecture 23 ENGR-1100 Introduction to Engineering Analysis Lecture 23 Today s Objectives: Students will be able to: a) Draw the free body diagram of a frame and its members. FRAMES b) Determine the forces acting at

More information

Engineering Mechanics: Statics in SI Units, 12e

Engineering Mechanics: Statics in SI Units, 12e Engineering Mechanics: Statics in SI Units, 12e 3 Equilibrium of a Particle Chapter Objectives To introduce the concept of the free-body diagram for a particle To show how to solve particle equilibrium

More information

PROBLEM 5.1 SOLUTION. Reactions: Pb L Pa L. From A to B: 0 < x < a. Pb L Pb L Pb L Pbx L. From B to C: a < x < L Pa L. Pa L. L Pab At section B: M = L

PROBLEM 5.1 SOLUTION. Reactions: Pb L Pa L. From A to B: 0 < x < a. Pb L Pb L Pb L Pbx L. From B to C: a < x < L Pa L. Pa L. L Pab At section B: M = L PROBEM 5.1 For the beam and loading shown, (a) draw the shear and bending-moment diagrams, (b) determine the equations of the shear and bending-moment curves. SOUTION Reactions: From A to B: 0 < x < a

More information

Chapter 7 INTERNAL FORCES

Chapter 7 INTERNAL FORCES Chapter 7 INTERNAL FORCES READING QUIZ 1. In a multiforce member, the member is generally subjected to an internal. A) normal force B) shear force C) bending moment D) All of the above. 2. In mechanics,

More information

Equilibrium in Three Dimensions

Equilibrium in Three Dimensions C h a p t e r 7 Equilibrium in Three Dimensions In this chapter, you will learn the following to World Class standards: Forces in Three Different Axis Wind Load on the Antennae Pole Practice Problem -

More information

Chapter 6: Structural Analysis

Chapter 6: Structural Analysis Chapter 6: Structural Analysis Chapter Objectives To show how to determine the forces in the members of a truss using the method of joints and the method of sections. To analyze the forces acting on the

More information

Calculating Truss Forces. Method of Joints

Calculating Truss Forces. Method of Joints Calculating Truss Forces Method of Joints Forces Compression body being squeezed Tension body being stretched Truss truss is composed of slender members joined together at their end points. They are usually

More information

two forces and moments Structural Math Physics for Structures Structural Math

two forces and moments Structural Math Physics for Structures Structural Math RHITETURL STRUTURES: ORM, EHVIOR, ND DESIGN DR. NNE NIHOLS SUMMER 05 lecture two forces and moments orces & Moments rchitectural Structures 009abn Structural Math quantify environmental loads how big is

More information

PROBLEM 7.37 SOLUTION

PROBLEM 7.37 SOLUTION PROLEM 7.37 For the beam and loading shown, (a) draw the shear and bending-moment diagrams, (b) determine the maimum absolute values of the shear and bending moment. Free bod: Entire beam Σ M = 0: E(6

More information

Framed Structures PLANE FRAMES. Objectives:

Framed Structures PLANE FRAMES. Objectives: Framed Structures 2 Objectives: ifferentiate between perfect, imperfect and redundant frames. To compute the member forces in a frame by graphical method. To compute the forces in a truss by method of

More information

Lecture 20. ENGR-1100 Introduction to Engineering Analysis THE METHOD OF SECTIONS

Lecture 20. ENGR-1100 Introduction to Engineering Analysis THE METHOD OF SECTIONS ENGR-1100 Introduction to Engineering Analysis Lecture 20 THE METHOD OF SECTIONS Today s Objectives: Students will be able to determine: 1. Forces in truss members using the method of sections. In-Class

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 20

ENGR-1100 Introduction to Engineering Analysis. Lecture 20 ENGR-1100 Introduction to Engineering Analysis Lecture 20 Today s Objectives: THE METHOD OF SECTIONS Students will be able to determine: 1. Forces in truss members using the method of sections. In-Class

More information

Equilibrium. Rigid Bodies VECTOR MECHANICS FOR ENGINEERS: STATICS. Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

Equilibrium. Rigid Bodies VECTOR MECHANICS FOR ENGINEERS: STATICS. Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E 4 Equilibrium CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University of Rigid Bodies Contents Introduction

More information

Lecture 23. ENGR-1100 Introduction to Engineering Analysis FRAMES S 1

Lecture 23. ENGR-1100 Introduction to Engineering Analysis FRAMES S 1 ENGR-1100 Introduction to Engineering Analysis Lecture 23 Today s Objectives: Students will be able to: a) Draw the free body diagram of a frame and its members. FRAMES b) Determine the forces acting at

More information

ME C85 / CE C30 Midterm 1 Exam Monday October 4, 2010

ME C85 / CE C30 Midterm 1 Exam Monday October 4, 2010 Name: SID: ME C85 / CE C30 Midterm 1 Exam Monday October 4, 2010 Please 1. Read through the test before starting. 2. If you re out of space, write on back side and add a note in your solution referring

More information

RODS: STATICALLY INDETERMINATE MEMBERS

RODS: STATICALLY INDETERMINATE MEMBERS RODS: STTICLLY INDETERMINTE MEMERS Statically Indeterminate ackground In all of the problems discussed so far, it was possible to determine the forces and stresses in the members by utilizing the equations

More information

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd Chapter Objectives To develop the equations of equilibrium for a rigid body. To introduce the concept of the free-body diagram for a rigid body. To show how to solve rigid-body equilibrium problems using

More information

Engineering Mechanics: Statics in SI Units, 12e

Engineering Mechanics: Statics in SI Units, 12e Engineering Mechanics: Statics in SI Units, 12e 5 Equilibrium of a Rigid Body Chapter Objectives Develop the equations of equilibrium for a rigid body Concept of the free-body diagram for a rigid body

More information

General Physics I Spring Applying Newton s Laws

General Physics I Spring Applying Newton s Laws General Physics I Spring 2011 Applying Newton s Laws 1 Equilibrium An object is in equilibrium if the net force acting on it is zero. According to Newton s first law, such an object will remain at rest

More information

Calculate the force F needed to produce a horizontal component of 300 N on the sledge (1)

Calculate the force F needed to produce a horizontal component of 300 N on the sledge (1) 1. A heavy sledge is pulled across snowfields. The diagram shows the direction of the force F exerted on the sledge. Once the sledge is moving, the average horizontal force needed to keep it moving at

More information

Lecture 17 February 23, 2018

Lecture 17 February 23, 2018 Statics - TAM 20 & TAM 2 Lecture 7 ebruary 23, 208 Announcements Monday s lecture: watch for Piazza announcement over weekend for possible change Concept Inventory: Ungraded assessment of course knowledge

More information

RIN: Monday, May 16, Problem Points Score Total 100

RIN: Monday, May 16, Problem Points Score Total 100 RENSSELER POLYTEHNI INSTITUTE TROY, NY FINL EXM INTRODUTION TO ENGINEERING NLYSIS ENGR-00) NME: Solution Section: RIN: Monda, Ma 6, 06 Problem Points Score 0 0 0 0 5 0 6 0 Total 00 N.B.: You will be graded

More information

OUT ON A LIMB AND HUNG OUT TO DRY :

OUT ON A LIMB AND HUNG OUT TO DRY : 27-Nov-12 17:03 1 of 2 h p://edugen.wileyplus.com/edugen/courses/crs1404/pc/c10/c2hlchbhcmq3mjewyzewxzeuegzvcm0.enc?course=crs1404&id=ref CHAPTER 10 OUT ON A LIMB AND HUNG OUT TO DRY : A LOOK AT INTERNAL

More information

Chapter - 1. Equilibrium of a Rigid Body

Chapter - 1. Equilibrium of a Rigid Body Chapter - 1 Equilibrium of a Rigid Body Dr. Rajesh Sathiyamoorthy Department of Civil Engineering, IIT Kanpur hsrajesh@iitk.ac.in; http://home.iitk.ac.in/~hsrajesh/ Condition for Rigid-Body Equilibrium

More information

Three torques act on the shaft. Determine the internal torque at points A, B, C, and D.

Three torques act on the shaft. Determine the internal torque at points A, B, C, and D. ... 7. Three torques act on the shaft. Determine the internal torque at points,, C, and D. Given: M 1 M M 3 300 Nm 400 Nm 00 Nm Solution: Section : x = 0; T M 1 M M 3 0 T M 1 M M 3 T 100.00 Nm Section

More information

Quizzam Module 1 : Statics

Quizzam Module 1 : Statics Structural Steel Design Quizzam odule : Statics NAE Draw shear and moment diagrams for the following loading conditions. Note the reactions. Calculate the maximum amount of internal bending moment. 0 500

More information

NAME: Section: RIN: Tuesday, May 19, :00 11:00. Problem Points Score Total 100

NAME: Section: RIN: Tuesday, May 19, :00 11:00. Problem Points Score Total 100 RENSSELAER POLYTECHNIC INSTITUTE TROY, NY FINAL EXAM INTRODUCTION TO ENGINEERING ANALYSIS (ENGR-1100) NAME: Section: RIN: Tuesday, May 19, 2015 8:00 11:00 Problem Points Score 1 20 2 20 3 20 4 20 5 20

More information

MEE224: Engineering Mechanics Lecture 4

MEE224: Engineering Mechanics Lecture 4 Lecture 4: Structural Analysis Part 1: Trusses So far we have only analysed forces and moments on a single rigid body, i.e. bars. Remember that a structure is a formed by and this lecture will investigate

More information

SOLUTION 8 7. To hold lever: a+ M O = 0; F B (0.15) - 5 = 0; F B = N. Require = N N B = N 0.3. Lever,

SOLUTION 8 7. To hold lever: a+ M O = 0; F B (0.15) - 5 = 0; F B = N. Require = N N B = N 0.3. Lever, 8 3. If the coefficient of static friction at is m s = 0.4 and the collar at is smooth so it only exerts a horizontal force on the pipe, determine the minimum distance x so that the bracket can support

More information

(1) (allow e.c.f. for work done in (ii)) = 133 W (1) (allow e.c.f. for incorrect time conversion) 6

(1) (allow e.c.f. for work done in (ii)) = 133 W (1) (allow e.c.f. for incorrect time conversion) 6 1. (a) F cos 20 = 300 gives F = 319 N 1 (i) work done = force distance moved in direction of force F is not in the direction of motion work done = force distance = 300 8000 = 2.4 10 6 J work done (iii)

More information

7.6 Journal Bearings

7.6 Journal Bearings 7.6 Journal Bearings 7.6 Journal Bearings Procedures and Strategies, page 1 of 2 Procedures and Strategies for Solving Problems Involving Frictional Forces on Journal Bearings For problems involving a

More information

To show how to determine the forces in the members of a truss using the method of joints and the method of sections.

To show how to determine the forces in the members of a truss using the method of joints and the method of sections. 5 Chapter Objectives To show how to determine the forces in the members of a truss using the method of joints and the method of sections. To analyze the forces acting on the members of frames and machines

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHAPTER 6 MECHANCS OF MATERALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Lecture Notes: J. Walt Oler Texas Tech University Shearing Stresses in Beams and Thin- Walled Members

More information

F = 0 can't be satisfied.

F = 0 can't be satisfied. 11/9/1 Equilibrium of eams 1. asics 1.1. Reactions: Draw D ount number of reactions (R) and number of internal hinges (H). If R < H 3 > unstable beam staticall determinate staticall indeterminate (a) (b)

More information

Support Reactions: a + M C = 0; 800(10) F DE(4) F DE(2) = 0. F DE = 2000 lb. + c F y = 0; (2000) - C y = 0 C y = 400 lb

Support Reactions: a + M C = 0; 800(10) F DE(4) F DE(2) = 0. F DE = 2000 lb. + c F y = 0; (2000) - C y = 0 C y = 400 lb 06 Solutions 46060_Part1 5/27/10 3:51 P Page 334 6 11. The overhanging beam has been fabricated with a projected arm D on it. Draw the shear and moment diagrams for the beam C if it supports a load of

More information

Announcements. Equilibrium of a Rigid Body

Announcements. Equilibrium of a Rigid Body Announcements Equilibrium of a Rigid Body Today s Objectives Identify support reactions Draw a free body diagram Class Activities Applications Support reactions Free body diagrams Examples Engr221 Chapter

More information

Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications

Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications 1 of 6 Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications 1. As a practical matter, determining design loads on structural members involves several

More information

Problem d d d B C E D. 0.8d. Additional lecturebook examples 29 ME 323

Problem d d d B C E D. 0.8d. Additional lecturebook examples 29 ME 323 Problem 9.1 Two beam segments, AC and CD, are connected together at C by a frictionless pin. Segment CD is cantilevered from a rigid support at D, and segment AC has a roller support at A. a) Determine

More information

Example Stayed beam with two pylons

Example Stayed beam with two pylons Example Stayed beam with two pylons A roof structure is a stayed beam. The roof span is 300 ft. Stay vertical run is 20 ft. The deck is weighs 12 PSF. Beams have a transverse spacing equal to 40 feet.

More information

Shear Force and Bending Moment Diagrams for a Beam Steven Vukazich San Jose State University

Shear Force and Bending Moment Diagrams for a Beam Steven Vukazich San Jose State University Shear Force and Bending oment Diagrams for a Beam Steven ukazich San Jose State University General procedure for the construction of internal force diagrams 1. Find all of the eternal forces and draw the

More information

== Delft University of Technology == Give on the upper right. Exam STATICS /

== Delft University of Technology == Give on the upper right. Exam STATICS / == elft University of Technology == Give on the upper right University ourse pplied Mechanics corner of each sheet your NME STUY NUMER and ISIPLINE Exam STTIS 2003.08.26 / 09.00-12.00 The work of a student

More information

Section Downloads. Section Downloads. Handouts & Slides can be printed. Course binders are available for purchase. Download & Print. Version 2.

Section Downloads. Section Downloads. Handouts & Slides can be printed. Course binders are available for purchase. Download & Print. Version 2. Level II: Section 03 Design Principles Section Downloads 2 Section Downloads Handouts & Slides can be printed Version 2.0 Course binders are available for purchase Not required Download & Print TTT II

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 13

ENGR-1100 Introduction to Engineering Analysis. Lecture 13 ENGR-1100 Introduction to Engineering Analysis Lecture 13 EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS Today s Objectives: Students will be able to: a) Identify support reactions, and, b) Draw a free-body

More information

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns, and b) Recognize two-force members. In-Class

More information

STATICS. FE Review. Statics, Fourteenth Edition R.C. Hibbeler. Copyright 2016 by Pearson Education, Inc. All rights reserved.

STATICS. FE Review. Statics, Fourteenth Edition R.C. Hibbeler. Copyright 2016 by Pearson Education, Inc. All rights reserved. STATICS FE Review 1. Resultants of force systems VECTOR OPERATIONS (Section 2.2) Scalar Multiplication and Division VECTOR ADDITION USING EITHER THE PARALLELOGRAM LAW OR TRIANGLE Parallelogram Law: Triangle

More information

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns b) Identify support reactions c) Recognize

More information

Chapter 4.1: Shear and Moment Diagram

Chapter 4.1: Shear and Moment Diagram Chapter 4.1: Shear and Moment Diagram Chapter 5: Stresses in Beams Chapter 6: Classical Methods Beam Types Generally, beams are classified according to how the beam is supported and according to crosssection

More information

two loads, forces and vectors ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2017 lecture ARCH 614

two loads, forces and vectors ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2017 lecture ARCH 614 ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2017 lecture two y x z loads, forces and vectors Forces 1 Structural Design planning preliminary structural configuration

More information

dv dx Slope of the shear diagram = - Value of applied loading dm dx Slope of the moment curve = Shear Force

dv dx Slope of the shear diagram = - Value of applied loading dm dx Slope of the moment curve = Shear Force Beams SFD and BMD Shear and Moment Relationships w dv dx Slope of the shear diagram = - Value of applied loading V dm dx Slope of the moment curve = Shear Force Both equations not applicable at the point

More information

Faculty of Engineering and Department of Physics Engineering Physics 131 Final Examination Saturday April 21, 2018; 14:00 pm 16:30 pm

Faculty of Engineering and Department of Physics Engineering Physics 131 Final Examination Saturday April 21, 2018; 14:00 pm 16:30 pm Faculty of Engineering and Department of Physics Engineering Physics 131 Final Examination Saturday April 21, 2018; 14:00 pm 16:30 pm 1. Closed book exam. No notes or textbooks allowed. 2. Formula sheets

More information

Solution: T, A1, A2, A3, L1, L2, L3, E1, E2, E3, P are known Five equations in five unknowns, F1, F2, F3, ua and va

Solution: T, A1, A2, A3, L1, L2, L3, E1, E2, E3, P are known Five equations in five unknowns, F1, F2, F3, ua and va ME 323 Examination # 1 February 18, 2016 Name (Print) (Last) (First) Instructor PROBLEM #1 (20 points) A structure is constructed from members 1, 2 and 3, with these members made up of the same material

More information

Sports biomechanics explores the relationship between the body motion, internal forces and external forces to optimize the sport performance.

Sports biomechanics explores the relationship between the body motion, internal forces and external forces to optimize the sport performance. What is biomechanics? Biomechanics is the field of study that makes use of the laws of physics and engineering concepts to describe motion of body segments, and the internal and external forces, which

More information

Al-Saudia Virtual Academy Pakistan Online Tuition Online Tutor Pakistan

Al-Saudia Virtual Academy Pakistan Online Tuition Online Tutor Pakistan Al-Saudia Virtual Academy Pakistan Online Tuition Online Tutor Pakistan Statics What do you mean by Resultant Force? Ans: Resultant Force: The sum of all forces acting upon a body is called Resultant Force.

More information

Equilibrium of a Rigid Body. Engineering Mechanics: Statics

Equilibrium of a Rigid Body. Engineering Mechanics: Statics Equilibrium of a Rigid Body Engineering Mechanics: Statics Chapter Objectives Revising equations of equilibrium of a rigid body in 2D and 3D for the general case. To introduce the concept of the free-body

More information

The centroid of an area is defined as the point at which (12-2) The distance from the centroid of a given area to a specified axis may be found by

The centroid of an area is defined as the point at which (12-2) The distance from the centroid of a given area to a specified axis may be found by Unit 12 Centroids Page 12-1 The centroid of an area is defined as the point at which (12-2) The distance from the centroid of a given area to a specified axis may be found by (12-5) For the area shown

More information

Solid Mechanics Homework Answers

Solid Mechanics Homework Answers Name: Date: Solid Mechanics Homework nswers Please show all of your work, including which equations you are using, and circle your final answer. Be sure to include the units in your answers. 1. The yield

More information

5. What is the moment of inertia about the x - x axis of the rectangular beam shown?

5. What is the moment of inertia about the x - x axis of the rectangular beam shown? 1 of 5 Continuing Education Course #274 What Every Engineer Should Know About Structures Part D - Bending Strength Of Materials NOTE: The following question was revised on 15 August 2018 1. The moment

More information

5.3 Rigid Bodies in Three-Dimensional Force Systems

5.3 Rigid Bodies in Three-Dimensional Force Systems 5.3 Rigid odies in Three-imensional Force Sstems 5.3 Rigid odies in Three-imensional Force Sstems Eample 1, page 1 of 5 1. For the rigid frame shown, determine the reactions at the knife-edge supports,,.

More information

CH. 4 BEAMS & COLUMNS

CH. 4 BEAMS & COLUMNS CH. 4 BEAMS & COLUMNS BEAMS Beams Basic theory of bending: internal resisting moment at any point in a beam must equal the bending moments produced by the external loads on the beam Rx = Cc + Tt - If the

More information

Supplement: Statically Indeterminate Trusses and Frames

Supplement: Statically Indeterminate Trusses and Frames : Statically Indeterminate Trusses and Frames Approximate Analysis - In this supplement, we consider an approximate method of solving statically indeterminate trusses and frames subjected to lateral loads

More information

Point Equilibrium & Truss Analysis

Point Equilibrium & Truss Analysis oint Equilibrium & Truss nalsis Notation: b = number of members in a truss () = shorthand for compression F = name for force vectors, as is X, T, and F = name of a truss force between joints named and,

More information

Equilibrium of Rigid Bodies

Equilibrium of Rigid Bodies Equilibrium of Rigid Bodies 1 2 Contents Introduction Free-Bod Diagram Reactions at Supports and Connections for a wo-dimensional Structure Equilibrium of a Rigid Bod in wo Dimensions Staticall Indeterminate

More information

7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses

7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses 7 TRANSVERSE SHEAR Before we develop a relationship that describes the shear-stress distribution over the cross section of a beam, we will make some preliminary remarks regarding the way shear acts within

More information

Tutorial #1 - CivE. 205 Name: I.D:

Tutorial #1 - CivE. 205 Name: I.D: Tutorial # - CivE. 0 Name: I.D: Eercise : For the Beam below: - Calculate the reactions at the supports and check the equilibrium of point a - Define the points at which there is change in load or beam

More information

Method of Virtual Work Frame Deflection Example Steven Vukazich San Jose State University

Method of Virtual Work Frame Deflection Example Steven Vukazich San Jose State University Method of Virtual Work Frame Deflection xample Steven Vukazich San Jose State University Frame Deflection xample 9 k k D 4 ft θ " # The statically determinate frame from our previous internal force diagram

More information