P.E. Civil Exam Review:

Size: px
Start display at page:

Download "P.E. Civil Exam Review:"

Transcription

1 P.E. Civil Exam Review: Structural Analysis J.P. Mohsen

2 Structures Determinate Indeterminate

3 STATICALLY DETERMINATE

4 STATICALLY INDETERMINATE

5 Stability and Determinacy of Trusses 300 lb. 400 lb. B C D 7.5 ft A 10 ft H 10 ft G 10 ft F 10 ft E R L R R 2j = m + r Truss is determinate 2j m + r indeterminate J = number of joints m= number of members r = number of reactions 2j m + r Unstable

6 Determine the force in members BH, BC, and DG of the truss shown. Note that the truss is composed of triangles 7.5 ft : 10.0 ft : 12.5 ft, so that they are 3:4:5 right angles. 300 lb. 400 lb. B C D 7.5 ft 10 ft H 10 ft G 10 ft F 10 ft E R L R R

7 Member BH. 300 lb. 400 lb. B C D A 10 ft H 10 ft G 10 ft F 10 ft E R L R R

8 Analysis of Member BH. 300 lb. 400 lb. B C D A 10 ft H 10 ft G 10 ft F 10 ft E R L R R F BH Applying Equation of Equilibrium to Joint H + F y 0 Fbh 0 F AH H F HG

9 Member BC. 300 lb. 400 lb. B C D A 10 ft H 10 ft G 10 ft F 10 ft E R L R R

10 Analysis of Member BC. 300 lb. 400 lb. B C D A 10 ft H 10 ft G 10 ft F 10 ft E R L R R = 275 lb. + M 0 20 R 7.5 F 0 G R BC 400 lb. F BC 275(20) lbs ( compression) B C D F BC 12.5 ft 7.5 ft F BG F HG G 10 ft F 10 ft E R R

11 Member DG. 300 lb. 400 lb. B C D A 10 ft H 10 ft G 10 ft F 10 ft E R L R R

12 Analysis of Member DG. 300 lb. 400 lb. B C D A 10 ft H 10 ft G 10 ft F 10 ft E R L R R C F CD F DG F GF D 12.5 ft 7.5 ft G F 10 ft E R R

13 Analysis of Member DG. 300 lb. 400 lb. B C D A 10 ft H 10 ft G 10 ft F 10 ft E R L R R + Y DG Y DG F 0 R DG R Y DG Y DG 458 lbs tension DG Y 275 lbs C F CD F DG F GF D 12.5 ft 7.5 ft G F 10 ft E R R

14 Draw the shear and moment diagrams for the beam shown. Indicate the maximum moment. 20 kn/m 60 kn 120 kn-m A B C D E 2 m 2 m 2 m 2 m

15 Draw the Free Body Diagram (FBD). (Note: The horizontal force at point B is equal to zero.) 20 kn/m 60 kn 120 kn-m A F B C D B F E 2 m 2 m 2 m 2 m

16 Solve for the reactions at supports B and E. 20 kn/m 60 kn 120 kn-m A F B = 100 kn C D F E = 40 kn 2 m 2 m 2 m 2 m + M B = 0 60(2) F E = 0 F E = 40 kn + F Y = F E + F B = F B = 0 F B = 100 kn

17 A 60 kn 20 kn/m 120 kn-m 2 m 2 m C 2 m D 2 m 100 kn 40 kn Draw the Shear Diagram for segment AB. 2 m 20 kn 40 kn m 0 0 V (kn) -40

18 A 60 kn 20 kn/m 120 kn-m 2 m 2 m C 2 m D 2 m 100 kn 40 kn Show the change in Shear at B kn 0 0 V (kn) -40

19 A 60 kn 20 kn/m 120 kn-m 2 m 2 m C 2 m D 2 m 100 kn 40 kn Draw the Shear Diagram for segment BC V (kn) 2 m 20 kn 40 kn m -40

20 A 60 kn 20 kn/m 120 kn-m 2 m 2 m C 2 m D 2 m 100 kn 40 kn Show the change in Shear at C kn V (kn)

21 A 60 kn 20 kn/m 120 kn-m 2 m 2 m C 2 m D 2 m 100 kn 40 kn Draw the Shear Diagram for segment CE V (kn) 4 m 0 kn 0 kn m

22 A 60 kn 20 kn/m 120 kn-m 2 m 2 m C 2 m D 2 m 100 kn 40 kn Show the change in Shear at E kn V (kn)

23 20 kn/m 60 kn 120 kn-m Completed Shear Diagram A 2 m 2 m C 2 m D 2 m 100 kn kn V (kn)

24 A 60 kn 20 kn/m 120 kn-m 2 m 2 m C 2 m D 2 m 100 kn 40 kn Draw the Moment Diagram for segment AB V (kn) m 40 kn 40 kn m M (kn-m)

25 A 60 kn 20 kn/m 120 kn-m 2 m 2 m C 2 m D 2 m 100 kn 40 kn Draw the Moment Diagram for segment AB V (kn) m 40 kn 40 kn m 0 0 M (kn-m) -40

26 A 60 kn 20 kn/m 120 kn-m 2 m 2 m C 2 m D 2 m 100 kn 40 kn Draw the Moment Diagram for segment BC V (kn) m 40 kn 2 m 20 kn 80 kn m M (kn-m)

27 A 60 kn 20 kn/m 120 kn-m 2 m 2 m C 2 m D 2 m 100 kn 40 kn Draw the Moment Diagram for segment CD V (kn) m 40 kn 80 kn m M (kn-m)

28 A 60 kn 20 kn/m 120 kn-m 2 m 2 m C 2 m D 2 m 100 kn 40 kn Show the change in bending moment at D V (kn) kn m M (kn-m)

29 A 60 kn 20 kn/m 120 kn-m 2 m 2 m C 2 m D 2 m 100 kn 40 kn Draw the Moment Diagram for segment DE V (kn) m 40 kn 80 kn m M (kn-m)

30 A 60 kn 20 kn/m 120 kn-m 2 m 2 m C 2 m D 2 m 100 kn 40 kn Completed Moment Diagram V (kn) M (kn-m)

31 A 60 kn 20 kn/m 120 kn-m 2 m 2 m C 2 m D 2 m 100 kn 40 kn Find the maximum moment V (kn) M max 80 kn m M (kn-m)

32

33 Find the force in the truss members shown.

34

35

36 What are the vertical and horizontal components of deflection at the 30K Load? All members have a cross sectional area of 1 square inch and modulus of elasticity of ksi.

37 S u L A E S = member force with proper sign A= Cross-sectional area of each member L= Length of each member E= modulus of elasticity of materials

38 These are internal member forces due to original loading

39 These are internal forces due to a vertical unit load at L2

40 These are internal member forces due to a horizontal unit load at L2

41

42 Please find all member forces and specify whether in tension or compression

43

44

45

46 What are the support reactions for the beam shown? K AB =4EI = I K BC =4EI = I L 10 L 20

47 Moment Distribution 1) calculate the fixed end moments 2) Calculate distribution of moments at the clamped ends of the members by the rotation of that joint 3) Calculate the magnitude of the moments carried over to the other ends of the members 4) The addition or subtraction of these latter moments to the original ) g fixed ends moments

48 Fixed End Moments P FEM = PL 8 L/2 L/2 FEM = PL 8 w FEM= wl 2 12 L FEM= wl 2 12 a P b FEM= Pb2 a L 2 L FEM= Pa 2 b L 2

49 Lock the joint B. FEM

50 K AB =4EI = I K BC =4EI = I L 10 L 20 Distribution ib ti Factor = K Sum of K for all members at the joint K1 DF1 K K 2 DF2 K

51 K AB =4EI = I K BC =4EI = I L 10 L 20 Distribution ib ti Factor = K Sum of K for all members at the joint Distribution Factor = K BA _ K BA + K BC K1 DF1 K K 2 DF2 K

52 K AB =4EI = I K BC =4EI = I L 10 L = 2/ _ D.F. at B for BA 1 20 = 1/ _ D.F. at B for BC

53 Stiffness K K AB =4EI = I K BC =4EI = I L 10 L 20 D. F. 2/3 1/3 FEM Balancing Joint B

54 Joint B Released Stiffness K K AB =4EI = I K BC =4EI = I L 10 L 20 D. F. 2/3 1/3 FEM Balancing Joint B

55 Stiffness K K AB =4EI = I K BC =4EI = I L 10 L 20 D. F. 2/3 1/3 FEM Balancing Joint B C.O.M

56 Stiffness K K AB =4EI = I K BC =4EI = I L 10 L 20 D. F. 2/3 1/3 FEM Balancing Joint B C.O.M

57 Stiffness K K AB =4EI = I K BC =4EI = I L 10 L 20 D. F. 2/3 1/3 FEM Balancing Joint B C.O.M Final Moments

58 Stiffness K K AB =4EI = I K BC =4EI = I L 10 L 20 D. F. 2/3 1/3 FEM Balancing Joint B C.O.M Final Moments

59 Stiffness K K AB =4EI = I K BC =4EI = I L 10 L 20 D. F. 2/3 1/3 FEM Balancing Joint B C.O.M Final Moments

60 Stiffness K K AB =4EI = I K BC =4EI = I L 10 L 20 D. F. 2/3 1/3 FEM Balancing Joint B C.O.M Final Moments

61 Stiffness K K AB =4EI = I K BC =4EI = I L 10 L 20 D. F. 2/3 1/3 FEM Balancing Joint B C.O.M Final Moments

62 20 k 1.5 K/FT FT.K k 1.5 K/FT 7.5 k 12.5 k 14.4 k 15.6 k

63 References Hibbeler, C. R., Structural Analysis, 3 rd Edition, Prentice Hall, Chajes, Alexander, Structural Analysis, Prentice Hall, 1982.

64 Thank You! Any Questions? Good Luck!

Lecture 20. ENGR-1100 Introduction to Engineering Analysis THE METHOD OF SECTIONS

Lecture 20. ENGR-1100 Introduction to Engineering Analysis THE METHOD OF SECTIONS ENGR-1100 Introduction to Engineering Analysis Lecture 20 THE METHOD OF SECTIONS Today s Objectives: Students will be able to determine: 1. Forces in truss members using the method of sections. In-Class

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 20

ENGR-1100 Introduction to Engineering Analysis. Lecture 20 ENGR-1100 Introduction to Engineering Analysis Lecture 20 Today s Objectives: THE METHOD OF SECTIONS Students will be able to determine: 1. Forces in truss members using the method of sections. In-Class

More information

Method of Consistent Deformation

Method of Consistent Deformation Method of onsistent eformation Structural nalysis y R.. Hibbeler Theory of Structures-II M Shahid Mehmood epartment of ivil Engineering Swedish ollege of Engineering and Technology, Wah antt FRMES Method

More information

Chapter 11. Displacement Method of Analysis Slope Deflection Method

Chapter 11. Displacement Method of Analysis Slope Deflection Method Chapter 11 Displacement ethod of Analysis Slope Deflection ethod Displacement ethod of Analysis Two main methods of analyzing indeterminate structure Force method The method of consistent deformations

More information

= 50 ksi. The maximum beam deflection Δ max is not = R B. = 30 kips. Notes for Strength of Materials, ET 200

= 50 ksi. The maximum beam deflection Δ max is not = R B. = 30 kips. Notes for Strength of Materials, ET 200 Notes for Strength of Materials, ET 00 Steel Six Easy Steps Steel beam design is about selecting the lightest steel beam that will support the load without exceeding the bending strength or shear strength

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

Supplement: Statically Indeterminate Trusses and Frames

Supplement: Statically Indeterminate Trusses and Frames : Statically Indeterminate Trusses and Frames Approximate Analysis - In this supplement, we consider an approximate method of solving statically indeterminate trusses and frames subjected to lateral loads

More information

Shear Force and Bending Moment Diagrams for a Beam Steven Vukazich San Jose State University

Shear Force and Bending Moment Diagrams for a Beam Steven Vukazich San Jose State University Shear Force and Bending oment Diagrams for a Beam Steven ukazich San Jose State University General procedure for the construction of internal force diagrams 1. Find all of the eternal forces and draw the

More information

UNIT-V MOMENT DISTRIBUTION METHOD

UNIT-V MOMENT DISTRIBUTION METHOD UNIT-V MOMENT DISTRIBUTION METHOD Distribution and carryover of moments Stiffness and carry over factors Analysis of continuous beams Plane rigid frames with and without sway Neylor s simplification. Hardy

More information

7 STATICALLY DETERMINATE PLANE TRUSSES

7 STATICALLY DETERMINATE PLANE TRUSSES 7 STATICALLY DETERMINATE PLANE TRUSSES OBJECTIVES: This chapter starts with the definition of a truss and briefly explains various types of plane truss. The determinancy and stability of a truss also will

More information

Lecture 8: Flexibility Method. Example

Lecture 8: Flexibility Method. Example ecture 8: lexibility Method Example The plane frame shown at the left has fixed supports at A and C. The frame is acted upon by the vertical load P as shown. In the analysis account for both flexural and

More information

k 21 k 22 k 23 k 24 k 31 k 32 k 33 k 34 k 41 k 42 k 43 k 44

k 21 k 22 k 23 k 24 k 31 k 32 k 33 k 34 k 41 k 42 k 43 k 44 CE 6 ab Beam Analysis by the Direct Stiffness Method Beam Element Stiffness Matrix in ocal Coordinates Consider an inclined bending member of moment of inertia I and modulus of elasticity E subjected shear

More information

Name ME 270 Summer 2006 Examination No. 1 PROBLEM NO. 3 Given: Below is a Warren Bridge Truss. The total vertical height of the bridge is 10 feet and each triangle has a base of length, L = 8ft. Find:

More information

Equilibrium Equilibrium and Trusses Trusses

Equilibrium Equilibrium and Trusses Trusses Equilibrium and Trusses ENGR 221 February 17, 2003 Lecture Goals 6-4 Equilibrium in Three Dimensions 7-1 Introduction to Trusses 7-2Plane Trusses 7-3 Space Trusses 7-4 Frames and Machines Equilibrium Problem

More information

READING QUIZ. 2. When using the method of joints, typically equations of equilibrium are applied at every joint. A) Two B) Three C) Four D) Six

READING QUIZ. 2. When using the method of joints, typically equations of equilibrium are applied at every joint. A) Two B) Three C) Four D) Six READING QUIZ 1. One of the assumptions used when analyzing a simple truss is that the members are joined together by. A) Welding B) Bolting C) Riveting D) Smooth pins E) Super glue 2. When using the method

More information

To show how to determine the forces in the members of a truss using the method of joints and the method of sections.

To show how to determine the forces in the members of a truss using the method of joints and the method of sections. 5 Chapter Objectives To show how to determine the forces in the members of a truss using the method of joints and the method of sections. To analyze the forces acting on the members of frames and machines

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING. BEng (HONS) CIVIL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017 MATHEMATICS & STRUCTURAL ANALYSIS

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING. BEng (HONS) CIVIL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017 MATHEMATICS & STRUCTURAL ANALYSIS TW21 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BEng (HONS) CIVIL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017 MATHEMATICS & STRUCTURAL ANALYSIS MODULE NO: CIE4011 Date: Wednesday 11 th January 2017 Time:

More information

Mechanics of Materials

Mechanics of Materials Mechanics of Materials 2. Introduction Dr. Rami Zakaria References: 1. Engineering Mechanics: Statics, R.C. Hibbeler, 12 th ed, Pearson 2. Mechanics of Materials: R.C. Hibbeler, 9 th ed, Pearson 3. Mechanics

More information

Calculating Truss Forces. Method of Joints

Calculating Truss Forces. Method of Joints Calculating Truss Forces Method of Joints Forces Compression body being squeezed Tension body being stretched Truss truss is composed of slender members joined together at their end points. They are usually

More information

I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. NAME: ME 270 Fall 2012 Examination No. 3 - Makeup Please review the following statement: Group No.: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

More information

REVIEW FOR EXAM II. Dr. Ibrahim A. Assakkaf SPRING 2002

REVIEW FOR EXAM II. Dr. Ibrahim A. Assakkaf SPRING 2002 REVIEW FOR EXM II. J. Clark School of Engineering Department of Civil and Environmental Engineering b Dr. Ibrahim. ssakkaf SPRING 00 ENES 0 Mechanics of Materials Department of Civil and Environmental

More information

Chapter 4.1: Shear and Moment Diagram

Chapter 4.1: Shear and Moment Diagram Chapter 4.1: Shear and Moment Diagram Chapter 5: Stresses in Beams Chapter 6: Classical Methods Beam Types Generally, beams are classified according to how the beam is supported and according to crosssection

More information

CHAPTER 5 Statically Determinate Plane Trusses

CHAPTER 5 Statically Determinate Plane Trusses CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS TYPES OF ROOF TRUSS ROOF TRUSS SETUP ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse

More information

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS 1 TYPES OF ROOF TRUSS ROOF TRUSS SETUP 2 ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse

More information

CHAPTER 2: EQUILIBRIUM OF RIGID BODIES

CHAPTER 2: EQUILIBRIUM OF RIGID BODIES For a rigid body to be in equilibrium, the net force as well as the net moment about any arbitrary point O must be zero Summation of all external forces. Equilibrium: Sum of moments of all external forces.

More information

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns, and, b) Recognize two-force members. In-Class

More information

Beams. Beams are structural members that offer resistance to bending due to applied load

Beams. Beams are structural members that offer resistance to bending due to applied load Beams Beams are structural members that offer resistance to bending due to applied load 1 Beams Long prismatic members Non-prismatic sections also possible Each cross-section dimension Length of member

More information

Structural Analysis III Moment Distribution

Structural Analysis III Moment Distribution Structural Analysis III oment Distribution 2008/9 Dr. Colin Caprani 1 Contents 1. Introduction... 4 1.1 Overview... 4 1.2 The Basic Idea... 5 2. Development... 10 2.1 Carry-Over... 10 2.2 Fixed End oments...

More information

Errata Sheet for S. D. Rajan, Introduction to Structural Analysis & Design (1 st Edition) John Wiley & Sons Publication

Errata Sheet for S. D. Rajan, Introduction to Structural Analysis & Design (1 st Edition) John Wiley & Sons Publication S D Rajan, Introduction to Structural Analsis & Design ( st Edition) Errata Sheet for S D Rajan, Introduction to Structural Analsis & Design ( st Edition) John Wile & Sons Publication Chapter Page Correction

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method Module 2 Analysis of Statically Indeterminate Structures by the Matrix Force Method Lesson 8 The Force Method of Analysis: Beams Instructional Objectives After reading this chapter the student will be

More information

Indeterminate Analysis Force Method 1

Indeterminate Analysis Force Method 1 Indeterminate Analysis Force Method 1 The force (flexibility) method expresses the relationships between displacements and forces that exist in a structure. Primary objective of the force method is to

More information

Structural Analysis III Moment Distribution

Structural Analysis III Moment Distribution Structural Analysis III oment Distribution 2009/10 Dr. Colin Caprani 1 Contents 1. Introduction... 4 1.1 Overview... 4 1.2 The Basic Idea... 5 2. Development... 10 2.1 Carry-Over Factor... 10 2.2 Fixed-End

More information

6/6/2008. Qualitative Influence Lines for Statically Indeterminate Structures: Muller-Breslau s Principle

6/6/2008. Qualitative Influence Lines for Statically Indeterminate Structures: Muller-Breslau s Principle Qualitative Influence Lines for Statically Indeterminate Structures: Muller-Breslau s Principle The influence line for a force (or moment) response function is given by the deflected shape of the released

More information

Structural Analysis III Compatibility of Displacements & Principle of Superposition

Structural Analysis III Compatibility of Displacements & Principle of Superposition Structural Analysis III Compatibility of Displacements & Principle of Superposition 2007/8 Dr. Colin Caprani, Chartered Engineer 1 1. Introduction 1.1 Background In the case of 2-dimensional structures

More information

Name (Print) ME Mechanics of Materials Exam # 2 Date: March 29, 2017 Time: 8:00 10:00 PM - Location: WTHR 200

Name (Print) ME Mechanics of Materials Exam # 2 Date: March 29, 2017 Time: 8:00 10:00 PM - Location: WTHR 200 Name (Print) (Last) (First) Instructions: ME 323 - Mechanics of Materials Exam # 2 Date: Time: 8:00 10:00 PM - Location: WTHR 200 Circle your lecturer s name and your class meeting time. Koslowski Zhao

More information

Chapter 7: Internal Forces

Chapter 7: Internal Forces Chapter 7: Internal Forces Chapter Objectives To show how to use the method of sections for determining the internal loadings in a member. To generalize this procedure by formulating equations that can

More information

ENGINEERING MECHANICS STATIC

ENGINEERING MECHANICS STATIC Trusses Simple trusses The basic element of a truss is the triangle, three bars joined by pins at their ends, fig. a below, constitutes a rigid frame. The term rigid is used to mean noncollapsible and

More information

FRAME ANALYSIS. Dr. Izni Syahrizal bin Ibrahim. Faculty of Civil Engineering Universiti Teknologi Malaysia

FRAME ANALYSIS. Dr. Izni Syahrizal bin Ibrahim. Faculty of Civil Engineering Universiti Teknologi Malaysia FRAME ANALYSIS Dr. Izni Syahrizal bin Ibrahim Faculty of Civil Engineering Universiti Teknologi Malaysia Email: iznisyahrizal@utm.my Introduction 3D Frame: Beam, Column & Slab 2D Frame Analysis Building

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 16 The Slope-Deflection ethod: rames Without Sidesway Instructional Objectives After reading this chapter the student

More information

Eng Sample Test 4

Eng Sample Test 4 1. An adjustable tow bar connecting the tractor unit H with the landing gear J of a large aircraft is shown in the figure. Adjusting the height of the hook F at the end of the tow bar is accomplished by

More information

Deflections. Deflections. Deflections. Deflections. Deflections. Deflections. dx dm V. dx EI. dx EI dx M. dv w

Deflections. Deflections. Deflections. Deflections. Deflections. Deflections. dx dm V. dx EI. dx EI dx M. dv w CIVL 311 - Conjugate eam 1/5 Conjugate beam method The development of the conjugate beam method has been atributed to several strucutral engineers. any credit Heinrich üller-reslau (1851-195) with the

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 21 The oment- Distribution ethod: rames with Sidesway Instructional Objectives After reading this chapter the student

More information

Method of Virtual Work Frame Deflection Example Steven Vukazich San Jose State University

Method of Virtual Work Frame Deflection Example Steven Vukazich San Jose State University Method of Virtual Work Frame Deflection xample Steven Vukazich San Jose State University Frame Deflection xample 9 k k D 4 ft θ " # The statically determinate frame from our previous internal force diagram

More information

UNIT IV FLEXIBILTY AND STIFFNESS METHOD

UNIT IV FLEXIBILTY AND STIFFNESS METHOD SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SA-II (13A01505) Year & Sem: III-B.Tech & I-Sem Course & Branch: B.Tech

More information

UNIT III DEFLECTION OF BEAMS 1. What are the methods for finding out the slope and deflection at a section? The important methods used for finding out the slope and deflection at a section in a loaded

More information

Lecture 6: The Flexibility Method - Beams. Flexibility Method

Lecture 6: The Flexibility Method - Beams. Flexibility Method lexibility Method In 1864 James Clerk Maxwell published the first consistent treatment of the flexibility method for indeterminate structures. His method was based on considering deflections, but the presentation

More information

ES230 STRENGTH OF MATERIALS

ES230 STRENGTH OF MATERIALS ES230 STRENGTH OF MATERIALS Exam 1 Study Guide. Exam 1: Wednesday, February 8 th, in-class Updated 2/5/17 Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will

More information

NAME: Section: RIN: Tuesday, May 19, :00 11:00. Problem Points Score Total 100

NAME: Section: RIN: Tuesday, May 19, :00 11:00. Problem Points Score Total 100 RENSSELAER POLYTECHNIC INSTITUTE TROY, NY FINAL EXAM INTRODUCTION TO ENGINEERING ANALYSIS (ENGR-1100) NAME: Section: RIN: Tuesday, May 19, 2015 8:00 11:00 Problem Points Score 1 20 2 20 3 20 4 20 5 20

More information

techie-touch.blogspot.com DEPARTMENT OF CIVIL ENGINEERING ANNA UNIVERSITY QUESTION BANK CE 2302 STRUCTURAL ANALYSIS-I TWO MARK QUESTIONS UNIT I DEFLECTION OF DETERMINATE STRUCTURES 1. Write any two important

More information

Pin-Jointed Frame Structures (Frameworks)

Pin-Jointed Frame Structures (Frameworks) Pin-Jointed rame Structures (rameworks) 1 Pin Jointed rame Structures (rameworks) A pin-jointed frame is a structure constructed from a number of straight members connected together at their ends by frictionless

More information

Delft Applied Mechanics Course: Statics AE1-914-I. 18 August 2004, 9:00 12:00

Delft Applied Mechanics Course: Statics AE1-914-I. 18 August 2004, 9:00 12:00 Delft pplied Mechanics Course: Statics E1-914-I 18 ugust 2004, 9:00 12:00 This is the English exam. Only the answer forms will be collected ny other sheets will be rejected. Write down your name and student

More information

29. Define Stiffness matrix method. 30. What is the compatibility condition used in the flexibility method?

29. Define Stiffness matrix method. 30. What is the compatibility condition used in the flexibility method? CLASS: III YEAR / VI SEMESTER CIVIL SUBJECTCODE AND NAME: CE 2351 - STRUCTURAL ANALYSIS-II UNIT1 FLEXIBILITY MATRIX METHOD. PART A 1. What is meant by indeterminate structures? 2. What are the conditions

More information

Moment Distribution Method

Moment Distribution Method Moment Distribution Method Lesson Objectives: 1) Identify the formulation and sign conventions associated with the Moment Distribution Method. 2) Derive the Moment Distribution Method equations using mechanics

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 23

ENGR-1100 Introduction to Engineering Analysis. Lecture 23 ENGR-1100 Introduction to Engineering Analysis Lecture 23 Today s Objectives: Students will be able to: a) Draw the free body diagram of a frame and its members. FRAMES b) Determine the forces acting at

More information

UNIT II SLOPE DEFLECION AND MOMENT DISTRIBUTION METHOD

UNIT II SLOPE DEFLECION AND MOMENT DISTRIBUTION METHOD SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SA-II (13A01505) Year & Sem: III-B.Tech & I-Sem Course & Branch: B.Tech

More information

If the solution does not follow a logical thought process, it will be assumed in error.

If the solution does not follow a logical thought process, it will be assumed in error. Please indicate your group number (If applicable) Circle Your Instructor s Name and Section: MWF 8:30-9:20 AM Prof. Kai Ming Li MWF 2:30-3:20 PM Prof. Fabio Semperlotti MWF 9:30-10:20 AM Prof. Jim Jones

More information

QUESTION BANK. SEMESTER: V SUBJECT CODE / Name: CE 6501 / STRUCTURAL ANALYSIS-I

QUESTION BANK. SEMESTER: V SUBJECT CODE / Name: CE 6501 / STRUCTURAL ANALYSIS-I QUESTION BANK DEPARTMENT: CIVIL SEMESTER: V SUBJECT CODE / Name: CE 6501 / STRUCTURAL ANALYSIS-I Unit 5 MOMENT DISTRIBUTION METHOD PART A (2 marks) 1. Differentiate between distribution factors and carry

More information

IDE 110 Mechanics of Materials Spring 2006 Final Examination FOR GRADING ONLY

IDE 110 Mechanics of Materials Spring 2006 Final Examination FOR GRADING ONLY Spring 2006 Final Examination STUDENT S NAME (please print) STUDENT S SIGNATURE STUDENT NUMBER IDE 110 CLASS SECTION INSTRUCTOR S NAME Do not turn this page until instructed to start. Write your name on

More information

Announcements. Trusses Method of Joints

Announcements. Trusses Method of Joints Announcements Mountain Dew is an herbal supplement Today s Objectives Define a simple truss Trusses Method of Joints Determine the forces in members of a simple truss Identify zero-force members Class

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method. Version 2 CE IIT, Kharagpur

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method. Version 2 CE IIT, Kharagpur odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Version CE IIT, Kharagpur Lesson The ultistory Frames with Sidesway Version CE IIT, Kharagpur Instructional Objectives

More information

Problem d d d B C E D. 0.8d. Additional lecturebook examples 29 ME 323

Problem d d d B C E D. 0.8d. Additional lecturebook examples 29 ME 323 Problem 9.1 Two beam segments, AC and CD, are connected together at C by a frictionless pin. Segment CD is cantilevered from a rigid support at D, and segment AC has a roller support at A. a) Determine

More information

Problem 7.1 Determine the soil pressure distribution under the footing. Elevation. Plan. M 180 e 1.5 ft P 120. (a) B= L= 8 ft L e 1.5 ft 1.

Problem 7.1 Determine the soil pressure distribution under the footing. Elevation. Plan. M 180 e 1.5 ft P 120. (a) B= L= 8 ft L e 1.5 ft 1. Problem 7.1 Determine the soil pressure distribution under the footing. Elevation Plan M 180 e 1.5 ft P 10 (a) B= L= 8 ft L e 1.5 ft 1.33 ft 6 1 q q P 6 (P e) 180 6 (180) 4.9 kip/ft B L B L 8(8) 8 3 P

More information

This procedure covers the determination of the moment of inertia about the neutral axis.

This procedure covers the determination of the moment of inertia about the neutral axis. 327 Sample Problems Problem 16.1 The moment of inertia about the neutral axis for the T-beam shown is most nearly (A) 36 in 4 (C) 236 in 4 (B) 136 in 4 (D) 736 in 4 This procedure covers the determination

More information

STRUCTURAL ANALYSIS BFC Statically Indeterminate Beam & Frame

STRUCTURAL ANALYSIS BFC Statically Indeterminate Beam & Frame STRUCTURA ANAYSIS BFC 21403 Statically Indeterminate Beam & Frame Introduction Analysis for indeterminate structure of beam and frame: 1. Slope-deflection method 2. Moment distribution method Displacement

More information

Lecture 23. ENGR-1100 Introduction to Engineering Analysis FRAMES S 1

Lecture 23. ENGR-1100 Introduction to Engineering Analysis FRAMES S 1 ENGR-1100 Introduction to Engineering Analysis Lecture 23 Today s Objectives: Students will be able to: a) Draw the free body diagram of a frame and its members. FRAMES b) Determine the forces acting at

More information

MECHANICS OF MATERIALS. Analysis of Beams for Bending

MECHANICS OF MATERIALS. Analysis of Beams for Bending MECHANICS OF MATERIALS Analysis of Beams for Bending By NUR FARHAYU ARIFFIN Faculty of Civil Engineering & Earth Resources Chapter Description Expected Outcomes Define the elastic deformation of an axially

More information

Chapter 6: Structural Analysis

Chapter 6: Structural Analysis Chapter 6: Structural Analysis APPLICATIONS Trusses are commonly used to support a roof. For a given truss geometry and load, how can we determine the forces in the truss members and select their sizes?

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

The University of Melbourne Engineering Mechanics

The University of Melbourne Engineering Mechanics The University of Melbourne 436-291 Engineering Mechanics Tutorial Four Poisson s Ratio and Axial Loading Part A (Introductory) 1. (Problem 9-22 from Hibbeler - Statics and Mechanics of Materials) A short

More information

Moment Distribution The Real Explanation, And Why It Works

Moment Distribution The Real Explanation, And Why It Works Moment Distribution The Real Explanation, And Why It Works Professor Louie L. Yaw c Draft date April 15, 003 To develop an explanation of moment distribution and why it works, we first need to develop

More information

2012 MECHANICS OF SOLIDS

2012 MECHANICS OF SOLIDS R10 SET - 1 II B.Tech II Semester, Regular Examinations, April 2012 MECHANICS OF SOLIDS (Com. to ME, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~

More information

Theory of structure I 2006/2013. Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES

Theory of structure I 2006/2013. Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES Introduction A structure refers to a system of connected parts used to support a load. Important examples related to civil engineering include buildings,

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 14 The Slope-Deflection ethod: An Introduction Introduction As pointed out earlier, there are two distinct methods

More information

Supplement: Statically Indeterminate Frames

Supplement: Statically Indeterminate Frames : Statically Indeterminate Frames Approximate Analysis - In this supplement, we consider another approximate method of solving statically indeterminate frames subjected to lateral loads known as the. Like

More information

Chapter 2 Basis for Indeterminate Structures

Chapter 2 Basis for Indeterminate Structures Chapter - Basis for the Analysis of Indeterminate Structures.1 Introduction... 3.1.1 Background... 3.1. Basis of Structural Analysis... 4. Small Displacements... 6..1 Introduction... 6.. Derivation...

More information

MEE224: Engineering Mechanics Lecture 4

MEE224: Engineering Mechanics Lecture 4 Lecture 4: Structural Analysis Part 1: Trusses So far we have only analysed forces and moments on a single rigid body, i.e. bars. Remember that a structure is a formed by and this lecture will investigate

More information

3.032 Problem Set 1 Fall 2007 Due: Start of Lecture,

3.032 Problem Set 1 Fall 2007 Due: Start of Lecture, 3.032 Problem Set 1 Fall 2007 Due: Start of Lecture, 09.14.07 1. The I35 bridge in Minneapolis collapsed in Summer 2007. The failure apparently occurred at a pin in the gusset plate of the truss supporting

More information

CH. 4 BEAMS & COLUMNS

CH. 4 BEAMS & COLUMNS CH. 4 BEAMS & COLUMNS BEAMS Beams Basic theory of bending: internal resisting moment at any point in a beam must equal the bending moments produced by the external loads on the beam Rx = Cc + Tt - If the

More information

SRSD 2093: Engineering Mechanics 2SRRI SECTION 19 ROOM 7, LEVEL 14, MENARA RAZAK

SRSD 2093: Engineering Mechanics 2SRRI SECTION 19 ROOM 7, LEVEL 14, MENARA RAZAK SRSD 2093: Engineering Mechanics 2SRRI SECTION 19 ROOM 7, LEVEL 14, MENARA RAZAK SIMPLE TRUSSES, THE METHOD OF JOINTS, & ZERO-FORCE MEMBERS Today s Objectives: Students will be able to: a) Define a simple

More information

ME Statics. Structures. Chapter 4

ME Statics. Structures. Chapter 4 ME 108 - Statics Structures Chapter 4 Outline Applications Simple truss Method of joints Method of section Germany Tacoma Narrows Bridge http://video.google.com/videoplay?docid=-323172185412005564&q=bruce+lee&pl=true

More information

UNIT II 1. Sketch qualitatively the influence line for shear at D for the beam [M/J-15]

UNIT II 1. Sketch qualitatively the influence line for shear at D for the beam [M/J-15] UNIT II 1. Sketch qualitatively the influence line for shear at D for the beam [M/J-15] 2. Draw the influence line for shear to the left of B for the overhanging beam shown in Fig. Q. No. 4 [M/J-15] 3.

More information

Part IB Paper 2: Structures. Examples Paper 2/3 Elastic structural analysis

Part IB Paper 2: Structures. Examples Paper 2/3 Elastic structural analysis ISSUEB 011 15 NOV 2013 1 Engineering Tripos Part IB SECOND YEAR Part IB Paper 2: Structures Examples Paper 2/3 Elastic structural analysis Straightforward questions are marked by t; Tripos standard questions

More information

Final Exam - Spring

Final Exam - Spring EM121 Final Exam - Spring 2011-2012 Name : Section Number : Record all your answers to the multiple choice problems (1-15) by filling in the appropriate circle. All multiple choice answers will be graded

More information

Name (Print) ME Mechanics of Materials Exam # 1 Date: October 5, 2016 Time: 8:00 10:00 PM

Name (Print) ME Mechanics of Materials Exam # 1 Date: October 5, 2016 Time: 8:00 10:00 PM Name (Print) (Last) (First) Instructions: ME 323 - Mechanics of Materials Exam # 1 Date: October 5, 2016 Time: 8:00 10:00 PM Circle your lecturer s name and your class meeting time. Gonzalez Krousgrill

More information

5. What is the moment of inertia about the x - x axis of the rectangular beam shown?

5. What is the moment of inertia about the x - x axis of the rectangular beam shown? 1 of 5 Continuing Education Course #274 What Every Engineer Should Know About Structures Part D - Bending Strength Of Materials NOTE: The following question was revised on 15 August 2018 1. The moment

More information

Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications

Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications 1 of 6 Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications 1. As a practical matter, determining design loads on structural members involves several

More information

6.6 FRAMES AND MACHINES APPLICATIONS. Frames are commonly used to support various external loads.

6.6 FRAMES AND MACHINES APPLICATIONS. Frames are commonly used to support various external loads. 6.6 FRAMES AND MACHINES APPLICATIONS Frames are commonly used to support various external loads. How is a frame different than a truss? How can you determine the forces at the joints and supports of a

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 19

ENGR-1100 Introduction to Engineering Analysis. Lecture 19 ENGR-1100 Introduction to Engineering Analysis Lecture 19 SIMPLE TRUSSES, THE METHOD OF JOINTS, & ZERO-FORCE MEMBERS Today s Objectives: Students will be able to: In-Class Activities: a) Define a simple

More information

Engineering Mechanics: Statics STRUCTURAL ANALYSIS. by Dr. Ibrahim A. Assakkaf SPRING 2007 ENES 110 Statics

Engineering Mechanics: Statics STRUCTURAL ANALYSIS. by Dr. Ibrahim A. Assakkaf SPRING 2007 ENES 110 Statics CHAPTER Engineering Mechanics: Statics STRUCTURAL ANALYSIS College of Engineering Department of Mechanical Engineering Tenth Edition 6a by Dr. Ibrahim A. Assakkaf SPRING 2007 ENES 110 Statics Department

More information

STATICALLY INDETERMINATE STRUCTURES

STATICALLY INDETERMINATE STRUCTURES STATICALLY INDETERMINATE STRUCTURES INTRODUCTION Generally the trusses are supported on (i) a hinged support and (ii) a roller support. The reaction components of a hinged support are two (in horizontal

More information

ES226 (01) Engineering Mechanics: Statics Spring 2018 Lafayette College Engineering Division

ES226 (01) Engineering Mechanics: Statics Spring 2018 Lafayette College Engineering Division ES226 (01) Engineering Mechanics: Statics Spring 2018 Lafayette College Engineering Division Exam 1 Study Guide Exam 1: Tuesday, February 6, 2018 7:30 to 8:30pm Kirby Room 104 Exam Format: 50 minute time

More information

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method 9210-203 Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method You should have the following for this examination one answer book No additional data is attached

More information

External Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is

External Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is Structure Analysis I Chapter 9 Deflection Energy Method External Work Energy Method When a force F undergoes a displacement dx in the same direction i as the force, the work done is du e = F dx If the

More information

2 marks Questions and Answers

2 marks Questions and Answers 1. Define the term strain energy. A: Strain Energy of the elastic body is defined as the internal work done by the external load in deforming or straining the body. 2. Define the terms: Resilience and

More information

STRUCTURAL ANALYSIS CHAPTER 2. Introduction

STRUCTURAL ANALYSIS CHAPTER 2. Introduction CHAPTER 2 STRUCTURAL ANALYSIS Introduction The primary purpose of structural analysis is to establish the distribution of internal forces and moments over the whole part of a structure and to identify

More information

BEAM A horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam

BEAM A horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam BEM horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam INTERNL FORCES IN BEM Whether or not a beam will break, depend on the internal resistances

More information

Final Examination Study Set 1. (Solutions will be in the Solutions Manual of Textbook)

Final Examination Study Set 1. (Solutions will be in the Solutions Manual of Textbook) Final Examination Study Set 1 (Solutions will be in the Solutions Manual of Textbook) Final Examination Study Set 2 (Solutions will be in the Solutions Manual of Textbook) 3/86 The shaft, lever,

More information

Shear Force V: Positive shear tends to rotate the segment clockwise.

Shear Force V: Positive shear tends to rotate the segment clockwise. INTERNL FORCES IN EM efore a structural element can be designed, it is necessary to determine the internal forces that act within the element. The internal forces for a beam section will consist of a shear

More information

ME 323 Examination #2 April 11, 2018

ME 323 Examination #2 April 11, 2018 ME 2 Eamination #2 April, 2 PROBLEM NO. 25 points ma. A thin-walled pressure vessel is fabricated b welding together two, open-ended stainless-steel vessels along a 6 weld line. The welded vessel has an

More information

ME C85 / CE C30 Midterm 1 Exam Monday October 4, 2010

ME C85 / CE C30 Midterm 1 Exam Monday October 4, 2010 Name: SID: ME C85 / CE C30 Midterm 1 Exam Monday October 4, 2010 Please 1. Read through the test before starting. 2. If you re out of space, write on back side and add a note in your solution referring

More information