A New Algorithm for Training Multi-layered Morphological Networks

Size: px
Start display at page:

Download "A New Algorithm for Training Multi-layered Morphological Networks"

Transcription

1 A New Algorthm for Tranng Mult-layered Morphologcal Networs Rcardo Barrón, Humberto Sossa, and Benamín Cruz Centro de Investgacón en Computacón-IPN Av. Juan de Dos Bátz esquna con Mguel Othón de Mendzábal Mexco Cty, 07738, Mexco Abstract. In ths wor we present an algorthm for tranng an assocatve memory based on the so-called mult-layered morphologcal perceptron wth maxmal support neghborhoods. We compare the proposal wth the orgnal one by performng some experments wth real mages. We show the superorty of the new one. We also gve formal condtons for correct classfcaton. We show that the proposal can be appled to the case of gray-level mages and not only bnary mages. Keywords: Assocatve memores, Morphologcal neural networs, maxmal support neghborhoods. 1 Introducton Neural networs have shown to be an excellent alternatve to face problems where t s dffcult to fnd no algorthmc soluton. Based on the functonng of the human nervous system, lots of researchers have proposed dfferent neural processng models. Probably the best now model s the Bac-propagaton Neural Networ [1], [2] and [3]. The study of the nternal structure of neural cells has revealed that all cells have the same smple structure, ndependently of ther sze and shape. Informaton from a cell voyages through the sgnals that neurons send to other neurons through ther dendrtes. It s beleved that the cellular body adds up the receved sgnals; when enough nputs are avalable a dscharge s produced. Intally, ths dscharge occurs n cellular body, t then propagates between the axon untl the synapses that sends a new sgnal to the other neurons. An artfcal neural networ can be seen as a non-lnear mappng between two pattern spaces: the nput pattern set and the output pattern set. Normally the nternal parameters of ths mappng are determned by means of a tranng process and are denoted as synaptc weghts. In the decade of the 50 s, Rosenblatt ([2], [3]) ntroduces the well-nown perceptron, whch s the classcal model that has been used for most of the actual developments. However, n the 90 s, Rtter et al., ([4], [5], [6]) and Sussner [12] presented a new nd of neural networ model, the so-called morphologcal neural L. Rueda, D. Mery, and J. Kttler (Eds.): CIARP 2007, LNCS 4756, pp , Sprnger-Verlag Berln Hedelberg 2007

2 A New Algorthm for Tranng Mult-layered Morphologcal Networs 547 networ. Here, the classcal operatons of multplcaton and addton are replaced by summatons and max (or mn), respectvely. One dfference between ths model and the classcal models s the computatonal cost when computng the value of -th neuron at tme t + 1 that n ths model s less. In the last years t has been found that, apparently the processng of nformaton not only occurs at the cellular body but also at the dendrtes [7]. Ths affrmaton could gve an explanaton of the great effcency of our nervous system, snce processng of the nformaton happens practcally along the communcaton channel. The materal ust presented along wth the morphologcal paradgm s the departure pont of ths paper. 2 Assocatve Memory Based on the Morphologcal Perceptron In [7] t s presented how a morphologcal perceptron allows classfyng any compact set n the pattern s doman, whch can be used to buld an assocatve memory able to recall patterns affected by mxed nose. The dea s to buld a three layer assocatve memory (an of nput, one hdden, and of output) as can be apprecated n Fgure 1. Fg. 1. Assocatve memory of three layers based on the morphologcal perceptron Frst layer wors as regster of the number of elements of the nput pattern. Second one (the hdden layer) s composed of morphologcal perceptrons [7], one for each class, whle the output layer s formed by perceptrons based on the max operator wth a lnear gatng functon, one perceptron for each component of the output patterns. The perceptrons of the hdden layer are morphologcal perceptrons wth one nput dendrte. The classfed regon s thus a hyper-rectangle n R n, whose goal s to classfy the correspondng pattern nsde the on-regon. For the better functonng of ths model, the perceptron outputs a zero n ts on-regon and n ts complements. The output of a perceptron at the output layer s gven as K ϕ ( ) (1) z = y + x = 1 where ϕ x s the output of the -th perceptron of the hdden layer. Thus, when tang the max of the y s the -th component of the -th output pattern, and ( )

3 548 R. Barrón, H. Sossa, and B. Cruz ϕ that output a unqualfy pattern outputs of the perceptrons y as possble output of the assocatve memory. To tran ths assocatve memory, we have smply to defne the supports of each ey pattern. In ths case the on regons of the correspondng patterns represent these supports. From [3], durng tranng, all supports of the memory are bult as hyper-cubes of sde equal to α, where α s obtaned as where (, ) d x x s defned as and ( x ) 1,, α 1 mn d x, x 2 < ( ) < (2) (, ) max{ } = l l d x x x x = = m s the set of ey patterns. l 1, n To avod collsons at the moment of classfcaton t s necessary that the supports are dsont two by two. Ths s not demonstrated n [7]. Next a bref proof that ths happens s gven. Proposton 1. Let M a mult-layered assocatve memory. If each ey pattern a support S { x: d( x, x ) α} (3) x has = <, wth α as defned n equaton (2), then t hold S S =. that, Proof. Let us suppose that such that S S, ths means that there s a x such that d( x, x ) < α and d( x, x ) α nequalty we get: d( x, x ) d( x, x ) d( x, x ) ( α α 2α) d( x, x ) d( x, x ) < 2α, or n other words α <. When summng and usng trangles + + =, then 2 <!!, whch s a contradcton, thus the proposton hold. One of the drawbacs of ths method to construct the supports s that f two of them are of them too close, the (radus) of the neghborhood s supports reduce drastcally. In [7] t s proposed another method to ncrease the neghborhoods of the supports by means of the ernels method. Accordng to [7], wth ths the range of permssble nose s ncreased. However, ths method maes expensve the computatonal cost and besdes t mposes restrctons over the patterns very dffcult to get. 3 Proposed Tranng Algorthm In the content of ths wor, let us suppose that a pattern s represented n terms of n obect features; then at each coordnated axs we can compute the varaton obtaned

4 A New Algorthm for Tranng Mult-layered Morphologcal Networs 549 per feature by orderng all components. By computng the average of varablty per pattern t s possble to defne a threshold. For practcal purposes, ths threshold allows to consder f two patterns can be consdered to be the same from the pont of vew of one of ther components. Ths way we avod havng very tny supports wth respect to the coordnated axs. Ths way the drawbac of the algorthm descrbed n last secton s surpassed. Fg. 2. Flowchart to get average varaton threshold The algorthm to fnd the average varaton threshold by axs s observed n Fg. 2. In ths case, X s a matrx of n m. At -th column t s -th pattern, whle at - th lne are the m features of the -th axs of each pattern. In U t s the average varaton threshold for the -th axs. The ey pont for the tranng of the multlayered morphologcal perceptron conssts on constructng the supports for each pattern. In general these supports must be dsont two by two to avod that two patterns be assgned to the same output. Ths s fulflled n the proposed algorthm thans to the followng: Proposton 2. Let Ω and Ω two arbtrary supports correspondng to dfferent patterns n R n, bult accordng to average varaton threshold, then t holds that Ω=Ω or Ω Ω =. [13]. Proof. Let x and x the correspondng patterns to supports Ω and Ω, respectvely, then we have two cases: a. If t holds that x x < U, = 1, n, wth U s the average varaton. If ths holds then Ω=Ω. such that x x > U would mply that at th b. If = 1,, n coordnate, the support does not concde and on the axs they are dsont, thus they are dsont n R n.

5 550 R. Barrón, H. Sossa, and B. Cruz Evdently, when the patterns are too close, the neghborhoods would present occlusons. In these cases Ω=Ω for, one varant of ths algorthm would be to consder that Ω Ω, but that each neghborhood s centered at ts respectve ey pattern. The advantage of ths enhancement s that neghborhoods allowng more nose to be added to the patterns wll be enlarged. 4 Numercal Examples Example No. 1. Let the followng set of ey patterns n R n : x =, x =, x =, x =, x =, x = a) Soluton obtaned by means of algorthm proposed n [7]: By applyng the algorthm proposed n [7], accordng to equaton (2) α = 0.5. Fgure 3 shows the neghborhoods obtaned when usng ths value of α. (4) Fg. 3. Neghborhoods obtaned when algorthm proposed n [7] s used b) Soluton obtaned by means of algorthm proposed n ths paper (frst varant): When usng the algorthm to get the maxmal support neghborhoods, by applyng the flowchart shown n Fgure 3, we get the threshold value U as: U = 1.5 The neghborhoods obtaned by usng ths threshold value are shown n Fgure 4. The dfferences can be mmedately apprecated. In ths second case the range on nose for each pattern, as can be apprecated, s bgger. (5)

6 A New Algorthm for Tranng Mult-layered Morphologcal Networs 551 Fg. 4. Neghborhoods obtaned when usng frst varant of the proposed algorthm c) Soluton obtaned by means of algorthm proposed n ths paper (second varant): We apply the same procedure used by the frst varant, but n ths case the neghborhoods are centered at the correspondng ey patterns. The threshold s the same gven by equaton (5). Fg. 5. Neghborhoods obtaned when usng second varant of the proposed algorthm

7 552 R. Barrón, H. Sossa, and B. Cruz The neghborhoods obtaned are shown n Fg. 5. Due to the neghborhoods are now centered at ther respectve ey patterns, n ths case the support for nose s bgger. Note also the occlusons between classes that do not occur n the frst varant. In the followng secton we show how the proposal descrbed n ths paper can be used not only to recall bnary patterns but also gray-level patterns such mages. 5 Experments wth Real Patterns For ths experment we used the mages shown n Fg. 6. These mages are gray-level of elements. They were perturbed wth nose from 5% to 15%, n steps of 5%. Fg. 6. Orgnal mages of experments The nput ey patterns where formed by descrbng each mage by means of nown Hu nvarants ([10], [11]). Fgures 7 to 9 show graphcally the results obtaned when usng the algorthm proposed n [7], and the algorthm proposed n ths paper to the mages s shown n Fgs. 10 to 12. From all of these fgures we can observe that when addng, even small quanttes of nose to the patterns, the orgnal algorthm proposed n [7] fals to recall practcally of the patterns, whle the proposal, although wth modest percentage, several of the desred patterns are correctly recalled. Fg. 7. Images altered wt 5% of nose. Images recalled usng [7].

8 A New Algorthm for Tranng Mult-layered Morphologcal Networs Fg. 8. Images altered wt 10% of nose. Images recalled usng [7]. Fg. 9. Images altered wt 15% of nose. Images recalled usng [7]. Fg. 10. Images altered wt 5% of nose. Images recalled usng the proposal. 553

9 554 R. Barrón, H. Sossa, and B. Cruz Fg. 11. Images altered wt 10% of nose. Images recalled usng the proposal. Fg. 12. Images altered wt 15% of nose. Images recalled usng the proposal 6 Conclusons In ths paper we have presented an algorthm to tran the mult-layered morphologcal perceptron that allows to buld more effcent support neghborhoods, snce the pont of vew of pattern recall, from the set of ey pattern patterns of the tranng set of an assocatve memory n both ts auto-assocatve or hetero-assocatve way of operaton. By several experments wth real patterns, we have shown that the proposal can be used to recall gray-level mages and not only bnary mages. We show the superorty of the new one. Acnowledgements. Ths wor was economcally supported by CIC-IPN, COFFAA- IPN and CONACYT under grant and SIP under grants and , respectvely.

10 A New Algorthm for Tranng Mult-layered Morphologcal Networs 555 References [1] Bshop, C.: Neural Networs for Pattern Recognton. Oxford Unversty Press, Oxford England (1995) [2] Rossenblatt, F.: The perceptron: a probablstc model for nformaton storage and organzaton n the bran. Psychologcal revew 65, (1958) [3] Rossenblatt, F.: Prncples of Neurodnamcs: Perceptrons and the theory of bran mechansm, Spartans Boos, Washngton D.C (1962) [4] Rtter, G.X., et al.: An ntroducton to morphologcal Neural Networs. In: Proceedngs of the 13Internatonal Conference on Pattern Recognton, pp (1996) [5] Rtter, G.X., et al.: Morphologcal assocatve memores. IEEE Transactons on Neural Networs C-9, (1998) [6] Rtter, G.X.: Morphologcal Perceptrons. ISAS 97, Intellgent Systems and Semotcs, Gathersburg, Maryland (1997) [7] Rtter, G.X.: A new auto-assocatve memory based on lattce algebra. In: Proc. 9CIARP 2004, La Havana, Cuba pp (2004) [8] Kshan, M., et al.: Elements of Artfcal Neural Networs. The MIT Press, Cambrdge, Massachusetts, London, England (1997) [9] Pessoa, L.F.C., et al.: Morphologcal/Ran Neural Networs and ther adaptatve optmal mage processng. IEEE Internatonal Conference on Acoustc, Speech, and Sgnal Processng 6, (1996) [10] Hu, M.K.: Pattern recognton by moments nvarants. Proceedng of the IRE 49, 1428 (1961) [11] Hu, M.K.: Vsual pattern recognton by moments nvarants, IRE Transactons on Informaton Theory, (1962) [12] Sussner, P.: Morphologcal Perceptron Learnng. In: Proceedngs of the 1998 Internatonal Symposum on Intellgent Systems and Semotcs, pp , Gathersburg, Maryland (1998) [13] Barron, R., et al.: New Improved Algorthm for the tranng of a Morphologcal Assocatve Memory, Research n Computer Scence. Specal Issue: Neural Networs and Assocatve Memores 21, (2006)

Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP) Multlayer Perceptron (MLP) Seungjn Cho Department of Computer Scence and Engneerng Pohang Unversty of Scence and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjn@postech.ac.kr 1 / 20 Outlne

More information

Solving Nonlinear Differential Equations by a Neural Network Method

Solving Nonlinear Differential Equations by a Neural Network Method Solvng Nonlnear Dfferental Equatons by a Neural Network Method Luce P. Aarts and Peter Van der Veer Delft Unversty of Technology, Faculty of Cvlengneerng and Geoscences, Secton of Cvlengneerng Informatcs,

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

Neural Networks & Learning

Neural Networks & Learning Neural Netorks & Learnng. Introducton The basc prelmnares nvolved n the Artfcal Neural Netorks (ANN) are descrbed n secton. An Artfcal Neural Netorks (ANN) s an nformaton-processng paradgm that nspred

More information

Week 5: Neural Networks

Week 5: Neural Networks Week 5: Neural Networks Instructor: Sergey Levne Neural Networks Summary In the prevous lecture, we saw how we can construct neural networks by extendng logstc regresson. Neural networks consst of multple

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

The Study of Teaching-learning-based Optimization Algorithm

The Study of Teaching-learning-based Optimization Algorithm Advanced Scence and Technology Letters Vol. (AST 06), pp.05- http://dx.do.org/0.57/astl.06. The Study of Teachng-learnng-based Optmzaton Algorthm u Sun, Yan fu, Lele Kong, Haolang Q,, Helongang Insttute

More information

Admin NEURAL NETWORKS. Perceptron learning algorithm. Our Nervous System 10/25/16. Assignment 7. Class 11/22. Schedule for the rest of the semester

Admin NEURAL NETWORKS. Perceptron learning algorithm. Our Nervous System 10/25/16. Assignment 7. Class 11/22. Schedule for the rest of the semester 0/25/6 Admn Assgnment 7 Class /22 Schedule for the rest of the semester NEURAL NETWORKS Davd Kauchak CS58 Fall 206 Perceptron learnng algorthm Our Nervous System repeat untl convergence (or for some #

More information

A Bayes Algorithm for the Multitask Pattern Recognition Problem Direct Approach

A Bayes Algorithm for the Multitask Pattern Recognition Problem Direct Approach A Bayes Algorthm for the Multtask Pattern Recognton Problem Drect Approach Edward Puchala Wroclaw Unversty of Technology, Char of Systems and Computer etworks, Wybrzeze Wyspanskego 7, 50-370 Wroclaw, Poland

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing Advanced Scence and Technology Letters, pp.164-168 http://dx.do.org/10.14257/astl.2013 Pop-Clc Nose Detecton Usng Inter-Frame Correlaton for Improved Portable Audtory Sensng Dong Yun Lee, Kwang Myung Jeon,

More information

Multigradient for Neural Networks for Equalizers 1

Multigradient for Neural Networks for Equalizers 1 Multgradent for Neural Netorks for Equalzers 1 Chulhee ee, Jnook Go and Heeyoung Km Department of Electrcal and Electronc Engneerng Yonse Unversty 134 Shnchon-Dong, Seodaemun-Ku, Seoul 1-749, Korea ABSTRACT

More information

Neural networks. Nuno Vasconcelos ECE Department, UCSD

Neural networks. Nuno Vasconcelos ECE Department, UCSD Neural networs Nuno Vasconcelos ECE Department, UCSD Classfcaton a classfcaton problem has two types of varables e.g. X - vector of observatons (features) n the world Y - state (class) of the world x X

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Evaluation of classifiers MLPs

Evaluation of classifiers MLPs Lecture Evaluaton of classfers MLPs Mlos Hausrecht mlos@cs.ptt.edu 539 Sennott Square Evaluaton For any data set e use to test the model e can buld a confuson matrx: Counts of examples th: class label

More information

ECE559VV Project Report

ECE559VV Project Report ECE559VV Project Report (Supplementary Notes Loc Xuan Bu I. MAX SUM-RATE SCHEDULING: THE UPLINK CASE We have seen (n the presentaton that, for downlnk (broadcast channels, the strategy maxmzng the sum-rate

More information

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION CAPTER- INFORMATION MEASURE OF FUZZY MATRI AN FUZZY BINARY RELATION Introducton The basc concept of the fuzz matr theor s ver smple and can be appled to socal and natural stuatons A branch of fuzz matr

More information

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS COURSE CODES: FFR 35, FIM 72 GU, PhD Tme: Place: Teachers: Allowed materal: Not allowed: January 2, 28, at 8 3 2 3 SB

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 14 GENERAL PERTURBATION THEORY CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

On the correction of the h-index for career length

On the correction of the h-index for career length 1 On the correcton of the h-ndex for career length by L. Egghe Unverstet Hasselt (UHasselt), Campus Depenbeek, Agoralaan, B-3590 Depenbeek, Belgum 1 and Unverstet Antwerpen (UA), IBW, Stadscampus, Venusstraat

More information

Non-linear Canonical Correlation Analysis Using a RBF Network

Non-linear Canonical Correlation Analysis Using a RBF Network ESANN' proceedngs - European Smposum on Artfcal Neural Networks Bruges (Belgum), 4-6 Aprl, d-sde publ., ISBN -97--, pp. 57-5 Non-lnear Canoncal Correlaton Analss Usng a RBF Network Sukhbnder Kumar, Elane

More information

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata Multlayer Perceptrons and Informatcs CG: Lecture 6 Mrella Lapata School of Informatcs Unversty of Ednburgh mlap@nf.ed.ac.uk Readng: Kevn Gurney s Introducton to Neural Networks, Chapters 5 6.5 January,

More information

Multilayer neural networks

Multilayer neural networks Lecture Multlayer neural networks Mlos Hauskrecht mlos@cs.ptt.edu 5329 Sennott Square Mdterm exam Mdterm Monday, March 2, 205 In-class (75 mnutes) closed book materal covered by February 25, 205 Multlayer

More information

CHAPTER III Neural Networks as Associative Memory

CHAPTER III Neural Networks as Associative Memory CHAPTER III Neural Networs as Assocatve Memory Introducton One of the prmary functons of the bran s assocatve memory. We assocate the faces wth names, letters wth sounds, or we can recognze the people

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

Natural Language Processing and Information Retrieval

Natural Language Processing and Information Retrieval Natural Language Processng and Informaton Retreval Support Vector Machnes Alessandro Moschtt Department of nformaton and communcaton technology Unversty of Trento Emal: moschtt@ds.untn.t Summary Support

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Report on Image warping

Report on Image warping Report on Image warpng Xuan Ne, Dec. 20, 2004 Ths document summarzed the algorthms of our mage warpng soluton for further study, and there s a detaled descrpton about the mplementaton of these algorthms.

More information

Image Segmentation and Compression using Neural Networks

Image Segmentation and Compression using Neural Networks Image Segmentaton and Compresson usng Neural Networks Constantno Carlos Reyes-Aldasoro, Ana Laura Aldeco Departamento de Sstemas Dgtales Insttuto Tecnológco Autónomo de Méxco Río Hondo No. 1, Tzapán San

More information

CONTRAST ENHANCEMENT FOR MIMIMUM MEAN BRIGHTNESS ERROR FROM HISTOGRAM PARTITIONING INTRODUCTION

CONTRAST ENHANCEMENT FOR MIMIMUM MEAN BRIGHTNESS ERROR FROM HISTOGRAM PARTITIONING INTRODUCTION CONTRAST ENHANCEMENT FOR MIMIMUM MEAN BRIGHTNESS ERROR FROM HISTOGRAM PARTITIONING N. Phanthuna 1,2, F. Cheevasuvt 2 and S. Chtwong 2 1 Department of Electrcal Engneerng, Faculty of Engneerng Rajamangala

More information

On the Multicriteria Integer Network Flow Problem

On the Multicriteria Integer Network Flow Problem BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 5, No 2 Sofa 2005 On the Multcrtera Integer Network Flow Problem Vassl Vasslev, Marana Nkolova, Maryana Vassleva Insttute of

More information

Microwave Diversity Imaging Compression Using Bioinspired

Microwave Diversity Imaging Compression Using Bioinspired Mcrowave Dversty Imagng Compresson Usng Bonspred Neural Networks Youwe Yuan 1, Yong L 1, Wele Xu 1, Janghong Yu * 1 School of Computer Scence and Technology, Hangzhou Danz Unversty, Hangzhou, Zhejang,

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

A quantum-statistical-mechanical extension of Gaussian mixture model

A quantum-statistical-mechanical extension of Gaussian mixture model A quantum-statstcal-mechancal extenson of Gaussan mxture model Kazuyuk Tanaka, and Koj Tsuda 2 Graduate School of Informaton Scences, Tohoku Unversty, 6-3-09 Aramak-aza-aoba, Aoba-ku, Senda 980-8579, Japan

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Numerical Algorithms for Visual Computing 2008/09 Example Solutions for Assignment 4. Problem 1 (Shift invariance of the Laplace operator)

Numerical Algorithms for Visual Computing 2008/09 Example Solutions for Assignment 4. Problem 1 (Shift invariance of the Laplace operator) Numercal Algorthms for Vsual Computng 008/09 Example Solutons for Assgnment 4 Problem (Shft nvarance of the Laplace operator The Laplace equaton s shft nvarant,.e., nvarant under translatons x x + a, y

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Semi-supervised Classification with Active Query Selection

Semi-supervised Classification with Active Query Selection Sem-supervsed Classfcaton wth Actve Query Selecton Jao Wang and Swe Luo School of Computer and Informaton Technology, Beng Jaotong Unversty, Beng 00044, Chna Wangjao088@63.com Abstract. Labeled samples

More information

Neural Networks. Perceptrons and Backpropagation. Silke Bussen-Heyen. 5th of Novemeber Universität Bremen Fachbereich 3. Neural Networks 1 / 17

Neural Networks. Perceptrons and Backpropagation. Silke Bussen-Heyen. 5th of Novemeber Universität Bremen Fachbereich 3. Neural Networks 1 / 17 Neural Networks Perceptrons and Backpropagaton Slke Bussen-Heyen Unverstät Bremen Fachberech 3 5th of Novemeber 2012 Neural Networks 1 / 17 Contents 1 Introducton 2 Unts 3 Network structure 4 Snglelayer

More information

Speeding up Computation of Scalar Multiplication in Elliptic Curve Cryptosystem

Speeding up Computation of Scalar Multiplication in Elliptic Curve Cryptosystem H.K. Pathak et. al. / (IJCSE) Internatonal Journal on Computer Scence and Engneerng Speedng up Computaton of Scalar Multplcaton n Ellptc Curve Cryptosystem H. K. Pathak Manju Sangh S.o.S n Computer scence

More information

Kernels in Support Vector Machines. Based on lectures of Martin Law, University of Michigan

Kernels in Support Vector Machines. Based on lectures of Martin Law, University of Michigan Kernels n Support Vector Machnes Based on lectures of Martn Law, Unversty of Mchgan Non Lnear separable problems AND OR NOT() The XOR problem cannot be solved wth a perceptron. XOR Per Lug Martell - Systems

More information

The Synchronous 8th-Order Differential Attack on 12 Rounds of the Block Cipher HyRAL

The Synchronous 8th-Order Differential Attack on 12 Rounds of the Block Cipher HyRAL The Synchronous 8th-Order Dfferental Attack on 12 Rounds of the Block Cpher HyRAL Yasutaka Igarash, Sej Fukushma, and Tomohro Hachno Kagoshma Unversty, Kagoshma, Japan Emal: {garash, fukushma, hachno}@eee.kagoshma-u.ac.jp

More information

RBF Neural Network Model Training by Unscented Kalman Filter and Its Application in Mechanical Fault Diagnosis

RBF Neural Network Model Training by Unscented Kalman Filter and Its Application in Mechanical Fault Diagnosis Appled Mechancs and Materals Submtted: 24-6-2 ISSN: 662-7482, Vols. 62-65, pp 2383-2386 Accepted: 24-6- do:.428/www.scentfc.net/amm.62-65.2383 Onlne: 24-8- 24 rans ech Publcatons, Swtzerland RBF Neural

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate Internatonal Journal of Mathematcs and Systems Scence (018) Volume 1 do:10.494/jmss.v1.815 (Onlne Frst)A Lattce Boltzmann Scheme for Dffuson Equaton n Sphercal Coordnate Debabrata Datta 1 *, T K Pal 1

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS HCMC Unversty of Pedagogy Thong Nguyen Huu et al. A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS Thong Nguyen Huu and Hao Tran Van Department of mathematcs-nformaton,

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm The Expectaton-Maxmaton Algorthm Charles Elan elan@cs.ucsd.edu November 16, 2007 Ths chapter explans the EM algorthm at multple levels of generalty. Secton 1 gves the standard hgh-level verson of the algorthm.

More information

Online Classification: Perceptron and Winnow

Online Classification: Perceptron and Winnow E0 370 Statstcal Learnng Theory Lecture 18 Nov 8, 011 Onlne Classfcaton: Perceptron and Wnnow Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton In ths lecture we wll start to study the onlne learnng

More information

Min Cut, Fast Cut, Polynomial Identities

Min Cut, Fast Cut, Polynomial Identities Randomzed Algorthms, Summer 016 Mn Cut, Fast Cut, Polynomal Identtes Instructor: Thomas Kesselhem and Kurt Mehlhorn 1 Mn Cuts n Graphs Lecture (5 pages) Throughout ths secton, G = (V, E) s a mult-graph.

More information

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES BÂRZĂ, Slvu Faculty of Mathematcs-Informatcs Spru Haret Unversty barza_slvu@yahoo.com Abstract Ths paper wants to contnue

More information

New Method for Solving Poisson Equation. on Irregular Domains

New Method for Solving Poisson Equation. on Irregular Domains Appled Mathematcal Scences Vol. 6 01 no. 8 369 380 New Method for Solvng Posson Equaton on Irregular Domans J. Izadan and N. Karamooz Department of Mathematcs Facult of Scences Mashhad BranchIslamc Azad

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Model of Neurons. CS 416 Artificial Intelligence. Early History of Neural Nets. Cybernetics. McCulloch-Pitts Neurons. Hebbian Modification.

Model of Neurons. CS 416 Artificial Intelligence. Early History of Neural Nets. Cybernetics. McCulloch-Pitts Neurons. Hebbian Modification. Page 1 Model of Neurons CS 416 Artfcal Intellgence Lecture 18 Neural Nets Chapter 20 Multple nputs/dendrtes (~10,000!!!) Cell body/soma performs computaton Sngle output/axon Computaton s typcally modeled

More information

SL n (F ) Equals its Own Derived Group

SL n (F ) Equals its Own Derived Group Internatonal Journal of Algebra, Vol. 2, 2008, no. 12, 585-594 SL n (F ) Equals ts Own Derved Group Jorge Macel BMCC-The Cty Unversty of New York, CUNY 199 Chambers street, New York, NY 10007, USA macel@cms.nyu.edu

More information

Supporting Information

Supporting Information Supportng Informaton The neural network f n Eq. 1 s gven by: f x l = ReLU W atom x l + b atom, 2 where ReLU s the element-wse rectfed lnear unt, 21.e., ReLUx = max0, x, W atom R d d s the weght matrx to

More information

Formulas for the Determinant

Formulas for the Determinant page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

More information

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 -Davd Klenfeld - Fall 2005 (revsed Wnter 2011) 1 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys

More information

High resolution entropy stable scheme for shallow water equations

High resolution entropy stable scheme for shallow water equations Internatonal Symposum on Computers & Informatcs (ISCI 05) Hgh resoluton entropy stable scheme for shallow water equatons Xaohan Cheng,a, Yufeng Ne,b, Department of Appled Mathematcs, Northwestern Polytechncal

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

Lecture 4: Universal Hash Functions/Streaming Cont d

Lecture 4: Universal Hash Functions/Streaming Cont d CSE 5: Desgn and Analyss of Algorthms I Sprng 06 Lecture 4: Unversal Hash Functons/Streamng Cont d Lecturer: Shayan Oves Gharan Aprl 6th Scrbe: Jacob Schreber Dsclamer: These notes have not been subjected

More information

Multi-layer neural networks

Multi-layer neural networks Lecture 0 Mult-layer neural networks Mlos Hauskrecht mlos@cs.ptt.edu 5329 Sennott Square Lnear regresson w Lnear unts f () Logstc regresson T T = w = p( y =, w) = g( w ) w z f () = p ( y = ) w d w d Gradent

More information

Linear Classification, SVMs and Nearest Neighbors

Linear Classification, SVMs and Nearest Neighbors 1 CSE 473 Lecture 25 (Chapter 18) Lnear Classfcaton, SVMs and Nearest Neghbors CSE AI faculty + Chrs Bshop, Dan Klen, Stuart Russell, Andrew Moore Motvaton: Face Detecton How do we buld a classfer to dstngush

More information

Power law and dimension of the maximum value for belief distribution with the max Deng entropy

Power law and dimension of the maximum value for belief distribution with the max Deng entropy Power law and dmenson of the maxmum value for belef dstrbuton wth the max Deng entropy Bngy Kang a, a College of Informaton Engneerng, Northwest A&F Unversty, Yanglng, Shaanx, 712100, Chna. Abstract Deng

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

Time-Varying Systems and Computations Lecture 6

Time-Varying Systems and Computations Lecture 6 Tme-Varyng Systems and Computatons Lecture 6 Klaus Depold 14. Januar 2014 The Kalman Flter The Kalman estmaton flter attempts to estmate the actual state of an unknown dscrete dynamcal system, gven nosy

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Lecture 23: Artificial neural networks

Lecture 23: Artificial neural networks Lecture 23: Artfcal neural networks Broad feld that has developed over the past 20 to 30 years Confluence of statstcal mechancs, appled math, bology and computers Orgnal motvaton: mathematcal modelng of

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

18.1 Introduction and Recap

18.1 Introduction and Recap CS787: Advanced Algorthms Scrbe: Pryananda Shenoy and Shjn Kong Lecturer: Shuch Chawla Topc: Streamng Algorthmscontnued) Date: 0/26/2007 We contnue talng about streamng algorthms n ths lecture, ncludng

More information

A New Evolutionary Computation Based Approach for Learning Bayesian Network

A New Evolutionary Computation Based Approach for Learning Bayesian Network Avalable onlne at www.scencedrect.com Proceda Engneerng 15 (2011) 4026 4030 Advanced n Control Engneerng and Informaton Scence A New Evolutonary Computaton Based Approach for Learnng Bayesan Network Yungang

More information

Short Term Load Forecasting using an Artificial Neural Network

Short Term Load Forecasting using an Artificial Neural Network Short Term Load Forecastng usng an Artfcal Neural Network D. Kown 1, M. Km 1, C. Hong 1,, S. Cho 2 1 Department of Computer Scence, Sangmyung Unversty, Seoul, Korea 2 Department of Energy Grd, Sangmyung

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

Removal of Hidden Neurons by Crosswise Propagation

Removal of Hidden Neurons by Crosswise Propagation Neural Informaton Processng - etters and Revews Vol.6 No.3 arch 25 ETTER Removal of dden Neurons by Crosswse Propagaton Xun ang Department of anagement Scence and Engneerng Stanford Unversty CA 9535 USA

More information

The path of ants Dragos Crisan, Andrei Petridean, 11 th grade. Colegiul National "Emil Racovita", Cluj-Napoca

The path of ants Dragos Crisan, Andrei Petridean, 11 th grade. Colegiul National Emil Racovita, Cluj-Napoca Ths artcle s wrtten by students. It may nclude omssons and mperfectons, whch were dentfed and reported as mnutely as possble by our revewers n the edtoral notes. The path of ants 07-08 Students names and

More information

1 Derivation of Point-to-Plane Minimization

1 Derivation of Point-to-Plane Minimization 1 Dervaton of Pont-to-Plane Mnmzaton Consder the Chen-Medon (pont-to-plane) framework for ICP. Assume we have a collecton of ponts (p, q ) wth normals n. We want to determne the optmal rotaton and translaton

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Appendix B: Resampling Algorithms

Appendix B: Resampling Algorithms 407 Appendx B: Resamplng Algorthms A common problem of all partcle flters s the degeneracy of weghts, whch conssts of the unbounded ncrease of the varance of the mportance weghts ω [ ] of the partcles

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

A Note on Bound for Jensen-Shannon Divergence by Jeffreys

A Note on Bound for Jensen-Shannon Divergence by Jeffreys OPEN ACCESS Conference Proceedngs Paper Entropy www.scforum.net/conference/ecea- A Note on Bound for Jensen-Shannon Dvergence by Jeffreys Takuya Yamano, * Department of Mathematcs and Physcs, Faculty of

More information

The optimal delay of the second test is therefore approximately 210 hours earlier than =2.

The optimal delay of the second test is therefore approximately 210 hours earlier than =2. THE IEC 61508 FORMULAS 223 The optmal delay of the second test s therefore approxmately 210 hours earler than =2. 8.4 The IEC 61508 Formulas IEC 61508-6 provdes approxmaton formulas for the PF for smple

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

MULTISPECTRAL IMAGE CLASSIFICATION USING BACK-PROPAGATION NEURAL NETWORK IN PCA DOMAIN

MULTISPECTRAL IMAGE CLASSIFICATION USING BACK-PROPAGATION NEURAL NETWORK IN PCA DOMAIN MULTISPECTRAL IMAGE CLASSIFICATION USING BACK-PROPAGATION NEURAL NETWORK IN PCA DOMAIN S. Chtwong, S. Wtthayapradt, S. Intajag, and F. Cheevasuvt Faculty of Engneerng, Kng Mongkut s Insttute of Technology

More information

Regularized Discriminant Analysis for Face Recognition

Regularized Discriminant Analysis for Face Recognition 1 Regularzed Dscrmnant Analyss for Face Recognton Itz Pma, Mayer Aladem Department of Electrcal and Computer Engneerng, Ben-Guron Unversty of the Negev P.O.Box 653, Beer-Sheva, 845, Israel. Abstract Ths

More information

Application research on rough set -neural network in the fault diagnosis system of ball mill

Application research on rough set -neural network in the fault diagnosis system of ball mill Avalable onlne www.ocpr.com Journal of Chemcal and Pharmaceutcal Research, 2014, 6(4):834-838 Research Artcle ISSN : 0975-7384 CODEN(USA) : JCPRC5 Applcaton research on rough set -neural network n the

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

IV. Performance Optimization

IV. Performance Optimization IV. Performance Optmzaton A. Steepest descent algorthm defnton how to set up bounds on learnng rate mnmzaton n a lne (varyng learnng rate) momentum learnng examples B. Newton s method defnton Gauss-Newton

More information

Multiple Sound Source Location in 3D Space with a Synchronized Neural System

Multiple Sound Source Location in 3D Space with a Synchronized Neural System Multple Sound Source Locaton n D Space wth a Synchronzed Neural System Yum Takzawa and Atsush Fukasawa Insttute of Statstcal Mathematcs Research Organzaton of Informaton and Systems 0- Mdor-cho, Tachkawa,

More information

Interactive Bi-Level Multi-Objective Integer. Non-linear Programming Problem

Interactive Bi-Level Multi-Objective Integer. Non-linear Programming Problem Appled Mathematcal Scences Vol 5 0 no 65 3 33 Interactve B-Level Mult-Objectve Integer Non-lnear Programmng Problem O E Emam Department of Informaton Systems aculty of Computer Scence and nformaton Helwan

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information