Model of Neurons. CS 416 Artificial Intelligence. Early History of Neural Nets. Cybernetics. McCulloch-Pitts Neurons. Hebbian Modification.

Size: px
Start display at page:

Download "Model of Neurons. CS 416 Artificial Intelligence. Early History of Neural Nets. Cybernetics. McCulloch-Pitts Neurons. Hebbian Modification."

Transcription

1 Page 1 Model of Neurons CS 416 Artfcal Intellgence Lecture 18 Neural Nets Chapter 20 Multple nputs/dendrtes (~10,000!!!) Cell body/soma performs computaton Sngle output/axon Computaton s typcally modeled as lnear Early Hstory of Neural Nets Eons ago: Neurons are nvented 1868: J. C. Maxwell studes feedback mechansms 1942: Wener et al. formulate cybernetcs 1943: McCulloch-Ptts Neurons 1949: Hebb ndcates bologcal mechansm 1962: Rosenblatt s Perceptron 1969: Mnsky and Papert decompose perceptrons Cybernetcs he theoretcal study of communcaton and control processes n bologcal, mechancal, and electronc systems, especally the comparson of these processes n bologcal and artfcal systems. ( McCulloch-Ptts Neurons One or two nputs to neuron Inputs are multpled by weghts If product exceeds a threshold, the neuron fres How would we create xor? Hebban Modfcaton When an axon of cell A s near enough to excte cell B and repeatedly or persstently takes part n frng t, some growth process or metabolc change takes place n one or both cells such that A s effcency, as one of the cells frng B, s ncreased from Hebb s 1949 he Organzaton of Behavor, p. 62

2 Each nput s bnary and has assocated wth t a weght Not gates are allowed he sum of the nner product of the nput and weghts s calculated If ths sum exceeds a threshold, the perceptron fres Perceptrons w Error Correcton = εx ( c Θ( x w )) Only updates weghts for non-zero nputs For postve nputs If the perceptron should have fred but dd not, the weght s ncreased If the perceptron fred but should not have, the weght s decreased For negatve nputs Behavor s opposte Example modfed from he Essence of Artfcal Intellgence by Alson Cawsey Intalze all weghts to 0.2 Let epslon = 0.05 and threshold = 0.5 Weghts Frst output s 1 snce >0.5 Should be 0, so weghts wth actve connectons are decremented by 0.05 Old w New w Next output s 0 snce <=0.5 Should be 1, so weghts wth actve connectons are ncremented by 0.05 New weghts work for Alson, Jeff, and Gal Old w New w Output for Smon s 1 ( >0.5) Should be 0, so weghts wth actve connectons are decremented by 0.05 Are we fnshed? Old w New w Page 2

3 Page 3 Class Exercse After processng all the examples agan we get weghts that work for all examples What do these weghts mean? In general, how often should we reprocess? Weghts Fnd w1, w2, and theta such that heta(x1*w1+x2*w 2)= x1 xor x2 Or, prove that t 2 nd Class Exercse 3 rd Class Exercse x3 = ~x1, x4 = ~x2 Fnd w1, w2, w3, w4, and theta such that heta(x1*w1+x2*w 2)= x1 xor x2 Or, prove that t Fnd w1, w2, and f() such that f(x1*w1+x2*w2) = x1 xor x2 Or, prove that t Mult-layered Perceptrons 4 th Class Exercse Input layer, output layer, and hdden layers Elmnates some concerns of Mnsky and Papert Modfcaton rules are more complcated! Fnd w1, w2, w3, w4, w5, theta1, and theta2 such that output s x1 xor x2 Or, prove that t

4 Page 4 Recent Hstory of Neural Nets Lmtatons of Perceptrons 1969 Mnsky & Papert kll neural nets 1974 Werbos descrbes back-propagaton 1982 Hopfeld renvgorates neural nets 1986 Parallel Dstrbuted Processng (Here s some source code: 624/) he report of my death s greatly exaggerated. Mark wan Mnsky & Papert publshed Perceptrons stressng the lmtatons of perceptrons Sngle-layer perceptrons cannot solve problems that are lnearly nseparable (e.g., xor) Most nterestng problems are lnearly nseparable Klls fundng for neural nets for years Back-Propagaton he concept of local error s requred We ll examne our smple 3-layer perceptron wth xor Intal weghts are random hreshold s now sgmodal (functon should have dervatves) Intal weghts: w1=0.90, w2=-0.54 w3=0.21, w4=-0.03 w5 = f ( x w) = 1+ e x w Cypher: It means, buckle your seatbelt, Dorothy, because Kansas s gong bye-bye. Input layer two unt Hdden layer one unt Output layer one unt Output s related to nput by r F w, x = f f x w Performance s defned as P = 1 F ( w r, x ) ( ) ( ( ) w ) ( c ) x, c 2 Error at last layer (hdden output) s defned as: δ 1 = ( F ( w, x ) c ) Error at prevous layer (nput hdden) s defned as: δ = w k o k ( 1 o ) δ k k Change n weght: x, c w = β x, c 2 Where: x, c = o o ( 1 o ) δ 2 I hate math... so lttle room to make small errors. Caleb Schaefer, UGA student

5 Page 5 (0,0) 0 1st example Input to hdden unt s 0, sgmod(0)=0.5 Input to output unt s (0.5)(-0.03)= Sgmod(-0.015)= error= δ So, o = = (0.5)(0.4963)( )( ) = Example s contrbuton to w 4 s Why are we gnorng the other weght changes? (0,1) 1 2nd example h =-0.54 o h = o =(0.3862)(-0.03)+0.78=0.769 o o = δ = = o 4 5 = ( )( )( )( ) = = (1)( )( )( ) = δ = ( 0.03)( )( )( ) = h 2 = (1)( )( )( ) = &c Hopfeld Nets Intal performance = After 100 teratons we have: w=(0.913, , 0.036, , 0.288) Performance = After 100K teratons we have: w=(15.75, , 7.146, , ) Performance = After 1M teratons we have: w=(21.38, , 9.798, , ) Performance = Created neural nets that have contentaddressable memory Can reconstruct a learned sgnal from a fracton of t as an nput Provded a bologcal nterpretaton What s the Purpose of NN? Quck Lst of erms o create an Artfcal Intellgence, or Although not an nvald purpose, many people n the AI communty thnk neural networks do not provde anythng that cannot be obtaned through other technques o study how the human bran works? Ironcally, those studyng neural networks wth ths n mnd are more lkely to contrbute to the prevous purpose Presynaptc Modfcaton: Synapse weghts are only modfed when ncomng (afferent) neuron fres Postsynaptc Modfcaton: Synapse weghts are only modfed when outgong (efferent) neuron fres Error Correcton: Synapse weghts are modfed relatve to an error can be pre- or postsynaptc; requres some form of feedback Self-supervsed: Synapse weghts are modfed relatve to nternal exctaton of neuron can be pre- or postsynaptc

6 Page 6 Self-supervsed Neurons More Self-Supervson One example s a neuron that has the followng synaptc modfcaton rule: w = εy E E ( x w ) y = x w = x w 0 = E[ εx y ] E[ εy w ] [ xx w ] = E[ y w ] [ xx ] w = E[ y ] w Internal exctaton Convergence of weghts Egenvalue equaton! Prevous rule could not learn to dstngush between dfferent classes of data However, f the rule s modfed to: w = εθ( y )( x w ) he neuron wll learn to only respond to a certan class of nputs Dfferent neurons respond to dfferent classes Some Bran Facts Contans ~100,000,000,000 neurons Hppocampus CA3 regon contans ~3,000,000 neurons Each neurons s connected to ~10,000 other neurons ~1,000,000,000,000,000 (10 15 ) connectons! Contrary to a BranPlace.com, ths s consderably less than number of stars n the unverse to Consumes ~20-30% of the body s energy Contans about 2% of the body s mass

Admin NEURAL NETWORKS. Perceptron learning algorithm. Our Nervous System 10/25/16. Assignment 7. Class 11/22. Schedule for the rest of the semester

Admin NEURAL NETWORKS. Perceptron learning algorithm. Our Nervous System 10/25/16. Assignment 7. Class 11/22. Schedule for the rest of the semester 0/25/6 Admn Assgnment 7 Class /22 Schedule for the rest of the semester NEURAL NETWORKS Davd Kauchak CS58 Fall 206 Perceptron learnng algorthm Our Nervous System repeat untl convergence (or for some #

More information

Multi-layer neural networks

Multi-layer neural networks Lecture 0 Mult-layer neural networks Mlos Hauskrecht mlos@cs.ptt.edu 5329 Sennott Square Lnear regresson w Lnear unts f () Logstc regresson T T = w = p( y =, w) = g( w ) w z f () = p ( y = ) w d w d Gradent

More information

Neural Networks & Learning

Neural Networks & Learning Neural Netorks & Learnng. Introducton The basc prelmnares nvolved n the Artfcal Neural Netorks (ANN) are descrbed n secton. An Artfcal Neural Netorks (ANN) s an nformaton-processng paradgm that nspred

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 -Davd Klenfeld - Fall 2005 (revsed Wnter 2011) 1 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys

More information

Multilayer neural networks

Multilayer neural networks Lecture Multlayer neural networks Mlos Hauskrecht mlos@cs.ptt.edu 5329 Sennott Square Mdterm exam Mdterm Monday, March 2, 205 In-class (75 mnutes) closed book materal covered by February 25, 205 Multlayer

More information

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata Multlayer Perceptrons and Informatcs CG: Lecture 6 Mrella Lapata School of Informatcs Unversty of Ednburgh mlap@nf.ed.ac.uk Readng: Kevn Gurney s Introducton to Neural Networks, Chapters 5 6.5 January,

More information

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations Physcs 178/278 - Davd Klenfeld - Wnter 2015 8 Dervaton of Network Rate Equatons from Sngle- Cell Conductance Equatons We consder a network of many neurons, each of whch obeys a set of conductancebased,

More information

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations Physcs 178/278 - Davd Klenfeld - Wnter 2019 8 Dervaton of Network Rate Equatons from Sngle- Cell Conductance Equatons Our goal to derve the form of the abstract quanttes n rate equatons, such as synaptc

More information

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 - Chapter 9R -Davd Klenfeld - Fall 2005 9 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys a set

More information

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS COURSE CODES: FFR 35, FIM 72 GU, PhD Tme: Place: Teachers: Allowed materal: Not allowed: January 2, 28, at 8 3 2 3 SB

More information

1 Input-Output Mappings. 2 Hebbian Failure. 3 Delta Rule Success.

1 Input-Output Mappings. 2 Hebbian Failure. 3 Delta Rule Success. Task Learnng 1 / 27 1 Input-Output Mappngs. 2 Hebban Falure. 3 Delta Rule Success. Input-Output Mappngs 2 / 27 0 1 2 3 4 5 6 7 8 9 Output 3 8 2 7 Input 5 6 0 9 1 4 Make approprate: Response gven stmulus.

More information

Neural Networks. Perceptrons and Backpropagation. Silke Bussen-Heyen. 5th of Novemeber Universität Bremen Fachbereich 3. Neural Networks 1 / 17

Neural Networks. Perceptrons and Backpropagation. Silke Bussen-Heyen. 5th of Novemeber Universität Bremen Fachbereich 3. Neural Networks 1 / 17 Neural Networks Perceptrons and Backpropagaton Slke Bussen-Heyen Unverstät Bremen Fachberech 3 5th of Novemeber 2012 Neural Networks 1 / 17 Contents 1 Introducton 2 Unts 3 Network structure 4 Snglelayer

More information

Unsupervised Learning

Unsupervised Learning Unsupervsed Learnng Kevn Swngler What s Unsupervsed Learnng? Most smply, t can be thought of as learnng to recognse and recall thngs Recognton I ve seen that before Recall I ve seen that before and I can

More information

Introduction to the Introduction to Artificial Neural Network

Introduction to the Introduction to Artificial Neural Network Introducton to the Introducton to Artfcal Neural Netork Vuong Le th Hao Tang s sldes Part of the content of the sldes are from the Internet (possbly th modfcatons). The lecturer does not clam any onershp

More information

Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP) Multlayer Perceptron (MLP) Seungjn Cho Department of Computer Scence and Engneerng Pohang Unversty of Scence and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjn@postech.ac.kr 1 / 20 Outlne

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

Supervised Learning NNs

Supervised Learning NNs EE788 Robot Cognton and Plannng, Prof. J.-H. Km Lecture 6 Supervsed Learnng NNs Robot Intellgence Technolog Lab. From Jang, Sun, Mzutan, Ch.9, Neuro-Fuzz and Soft Computng, Prentce Hall Contents. Introducton.

More information

The Hopfield model. 1 The Hebbian paradigm. Sebastian Seung Lecture 15: November 7, 2002

The Hopfield model. 1 The Hebbian paradigm. Sebastian Seung Lecture 15: November 7, 2002 MIT Department of Bran and Cogntve Scences 9.29J, Sprng 2004 - Introducton to Computatonal euroscence Instructor: Professor Sebastan Seung The Hopfeld model Sebastan Seung 9.64 Lecture 5: ovember 7, 2002

More information

Week 5: Neural Networks

Week 5: Neural Networks Week 5: Neural Networks Instructor: Sergey Levne Neural Networks Summary In the prevous lecture, we saw how we can construct neural networks by extendng logstc regresson. Neural networks consst of multple

More information

Machine Learning CS-527A ANN ANN. ANN Short History ANN. Artificial Neural Networks (ANN) Artificial Neural Networks

Machine Learning CS-527A ANN ANN. ANN Short History ANN. Artificial Neural Networks (ANN) Artificial Neural Networks Machne Learnng CS-57A Artfcal Neural Networks Burchan (bourch-khan) Bayazt http://www.cse.wustl.edu/~bayazt/courses/cs57a/ Malng lst: cs-57a@cse.wustl.edu Artfcal Neural Networks (ANN) Neural network nspred

More information

Neural Networks. Class 22: MLSP, Fall 2016 Instructor: Bhiksha Raj

Neural Networks. Class 22: MLSP, Fall 2016 Instructor: Bhiksha Raj Neural Networs Class 22: MLSP, Fall 2016 Instructor: Bhsha Raj IMPORTANT ADMINSTRIVIA Fnal wee. Project presentatons on 6th 18797/11755 2 Neural Networs are tang over! Neural networs have become one of

More information

Lecture 23: Artificial neural networks

Lecture 23: Artificial neural networks Lecture 23: Artfcal neural networks Broad feld that has developed over the past 20 to 30 years Confluence of statstcal mechancs, appled math, bology and computers Orgnal motvaton: mathematcal modelng of

More information

Evaluation of classifiers MLPs

Evaluation of classifiers MLPs Lecture Evaluaton of classfers MLPs Mlos Hausrecht mlos@cs.ptt.edu 539 Sennott Square Evaluaton For any data set e use to test the model e can buld a confuson matrx: Counts of examples th: class label

More information

Rhythmic activity in neuronal ensembles in the presence of conduction delays

Rhythmic activity in neuronal ensembles in the presence of conduction delays Rhythmc actvty n neuronal ensembles n the presence of conducton delays Crstna Masoller Carme Torrent, Jord García Ojalvo Departament de Fsca Engnyera Nuclear Unverstat Poltecnca de Catalunya, Terrassa,

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Neural networks. Nuno Vasconcelos ECE Department, UCSD

Neural networks. Nuno Vasconcelos ECE Department, UCSD Neural networs Nuno Vasconcelos ECE Department, UCSD Classfcaton a classfcaton problem has two types of varables e.g. X - vector of observatons (features) n the world Y - state (class) of the world x X

More information

8.6 The Complex Number System

8.6 The Complex Number System 8.6 The Complex Number System Earler n the chapter, we mentoned that we cannot have a negatve under a square root, snce the square of any postve or negatve number s always postve. In ths secton we want

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

MATH 567: Mathematical Techniques in Data Science Lab 8

MATH 567: Mathematical Techniques in Data Science Lab 8 1/14 MATH 567: Mathematcal Technques n Data Scence Lab 8 Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 11, 2017 Recall We have: a (2) 1 = f(w (1) 11 x 1 + W (1) 12 x 2 + W

More information

CHAPTER III Neural Networks as Associative Memory

CHAPTER III Neural Networks as Associative Memory CHAPTER III Neural Networs as Assocatve Memory Introducton One of the prmary functons of the bran s assocatve memory. We assocate the faces wth names, letters wth sounds, or we can recognze the people

More information

A New Algorithm for Training Multi-layered Morphological Networks

A New Algorithm for Training Multi-layered Morphological Networks A New Algorthm for Tranng Mult-layered Morphologcal Networs Rcardo Barrón, Humberto Sossa, and Benamín Cruz Centro de Investgacón en Computacón-IPN Av. Juan de Dos Bátz esquna con Mguel Othón de Mendzábal

More information

Modified Bifurcating Neuron with Leaky- Integrate-and-Fire Model

Modified Bifurcating Neuron with Leaky- Integrate-and-Fire Model Modfed Bfurcatng Neuron wth Leaky- Integrate-and-Fre Model Lon Rsnger and Khosrow Kakhah, Ph.D. Department of Computer Scence Texas State Unversty San Marcos, Texas 78666 lr1036@txstate.edu kk02@txstate.edu

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

Gradient Descent Learning and Backpropagation

Gradient Descent Learning and Backpropagation Artfcal Neural Networks (art 2) Chrstan Jacob Gradent Descent Learnng and Backpropagaton CSC 533 Wnter 200 Learnng by Gradent Descent Defnton of the Learnng roble Let us start wth the sple case of lnear

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

PERFORMANCE COMPARISON BETWEEN BACK PROPAGATION, RPE AND MRPE ALGORITHMS FOR TRAINING MLP NETWORKS

PERFORMANCE COMPARISON BETWEEN BACK PROPAGATION, RPE AND MRPE ALGORITHMS FOR TRAINING MLP NETWORKS PERFORMANCE COMPARISON BETWEEN BACK PROPAGATION, RPE AND MRPE ALGORITHMS FOR TRAINING MLP NETWORKS Mohd Yusoff Mashor School of Electrcal and Electronc Engneerng, Unversty Scence Malaysa, Pera Branch Campus,

More information

arxiv: v1 [cs.lg] 17 Jan 2019

arxiv: v1 [cs.lg] 17 Jan 2019 LECTURE NOTES arxv:90.05639v [cs.lg] 7 Jan 209 Artfcal Neural Networks B. MEHLIG Department of Physcs Unversty of Gothenburg Göteborg, Sweden 209 PREFACE These are lecture notes for my course on Artfcal

More information

LECTURE NOTES. Artifical Neural Networks. B. MEHLIG (course home page)

LECTURE NOTES. Artifical Neural Networks. B. MEHLIG (course home page) LECTURE NOTES Artfcal Neural Networks B. MEHLIG (course home page) Department of Physcs Unversty of Gothenburg Göteborg, Sweden 208 PREFACE These are lecture notes for my course on Artfcal Neural Networks

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #16 Scribe: Yannan Wang April 3, 2014

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #16 Scribe: Yannan Wang April 3, 2014 COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #16 Scrbe: Yannan Wang Aprl 3, 014 1 Introducton The goal of our onlne learnng scenaro from last class s C comparng wth best expert and

More information

Internet Engineering. Jacek Mazurkiewicz, PhD Softcomputing. Part 3: Recurrent Artificial Neural Networks Self-Organising Artificial Neural Networks

Internet Engineering. Jacek Mazurkiewicz, PhD Softcomputing. Part 3: Recurrent Artificial Neural Networks Self-Organising Artificial Neural Networks Internet Engneerng Jacek Mazurkewcz, PhD Softcomputng Part 3: Recurrent Artfcal Neural Networks Self-Organsng Artfcal Neural Networks Recurrent Artfcal Neural Networks Feedback sgnals between neurons Dynamc

More information

Cathy Walker March 5, 2010

Cathy Walker March 5, 2010 Cathy Walker March 5, 010 Part : Problem Set 1. What s the level of measurement for the followng varables? a) SAT scores b) Number of tests or quzzes n statstcal course c) Acres of land devoted to corn

More information

Hopfield Training Rules 1 N

Hopfield Training Rules 1 N Hopfeld Tranng Rules To memorse a sngle pattern Suppose e set the eghts thus - = p p here, s the eght beteen nodes & s the number of nodes n the netor p s the value requred for the -th node What ll the

More information

Supporting Information

Supporting Information Supportng Informaton The neural network f n Eq. 1 s gven by: f x l = ReLU W atom x l + b atom, 2 where ReLU s the element-wse rectfed lnear unt, 21.e., ReLUx = max0, x, W atom R d d s the weght matrx to

More information

Positive feedback Derivative feedback Pos. + der. feedback c Stronger. E I e f g Time (s)

Positive feedback Derivative feedback Pos. + der. feedback c Stronger. E I e f g Time (s) Frng rate (Hz) a f nput current Transent nput Step-lke nput Postve feedback Dervatve feedback Pos. + der. feedback b c Stronger d e f g Frng rate (Hz) h j Frng rate (Hz) 5 5 3 4 5 3 4 5 Tme (s) 6 4 5 3

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Design and Optimization of Fuzzy Controller for Inverse Pendulum System Using Genetic Algorithm

Design and Optimization of Fuzzy Controller for Inverse Pendulum System Using Genetic Algorithm Desgn and Optmzaton of Fuzzy Controller for Inverse Pendulum System Usng Genetc Algorthm H. Mehraban A. Ashoor Unversty of Tehran Unversty of Tehran h.mehraban@ece.ut.ac.r a.ashoor@ece.ut.ac.r Abstract:

More information

Introduction to Neural Networks U. Minn. Psy 5038 Spring, "Energy" and attractor networks Graded response Hopfield net. I i.

Introduction to Neural Networks U. Minn. Psy 5038 Spring, Energy and attractor networks Graded response Hopfield net. I i. Introducton to Neural Networks U. Mnn. Psy 538 Sprng, 999 "Energy" and attractor networks Graded response Hopfeld net Graded response Hopfeld network à The model of the basc neural element Hopfeld's 98

More information

On balancing multiple video streams with distributed QoS control in mobile communications

On balancing multiple video streams with distributed QoS control in mobile communications On balancng multple vdeo streams wth dstrbuted QoS control n moble communcatons Arjen van der Schaaf, José Angel Lso Arellano, and R. (Inald) L. Lagendjk TU Delft, Mekelweg 4, 68 CD Delft, The Netherlands

More information

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression 11 MACHINE APPLIED MACHINE LEARNING LEARNING MACHINE LEARNING Gaussan Mture Regresson 22 MACHINE APPLIED MACHINE LEARNING LEARNING Bref summary of last week s lecture 33 MACHINE APPLIED MACHINE LEARNING

More information

Neural Networks. Neural Network Motivation. Why Neural Networks? Comments on Blue Gene. More Comments on Blue Gene

Neural Networks. Neural Network Motivation. Why Neural Networks? Comments on Blue Gene. More Comments on Blue Gene Motvaton for non-lnear Classfers Neural Networs CPS 27 Ron Parr Lnear methods are wea Mae strong assumptons Can only express relatvely smple functons of nputs Comng up wth good features can be hard Why

More information

Logic Learning in Hopfield Networks

Logic Learning in Hopfield Networks Logc Learnng n Hopfeld Networks Saratha Sathasvam School of Mathematcal Scences, Unversty of Scence Malaysa Penang, Malaysa E-mal: saratha@cs.usm.my Wan Ahmad Tauddn Wan Abdullah Department of Physcs,

More information

Frequency dependence of the permittivity

Frequency dependence of the permittivity Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but

More information

Chapter - 2. Distribution System Power Flow Analysis

Chapter - 2. Distribution System Power Flow Analysis Chapter - 2 Dstrbuton System Power Flow Analyss CHAPTER - 2 Radal Dstrbuton System Load Flow 2.1 Introducton Load flow s an mportant tool [66] for analyzng electrcal power system network performance. Load

More information

Chapter Newton s Method

Chapter Newton s Method Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

More information

Online Classification: Perceptron and Winnow

Online Classification: Perceptron and Winnow E0 370 Statstcal Learnng Theory Lecture 18 Nov 8, 011 Onlne Classfcaton: Perceptron and Wnnow Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton In ths lecture we wll start to study the onlne learnng

More information

Department of Electrical & Electronic Engineeing Imperial College London. E4.20 Digital IC Design. Median Filter Project Specification

Department of Electrical & Electronic Engineeing Imperial College London. E4.20 Digital IC Design. Median Filter Project Specification Desgn Project Specfcaton Medan Flter Department of Electrcal & Electronc Engneeng Imperal College London E4.20 Dgtal IC Desgn Medan Flter Project Specfcaton A medan flter s used to remove nose from a sampled

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Linear Correlation. Many research issues are pursued with nonexperimental studies that seek to establish relationships among 2 or more variables

Linear Correlation. Many research issues are pursued with nonexperimental studies that seek to establish relationships among 2 or more variables Lnear Correlaton Many research ssues are pursued wth nonexpermental studes that seek to establsh relatonshps among or more varables E.g., correlates of ntellgence; relaton between SAT and GPA; relaton

More information

Neural Networks. Fundamentals of Neural Networks : Architectures, Algorithms and Applications. L, Fausett, 1994

Neural Networks. Fundamentals of Neural Networks : Architectures, Algorithms and Applications. L, Fausett, 1994 Neural Networks Neural Networks Fundamentals of Neural Networks : Architectures, Algorithms and Applications. L, Fausett, 1994 An Introduction to Neural Networks (nd Ed). Morton, IM, 1995 Neural Networks

More information

Temperature. Chapter Heat Engine

Temperature. Chapter Heat Engine Chapter 3 Temperature In prevous chapters of these notes we ntroduced the Prncple of Maxmum ntropy as a technque for estmatng probablty dstrbutons consstent wth constrants. In Chapter 9 we dscussed the

More information

1 Convex Optimization

1 Convex Optimization Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

More information

AGC Introduction

AGC Introduction . Introducton AGC 3 The prmary controller response to a load/generaton mbalance results n generaton adjustment so as to mantan load/generaton balance. However, due to droop, t also results n a non-zero

More information

Outline. Communication. Bellman Ford Algorithm. Bellman Ford Example. Bellman Ford Shortest Path [1]

Outline. Communication. Bellman Ford Algorithm. Bellman Ford Example. Bellman Ford Shortest Path [1] DYNAMIC SHORTEST PATH SEARCH AND SYNCHRONIZED TASK SWITCHING Jay Wagenpfel, Adran Trachte 2 Outlne Shortest Communcaton Path Searchng Bellmann Ford algorthm Algorthm for dynamc case Modfcatons to our algorthm

More information

2 Laminar Structure of Cortex. 4 Area Structure of Cortex

2 Laminar Structure of Cortex. 4 Area Structure of Cortex Networks!! Lamnar Structure of Cortex. Bology: The cortex. Exctaton: Undrectonal (transformatons) Local vs. dstrbuted representatons Bdrectonal (pattern completon, amplfcaton). Inhbton: Controllng bdrectonal

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

CS294A Lecture notes. Andrew Ng

CS294A Lecture notes. Andrew Ng CS294A Lecture notes Andrew Ng Sparse autoencoder 1 Introducton Supervsed learnng s one of the most powerful tools of AI, and has led to automatc zp code recognton, speech recognton, self-drvng cars, and

More information

CS-433: Simulation and Modeling Modeling and Probability Review

CS-433: Simulation and Modeling Modeling and Probability Review CS-433: Smulaton and Modelng Modelng and Probablty Revew Exercse 1. (Probablty of Smple Events) Exercse 1.1 The owner of a camera shop receves a shpment of fve cameras from a camera manufacturer. Unknown

More information

Wavelet chaotic neural networks and their application to continuous function optimization

Wavelet chaotic neural networks and their application to continuous function optimization Vol., No.3, 04-09 (009) do:0.436/ns.009.307 Natural Scence Wavelet chaotc neural networks and ther applcaton to contnuous functon optmzaton Ja-Ha Zhang, Yao-Qun Xu College of Electrcal and Automatc Engneerng,

More information

HOPFIELD NETWORKS 9.1 INTRODUCTION

HOPFIELD NETWORKS 9.1 INTRODUCTION UNI 9 HOPFIELD NEWORKS Structure Page No. 9. Introducton 9 Objectves 9. Related Defntons 0 9. Hopfeld Networs 9.4 Structure of Hopfeld Networs 5 9.5 he Functonalty of Hopfeld Networs 6 9.6 Storage Capacty

More information

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions Exercses from Ross, 3, : Math 26: Probablty MWF pm, Gasson 30 Homework Selected Solutons 3, p. 05 Problems 76, 86 3, p. 06 Theoretcal exercses 3, 6, p. 63 Problems 5, 0, 20, p. 69 Theoretcal exercses 2,

More information

Solving Nonlinear Differential Equations by a Neural Network Method

Solving Nonlinear Differential Equations by a Neural Network Method Solvng Nonlnear Dfferental Equatons by a Neural Network Method Luce P. Aarts and Peter Van der Veer Delft Unversty of Technology, Faculty of Cvlengneerng and Geoscences, Secton of Cvlengneerng Informatcs,

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George

More information

Pattern Classification

Pattern Classification Pattern Classfcaton All materals n these sldes ere taken from Pattern Classfcaton (nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wley & Sons, 000 th the permsson of the authors and the publsher

More information

Multigradient for Neural Networks for Equalizers 1

Multigradient for Neural Networks for Equalizers 1 Multgradent for Neural Netorks for Equalzers 1 Chulhee ee, Jnook Go and Heeyoung Km Department of Electrcal and Electronc Engneerng Yonse Unversty 134 Shnchon-Dong, Seodaemun-Ku, Seoul 1-749, Korea ABSTRACT

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

Statistical Foundations of Pattern Recognition

Statistical Foundations of Pattern Recognition Statstcal Foundatons of Pattern Recognton Learnng Objectves Bayes Theorem Decson-mang Confdence factors Dscrmnants The connecton to neural nets Statstcal Foundatons of Pattern Recognton NDE measurement

More information

Applied Nuclear Physics (Fall 2004) Lecture 23 (12/3/04) Nuclear Reactions: Energetics and Compound Nucleus

Applied Nuclear Physics (Fall 2004) Lecture 23 (12/3/04) Nuclear Reactions: Energetics and Compound Nucleus .101 Appled Nuclear Physcs (Fall 004) Lecture 3 (1/3/04) Nuclear Reactons: Energetcs and Compound Nucleus References: W. E. Meyerhof, Elements of Nuclear Physcs (McGraw-Hll, New York, 1967), Chap 5. Among

More information

The Cortex. Networks. Laminar Structure of Cortex. Chapter 3, O Reilly & Munakata.

The Cortex. Networks. Laminar Structure of Cortex. Chapter 3, O Reilly & Munakata. Networks The Cortex Chapter, O Relly & Munakata. Bology of networks: The cortex Exctaton: Undrectonal (transformatons) Local vs. dstrbuted representatons Bdrectonal (pattern completon, amplfcaton) Inhbton:

More information

Uncertainty in measurements of power and energy on power networks

Uncertainty in measurements of power and energy on power networks Uncertanty n measurements of power and energy on power networks E. Manov, N. Kolev Department of Measurement and Instrumentaton, Techncal Unversty Sofa, bul. Klment Ohrdsk No8, bl., 000 Sofa, Bulgara Tel./fax:

More information

PHYS 450 Spring semester Lecture 02: Dealing with Experimental Uncertainties. Ron Reifenberger Birck Nanotechnology Center Purdue University

PHYS 450 Spring semester Lecture 02: Dealing with Experimental Uncertainties. Ron Reifenberger Birck Nanotechnology Center Purdue University PHYS 45 Sprng semester 7 Lecture : Dealng wth Expermental Uncertantes Ron Refenberger Brck anotechnology Center Purdue Unversty Lecture Introductory Comments Expermental errors (really expermental uncertantes)

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

Digital Signal Processing

Digital Signal Processing Dgtal Sgnal Processng Dscrete-tme System Analyss Manar Mohasen Offce: F8 Emal: manar.subh@ut.ac.r School of IT Engneerng Revew of Precedent Class Contnuous Sgnal The value of the sgnal s avalable over

More information

Boostrapaggregating (Bagging)

Boostrapaggregating (Bagging) Boostrapaggregatng (Baggng) An ensemble meta-algorthm desgned to mprove the stablty and accuracy of machne learnng algorthms Can be used n both regresson and classfcaton Reduces varance and helps to avod

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Frank L. H. Wolfs Department of Physcs and Astronomy, Unversty of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Course Informaton: Lab report # 3. Exam # 2. Mult-Partcle

More information

Lecture 5 Decoding Binary BCH Codes

Lecture 5 Decoding Binary BCH Codes Lecture 5 Decodng Bnary BCH Codes In ths class, we wll ntroduce dfferent methods for decodng BCH codes 51 Decodng the [15, 7, 5] 2 -BCH Code Consder the [15, 7, 5] 2 -code C we ntroduced n the last lecture

More information

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS) Some Comments on Acceleratng Convergence of Iteratve Sequences Usng Drect Inverson of the Iteratve Subspace (DIIS) C. Davd Sherrll School of Chemstry and Bochemstry Georga Insttute of Technology May 1998

More information

6.3.7 Example with Runga Kutta 4 th order method

6.3.7 Example with Runga Kutta 4 th order method 6.3.7 Example wth Runga Kutta 4 th order method Agan, as an example, 3 machne, 9 bus system shown n Fg. 6.4 s agan consdered. Intally, the dampng of the generators are neglected (.e. d = 0 for = 1, 2,

More information

SIMPLE LINEAR REGRESSION

SIMPLE LINEAR REGRESSION Smple Lnear Regresson and Correlaton Introducton Prevousl, our attenton has been focused on one varable whch we desgnated b x. Frequentl, t s desrable to learn somethng about the relatonshp between two

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations Quantum Physcs 量 理 Robert Esberg Second edton CH 09 Multelectron atoms ground states and x-ray exctatons 9-01 By gong through the procedure ndcated n the text, develop the tme-ndependent Schroednger equaton

More information

November 5, 2002 SE 180: Earthquake Engineering SE 180. Final Project

November 5, 2002 SE 180: Earthquake Engineering SE 180. Final Project SE 8 Fnal Project Story Shear Frame u m Gven: u m L L m L L EI ω ω Solve for m Story Bendng Beam u u m L m L Gven: m L L EI ω ω Solve for m 3 3 Story Shear Frame u 3 m 3 Gven: L 3 m m L L L 3 EI ω ω ω

More information

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as:

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as: 1 Problem set #1 1.1. A one-band model on a square lattce Fg. 1 Consder a square lattce wth only nearest-neghbor hoppngs (as shown n the fgure above): H t, j a a j (1.1) where,j stands for nearest neghbors

More information