Rhythmic activity in neuronal ensembles in the presence of conduction delays

Size: px
Start display at page:

Download "Rhythmic activity in neuronal ensembles in the presence of conduction delays"

Transcription

1 Rhythmc actvty n neuronal ensembles n the presence of conducton delays Crstna Masoller Carme Torrent, Jord García Ojalvo Departament de Fsca Engnyera Nuclear Unverstat Poltecnca de Catalunya, Terrassa, Span GABA 2st Scentfc Workshop Pars, France, March 29

2 Motvaton How do dstant neurons synchronze they actvty when there s a large number of cells wth complex nteractons wth heterogeneous conducton delays n a stochastc envronment?

3 Outlne ntroducton: bologcal detals requred for modelng nterconnected neurons Neurons Synaptc connectons Conducton delays Neuronal networks Sngle neuron wth recurrent connecton & globally coupled neurons - nfluence of couplng strength - of delay tme - of nose Summary, Conclusons & Future Work

4 Neurons Core components of the bran, the vertebrate spnal cord, the nvertebrate ventral nerve cord, and the perpheral nerves Dendrte Soma Axon termnal Types: - sensory neurons (respond to touch, sound, lght, etc). - motor neurons (receve sgnals from the bran and cause muscle contractons, etc.) -nter-neurons (connect neurons to other neurons) Nucleo Axon

5 Sngle neuron model The neuron s broken nto many small compartments, each of whch conssts of a smple RC crcut. The resstances (called conductances) are a consequence of onc channels n the neuron membrane. The current through one of these channels s modeled as ohmc: After Braun et al, JBC 1998 appled

6 Neurons communcate by synapses Chemcal synapses: spke-medated communcaton The spke travels down the axon whch termnates n a seres of regons called synaptc termnals. n the synaptc termnals the potental causes the release of a neurotransmtter. Ths transmtter causes channels to open up and current to pass through the dendrtes. The current can be depolarzng (exctatory) o hyperpolarzng (nhbtory).

7 Electrcal synapses An electrcal synapse s a mechancal and electrcally conductve lnk between two neurons that s formed at a narrow gap between the pre- and postsynaptc cells, also known as a gap juncton. At gap junctons, the neurons approach wthn 3.5 nm of each other (<< than the 2-4 nm dstance that separates neurons at chemcal synapses). Gap junctons are connectons between cells whch allow passage of small molecules and electrc current. Several structures n the bran have been shown to contan electrcally coupled neurons (the vestbular nucleus, the nucleus of trgemnal nerve, the nferor olvary nucleus, and the Ventral Tegmental Area).

8 Electrcal synapses vs. chemcal synapses Compared to chemcal synapses, electrcal synapses conduct mpulses faster, but unlke chemcal synapses they do not have gan (the sgnal n the post synaptc neuron s always smaller than that of the orgnatng neuron). A characterstc of electrcal synapses s that they are usually bdrectonal. Gap-junctons are expected to play a role n synchronzng neuronal actvty, n contrast to chemcal synapses, that are the mechansm for forward transmsson of nformaton.

9 Axonal conducton delays The longest axon of a human motor neuron can be over a meter long, reachng from the base of the spne to the toes. Sensory neurons have axons that run from the toes to the dorsal columns, over 1.5 meters n adults. Acton potentals travel along the axon at speeds of 1-1 m/s. n synaptcally-coupled neurons there can be non-neglegble delays due to the dstance travelled down the axon before the frng releases a neurotransmtter. n electrcally-coupled neurons delays are expected to be shorter.

10 Neuronal networks Employed to descrbe space-tme actvty n real neural systems Very dfferent types of models have been proposed Here we use a very smple model wth two strong smplfcatons: 1) the post-synaptc neuron sees a potental that has the same shape as n the presynaptc neuron that caused t. The sgn and the ampltude can be dfferent. 2) The conducton delay s the same for all neurons.

11 Globally coupled neurons C dv dt Na, K, sd, sr, l, N N j 1 V j ( t ) 1... N Synchronzed actvty: V ( t) Vj( t), j, t C dv dt Na, K, sd, sr, l, V ( t ) 1... N To understand the synchronzed actvty of an ensemble of delayed-coupled neurons, s mportant to understand the behavor of a sngle neuron wth a recurrent connecton (delayed feedback).

12 Hodgkn-Huxley model wth delayed feedback For nhbtory feedback and certan delay tmes, dfferent ntal condtons result n dfferent frng patterns Foss, Longtn, Mensour and Mlton, PRL 1996 Foss and Mlton, Neurophysology 2

13 nfluence of delayed feedback n a neuron model dsplayng sub-threshold oscllatons Braun et al model, JBC 1998 C M dv dt Na K sd sr l V ( t ) 2D ( t) Determnstc model (D=) : we chose parameters such that the neuron dsplays, n the absence of feedback ( =), sub-threshold oscllatons of perod T We fnd: feedback-nduced spkes for < and certan delay values ( nt ), no spkes for > 2 o C 25 o C 3 o C 35 o C

14 S (determnstc model, <) Delay tme (n unts of T ) Masoller, Torrent, García-Ojalvo, PRE 28

15 Frng rate (determnstc model, <) Wthout nose: the spke pattern s controlled by the feedback delay tme

16 Membrane potental (mv) Mult-stablty (determnstc model, <) At certan delay values dfferent patterns arse from dfferent random ntal condtons /T =8.5 S: 2T, 4T S: 2T -5 S: 2T, 3T Tme /T

17 nterplay of nose and sub-threshold actvty Wthout recurrent connecton ( =) no nose wth nose 2 o C 25 o C 3 o C 35 o C Braun et al, PRE 2

18 nterplay of nose and delayed feedback no nose < > wth nose Feedback Nose suppressed spkes spkes Masoller, Torrent, García-Ojalvo, PRE 28

19 Spkes when there s nose and feedback =: nose-nduced spkes =-.1, =T /2 =-.1, =T =.1, =T /2 =.1, =T

20 nterpretaton: nfluence of feedback on a lmt cycle oscllator =.1 = -.1

21 Membrane potental and Mean Feld Globally coupled neurons C dv dt Na, K, sd, sr, l, N N j 1 V j ( t ) 1... N V(t) 1 N N j 1 V (t) j < Ampltude of the oscllatons of the mean feld (black) & 5 neurons (symbols) /T

22 Synchronzaton and clusterng are controlled by the delay tme of the couplng < 2 /T =6.6 2 /T = /T =6.8 2 /T =7. V (mv) /T =7.3 2 /T = Tme[T ]

23 Ampltude mean feld Multstablty 8 7 Ampltude of the oscllatons of the mean feld for 8 dfferent random ntal condtons /T

24 nfluence of the system sze ( >) Ampltude of the mean feld oscllatons

25 For negatve couplng Ampltude of the mean feld oscllatons Ampltude of the neuronal oscllatons

26 nterpretaton: lmt-cycle oscllators wth global delayed couplng Ampltude of the oscllatons of the mean feld (red crcles) & of 5 oscllators (black dots)

27 nterpretaton (): phase-flp bfurcaton n two delayed coupled oscllators Prasad et al, PRE 26, Chaos 28

28 Summary and Conclusons We studed the dynamcs of a neuron wth delayed feedback representng a recurrent connecton. The neuron dsplays sub-threshold oscllatons; the feedback was ncluded as a tme-delayed lnear term. Weak negatve feedback enhance the oscllaton ampltude, nducng threshold-crossngs and frng actvty for certan wndows of delay values. n these wndows the frng pattern s controlled by the delay. Multstablty of solutons s found for certan delays. We also studed a small ensemble of neurons globally coupled through ther delayed mean feld. We found synchronzaton, out of phase oscllatons, and clusterng, wth the clusters exhbtng ant-phased oscllatons. As the delay vares the dfferent regmes repeat themselves n a perodc sequence (synchronzaton, out of phase behavor, clusters, and synchronzaton) wth a perodcty approxmately equal to T.

EXAM I Comparative Animal Physiology ZOO 424 Fall 2002

EXAM I Comparative Animal Physiology ZOO 424 Fall 2002 EXAM I Comparatve Anmal Physology ZOO 424 Fall 2002 V Eq = RT X o. ln( [ zf [ X ) RT p K[K o pna[na o pcl[cl V = m ln F pk[k pna[na pcl[cl o I = g(v m V eq. ) Q = C m V m Drvng Force = V m V eq. Ionc Speces

More information

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 -Davd Klenfeld - Fall 2005 (revsed Wnter 2011) 1 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys

More information

Complex Network Dynamics:

Complex Network Dynamics: Complex Network Dynamcs: Theory & Applcaton Yur Mastrenko E-mal: y.mastrenko@bomed.kev.ua Lecture 2 Network Scence Complex networks versus Dynamcal networks Oscllatory networks Ensembles of oscllators

More information

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations Physcs 178/278 - Davd Klenfeld - Wnter 2015 8 Dervaton of Network Rate Equatons from Sngle- Cell Conductance Equatons We consder a network of many neurons, each of whch obeys a set of conductancebased,

More information

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations Physcs 178/278 - Davd Klenfeld - Wnter 2019 8 Dervaton of Network Rate Equatons from Sngle- Cell Conductance Equatons Our goal to derve the form of the abstract quanttes n rate equatons, such as synaptc

More information

Properties of the living organism. Interaction between living organism and the environment. Processing informations. Definitions

Properties of the living organism. Interaction between living organism and the environment. Processing informations. Definitions thermodynamcs energy materal Interacton between lvng organsm and the envronment Propertes of the lvng organsm Separaton from the envroment: Strctly controlled energy and materal transport. Changng n the

More information

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 - Chapter 9R -Davd Klenfeld - Fall 2005 9 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys a set

More information

Properties of the living organism. Interaction between living organism and the enviroment. Processing informations. Definitions

Properties of the living organism. Interaction between living organism and the enviroment. Processing informations. Definitions thermodynamcs energy materal Interacton between lvng organsm and the envroment Propertes of the lvng organsm Separaton from the envroment: Strctly controlled energy and materal transport. Changng n the

More information

Model of Neurons. CS 416 Artificial Intelligence. Early History of Neural Nets. Cybernetics. McCulloch-Pitts Neurons. Hebbian Modification.

Model of Neurons. CS 416 Artificial Intelligence. Early History of Neural Nets. Cybernetics. McCulloch-Pitts Neurons. Hebbian Modification. Page 1 Model of Neurons CS 416 Artfcal Intellgence Lecture 18 Neural Nets Chapter 20 Multple nputs/dendrtes (~10,000!!!) Cell body/soma performs computaton Sngle output/axon Computaton s typcally modeled

More information

In silico stochastic simulation of

In silico stochastic simulation of In slco stochastc smulaton of Ca 2+ trggered synaptc release Andrea Braccal Perpaolo Degano Enrco Cataldo Marcello Brunell Dpartmento d Informatca Unverstà d Psa {bracca,degano}@d.unp.t Dpartmento d Bologa

More information

Neural Networks & Learning

Neural Networks & Learning Neural Netorks & Learnng. Introducton The basc prelmnares nvolved n the Artfcal Neural Netorks (ANN) are descrbed n secton. An Artfcal Neural Netorks (ANN) s an nformaton-processng paradgm that nspred

More information

Lecture 23: Artificial neural networks

Lecture 23: Artificial neural networks Lecture 23: Artfcal neural networks Broad feld that has developed over the past 20 to 30 years Confluence of statstcal mechancs, appled math, bology and computers Orgnal motvaton: mathematcal modelng of

More information

Modified Bifurcating Neuron with Leaky- Integrate-and-Fire Model

Modified Bifurcating Neuron with Leaky- Integrate-and-Fire Model Modfed Bfurcatng Neuron wth Leaky- Integrate-and-Fre Model Lon Rsnger and Khosrow Kakhah, Ph.D. Department of Computer Scence Texas State Unversty San Marcos, Texas 78666 lr1036@txstate.edu kk02@txstate.edu

More information

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices Amplfcaton and Relaxaton of Electron Spn Polarzaton n Semconductor Devces Yury V. Pershn and Vladmr Prvman Center for Quantum Devce Technology, Clarkson Unversty, Potsdam, New York 13699-570, USA Spn Relaxaton

More information

Multiple Sound Source Location in 3D Space with a Synchronized Neural System

Multiple Sound Source Location in 3D Space with a Synchronized Neural System Multple Sound Source Locaton n D Space wth a Synchronzed Neural System Yum Takzawa and Atsush Fukasawa Insttute of Statstcal Mathematcs Research Organzaton of Informaton and Systems 0- Mdor-cho, Tachkawa,

More information

A VLSI Spiking Feedback Neural Network with Negative Thresholding and Its Application to Associative Memory

A VLSI Spiking Feedback Neural Network with Negative Thresholding and Its Application to Associative Memory IEICE TRANS. ELECTRON., VOL.E89 C, NO.11 NOVEMBER 2006 1637 PAPER Specal Secton on Novel Devce Archtectures and System Integraton Technologes A VLSI Spkng Feedback Neural Network wth Negatve Thresholdng

More information

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

The equation of motion of a dynamical system is given by a set of differential equations. That is (1) Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

More information

Chaotic Phase Synchronization for Visual Selection

Chaotic Phase Synchronization for Visual Selection Internatonal Jont Conference on Neural Networks IJCNN 2009 Chaotc Phase Synchronzaton for Vsual Selecton Fabrco A. Breve¹ Lang Zhao¹ Marcos G. Qules¹ Elbert E. N. Macau² fabrco@cmc.usp.br zhao@cmc.usp.br

More information

A KERNEL APPROACH TO LEARNING A NEURON MODEL FROM SPIKE TRAIN DATA

A KERNEL APPROACH TO LEARNING A NEURON MODEL FROM SPIKE TRAIN DATA A KERNEL APPROACH TO LEARNING A NEURON MODEL FROM SPIKE TRAIN DATA By NICHOLAS K. FISHER A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS Department o Electrcal and Computer Engneerng UNIT I EII FEEDBCK MPLIFIES porton the output sgnal s ed back to the nput o the ampler s called Feedback mpler. Feedback Concept: block dagram o an ampler

More information

Unsupervised Learning

Unsupervised Learning Unsupervsed Learnng Kevn Swngler What s Unsupervsed Learnng? Most smply, t can be thought of as learnng to recognse and recall thngs Recognton I ve seen that before Recall I ve seen that before and I can

More information

Frequency dependence of the permittivity

Frequency dependence of the permittivity Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but

More information

PHY2049 Exam 2 solutions Fall 2016 Solution:

PHY2049 Exam 2 solutions Fall 2016 Solution: PHY2049 Exam 2 solutons Fall 2016 General strategy: Fnd two resstors, one par at a tme, that are connected ether n SERIES or n PARALLEL; replace these two resstors wth one of an equvalent resstance. Now

More information

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED.

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED. EE 539 Homeworks Sprng 08 Updated: Tuesday, Aprl 7, 08 DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED. For full credt, show all work. Some problems requre hand calculatons.

More information

Resource Allocation with a Budget Constraint for Computing Independent Tasks in the Cloud

Resource Allocation with a Budget Constraint for Computing Independent Tasks in the Cloud Resource Allocaton wth a Budget Constrant for Computng Independent Tasks n the Cloud Wemng Sh and Bo Hong School of Electrcal and Computer Engneerng Georga Insttute of Technology, USA 2nd IEEE Internatonal

More information

Failing feedback as a mechanism to generate epileptic seizures

Failing feedback as a mechanism to generate epileptic seizures Falng feedback as a mechansm to generate epleptc sezures Kostas Tsakals Department of Electrcal Engneerng Arzona State Unversty tsakals@asu.edu Collaboraton Credts Prof. Leon Iasemds (Harrngton Dept. of

More information

Dynamical Responses to External Stimuli for Both Cases of Excitatory and Inhibitory Synchronization in A Complex Neuronal Network

Dynamical Responses to External Stimuli for Both Cases of Excitatory and Inhibitory Synchronization in A Complex Neuronal Network Dynamcal Responses to External Stmul for Both Cases of Exctatory and Inhbtory Synchronzaton n A Complex Neuronal Network Sang-Yoon Km and Woochang Lm Insttute for Computatonal Neuroscence and Department

More information

Energy Storage Elements: Capacitors and Inductors

Energy Storage Elements: Capacitors and Inductors CHAPTER 6 Energy Storage Elements: Capactors and Inductors To ths pont n our study of electronc crcuts, tme has not been mportant. The analyss and desgns we hae performed so far hae been statc, and all

More information

Supporting Information

Supporting Information Supportng Informaton The neural network f n Eq. 1 s gven by: f x l = ReLU W atom x l + b atom, 2 where ReLU s the element-wse rectfed lnear unt, 21.e., ReLUx = max0, x, W atom R d d s the weght matrx to

More information

Positive feedback Derivative feedback Pos. + der. feedback c Stronger. E I e f g Time (s)

Positive feedback Derivative feedback Pos. + der. feedback c Stronger. E I e f g Time (s) Frng rate (Hz) a f nput current Transent nput Step-lke nput Postve feedback Dervatve feedback Pos. + der. feedback b c Stronger d e f g Frng rate (Hz) h j Frng rate (Hz) 5 5 3 4 5 3 4 5 Tme (s) 6 4 5 3

More information

JASS 2005 St. Petersburg. Course 5: Semiconductors and Nanostructures. Neuro-Transistors. Felix Hoehne

JASS 2005 St. Petersburg. Course 5: Semiconductors and Nanostructures. Neuro-Transistors. Felix Hoehne JASS 2005 St. Petersburg Course 5: Semconductors and Nanostructures Neuro-Transstors Felx Hoehne Aprl 2005 Neuro-Transstors page 1 Archtecture of a neuron Most neuron can be descrbed by a model neuron

More information

SCIENCE CHINA Technological Sciences. Enhancement of pacemaker induced stochastic resonance by an autapse in a scale-free neuronal network

SCIENCE CHINA Technological Sciences. Enhancement of pacemaker induced stochastic resonance by an autapse in a scale-free neuronal network SCIENCE CHINA Technologcal Scences Specal Topc: Tme Delay, Nose on Dynamcal Systems March 016 Vol.59 No.3: 364 370 Artcle do: 10.1007/s11431-015-5984-z Enhancement of pacemaker nduced stochastc resonance

More information

Admin NEURAL NETWORKS. Perceptron learning algorithm. Our Nervous System 10/25/16. Assignment 7. Class 11/22. Schedule for the rest of the semester

Admin NEURAL NETWORKS. Perceptron learning algorithm. Our Nervous System 10/25/16. Assignment 7. Class 11/22. Schedule for the rest of the semester 0/25/6 Admn Assgnment 7 Class /22 Schedule for the rest of the semester NEURAL NETWORKS Davd Kauchak CS58 Fall 206 Perceptron learnng algorthm Our Nervous System repeat untl convergence (or for some #

More information

Internet Engineering. Jacek Mazurkiewicz, PhD Softcomputing. Part 3: Recurrent Artificial Neural Networks Self-Organising Artificial Neural Networks

Internet Engineering. Jacek Mazurkiewicz, PhD Softcomputing. Part 3: Recurrent Artificial Neural Networks Self-Organising Artificial Neural Networks Internet Engneerng Jacek Mazurkewcz, PhD Softcomputng Part 3: Recurrent Artfcal Neural Networks Self-Organsng Artfcal Neural Networks Recurrent Artfcal Neural Networks Feedback sgnals between neurons Dynamc

More information

Odd/Even Scroll Generation with Inductorless Chua s and Wien Bridge Oscillator Circuits

Odd/Even Scroll Generation with Inductorless Chua s and Wien Bridge Oscillator Circuits Watcharn Jantanate, Peter A. Chayasena, Sarawut Sutorn Odd/Even Scroll Generaton wth Inductorless Chua s and Wen Brdge Oscllator Crcuts Watcharn Jantanate, Peter A. Chayasena, and Sarawut Sutorn * School

More information

Scroll Generation with Inductorless Chua s Circuit and Wien Bridge Oscillator

Scroll Generation with Inductorless Chua s Circuit and Wien Bridge Oscillator Latest Trends on Crcuts, Systems and Sgnals Scroll Generaton wth Inductorless Chua s Crcut and Wen Brdge Oscllator Watcharn Jantanate, Peter A. Chayasena, and Sarawut Sutorn * Abstract An nductorless Chua

More information

8. Superfluid to Mott-insulator transition

8. Superfluid to Mott-insulator transition 8. Superflud to Mott-nsulator transton Overvew Optcal lattce potentals Soluton of the Schrödnger equaton for perodc potentals Band structure Bloch oscllaton of bosonc and fermonc atoms n optcal lattces

More information

DC Circuits. Crossing the emf in this direction +ΔV

DC Circuits. Crossing the emf in this direction +ΔV DC Crcuts Delverng a steady flow of electrc charge to a crcut requres an emf devce such as a battery, solar cell or electrc generator for example. mf stands for electromotve force, but an emf devce transforms

More information

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given).

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given). Problem 5.37 Pror to t =, capactor C 1 n the crcut of Fg. P5.37 was uncharged. For I = 5 ma, R 1 = 2 kω, = 5 kω, C 1 = 3 µf, and C 2 = 6 µf, determne: (a) The equvalent crcut nvolvng the capactors for

More information

STAT 511 FINAL EXAM NAME Spring 2001

STAT 511 FINAL EXAM NAME Spring 2001 STAT 5 FINAL EXAM NAME Sprng Instructons: Ths s a closed book exam. No notes or books are allowed. ou may use a calculator but you are not allowed to store notes or formulas n the calculator. Please wrte

More information

Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons

Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons Journal of Mathematcal Neuroscence 212) 2:1 DOI 1.1186/219-8567-2-1 RESEARCH OpenAccess Mean-feld descrpton and propagaton of chaos n networks of Hodgkn-Huxley and FtzHugh-Nagumo neurons Javer Baladron

More information

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C13 MOSFET operation

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C13 MOSFET operation ELECTRONIC EVICES Assst. prof. Laura-Ncoleta IVANCIU, Ph.. C13 MOSFET operaton Contents Symbols Structure and physcal operaton Operatng prncple Transfer and output characterstcs Quescent pont Operatng

More information

Circuits II EE221. Instructor: Kevin D. Donohue. Instantaneous, Average, RMS, and Apparent Power, and, Maximum Power Transfer, and Power Factors

Circuits II EE221. Instructor: Kevin D. Donohue. Instantaneous, Average, RMS, and Apparent Power, and, Maximum Power Transfer, and Power Factors Crcuts II EE1 Unt 3 Instructor: Ken D. Donohue Instantaneous, Aerage, RMS, and Apparent Power, and, Maxmum Power pp ransfer, and Power Factors Power Defntons/Unts: Work s n unts of newton-meters or joules

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

Sections begin this week. Cancelled Sections: Th Labs begin this week. Attend your only second lab slot this week.

Sections begin this week. Cancelled Sections: Th Labs begin this week. Attend your only second lab slot this week. Announcements Sectons begn ths week Cancelled Sectons: Th 122. Labs begn ths week. Attend your only second lab slot ths week. Cancelled labs: ThF 25. Please check your Lab secton. Homework #1 onlne Due

More information

6.01: Introduction to EECS I Lecture 7 March 15, 2011

6.01: Introduction to EECS I Lecture 7 March 15, 2011 6.0: Introducton to EECS I Lecture 7 March 5, 20 6.0: Introducton to EECS I Crcuts The Crcut Abstracton Crcuts represent systems as connectons of elements through whch currents (through arables) flow and

More information

ECE559VV Project Report

ECE559VV Project Report ECE559VV Project Report (Supplementary Notes Loc Xuan Bu I. MAX SUM-RATE SCHEDULING: THE UPLINK CASE We have seen (n the presentaton that, for downlnk (broadcast channels, the strategy maxmzng the sum-rate

More information

The Cortex. Networks. Laminar Structure of Cortex. Chapter 3, O Reilly & Munakata.

The Cortex. Networks. Laminar Structure of Cortex. Chapter 3, O Reilly & Munakata. Networks The Cortex Chapter, O Relly & Munakata. Bology of networks: The cortex Exctaton: Undrectonal (transformatons) Local vs. dstrbuted representatons Bdrectonal (pattern completon, amplfcaton) Inhbton:

More information

6.01: Introduction to EECS 1 Week 6 October 15, 2009

6.01: Introduction to EECS 1 Week 6 October 15, 2009 6.0: ntroducton to EECS Week 6 October 5, 2009 6.0: ntroducton to EECS Crcuts The Crcut Abstracton Crcuts represent systems as connectons of component through whch currents (through arables) flow and across

More information

arxiv: v1 [cs.lg] 17 Jan 2019

arxiv: v1 [cs.lg] 17 Jan 2019 LECTURE NOTES arxv:90.05639v [cs.lg] 7 Jan 209 Artfcal Neural Networks B. MEHLIG Department of Physcs Unversty of Gothenburg Göteborg, Sweden 209 PREFACE These are lecture notes for my course on Artfcal

More information

LECTURE NOTES. Artifical Neural Networks. B. MEHLIG (course home page)

LECTURE NOTES. Artifical Neural Networks. B. MEHLIG (course home page) LECTURE NOTES Artfcal Neural Networks B. MEHLIG (course home page) Department of Physcs Unversty of Gothenburg Göteborg, Sweden 208 PREFACE These are lecture notes for my course on Artfcal Neural Networks

More information

2 Laminar Structure of Cortex. 4 Area Structure of Cortex

2 Laminar Structure of Cortex. 4 Area Structure of Cortex Networks!! Lamnar Structure of Cortex. Bology: The cortex. Exctaton: Undrectonal (transformatons) Local vs. dstrbuted representatons Bdrectonal (pattern completon, amplfcaton). Inhbton: Controllng bdrectonal

More information

STABILITY OF METALLIC FERROMAGNETISM: CORRELATED HOPPING OF ELECTRONS IN Mn 4 N

STABILITY OF METALLIC FERROMAGNETISM: CORRELATED HOPPING OF ELECTRONS IN Mn 4 N STABILITY OF METALLIC FERROMAGNETISM: CORRELATED HOPPING OF ELECTRONS IN Mn 4 N EUGEN BIRSAN 1, COSMIN CANDIN 2 1 Physcs Department, Unversty Lucan Blaga, Dr. I. Ratu str., No. 5 7, 550024, Sbu, Romana,

More information

( ) = ( ) + ( 0) ) ( )

( ) = ( ) + ( 0) ) ( ) EETOMAGNETI OMPATIBIITY HANDBOOK 1 hapter 9: Transent Behavor n the Tme Doman 9.1 Desgn a crcut usng reasonable values for the components that s capable of provdng a tme delay of 100 ms to a dgtal sgnal.

More information

Introduction to Computational Neural Modeling for Computer Scientists and Mathematicians

Introduction to Computational Neural Modeling for Computer Scientists and Mathematicians Computer Scence Techncal Report Introducton to Computatonal Neural Modelng for Computer Scentsts and Mathematcans Keth A. Bush and Charles W. Anderson January 12, 2004 Techncal Report CS-04-101 Computer

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 8 Nov 2003

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 8 Nov 2003 Dynamcs and synchronzaton of nosy neuron ensembles wth tme-delayed couplngs arxv:cond-mat/0311183v1 [cond-mat.ds-nn] 8 Nov 2003 Hdeo Hasegawa Department of Physcs, Tokyo Gakuge Unversty, Kogane, Tokyo

More information

Irregular vibrations in multi-mass discrete-continuous systems torsionally deformed

Irregular vibrations in multi-mass discrete-continuous systems torsionally deformed (2) 4 48 Irregular vbratons n mult-mass dscrete-contnuous systems torsonally deformed Abstract In the paper rregular vbratons of dscrete-contnuous systems consstng of an arbtrary number rgd bodes connected

More information

Modeling and Simulation of a Hexapod Machine Tool for the Dynamic Stability Analysis of Milling Processes. C. Henninger, P.

Modeling and Simulation of a Hexapod Machine Tool for the Dynamic Stability Analysis of Milling Processes. C. Henninger, P. Smpack User Meetng 27 Modelng and Smulaton of a Heapod Machne Tool for the Dynamc Stablty Analyss of Mllng Processes C. Hennnger, P. Eberhard Insttute of Engneerng project funded by the DFG wthn the framework

More information

1.4 Small-signal models of BJT

1.4 Small-signal models of BJT 1.4 Small-sgnal models of J Analog crcuts often operate wth sgnal levels that are small compared to the bas currents and voltages n the crcut. Under ths condton, ncremental or small-sgnal models can be

More information

VLSI Implementation of a Neural Model Using Spikes

VLSI Implementation of a Neural Model Using Spikes Analog Integrated Crcuts and Sgnal Processng, 13, 111 121 (1997) c 1997 Kluwer Academc Publshers, Boston. Manufactured n The Netherlands. VLSI Implementaton of a Neural Model Usng Spkes F. J. PELAYO, 1

More information

Performing Modulation Scheme of Chaos Shift Keying with Hyperchaotic Chen System

Performing Modulation Scheme of Chaos Shift Keying with Hyperchaotic Chen System 6 th Internatonal Advanced echnologes Symposum (IAS 11), 16-18 May 011, Elazığ, urkey Performng Modulaton Scheme of Chaos Shft Keyng wth Hyperchaotc Chen System H. Oğraş 1, M. ürk 1 Unversty of Batman,

More information

Dale s Principle Is Necessary for an Optimal Neuronal Network s Dynamics

Dale s Principle Is Necessary for an Optimal Neuronal Network s Dynamics Appled Mathematcs 23 4 5-29 http://dx.do.org/.4236/am.23.4a22 Publshed Onlne October 23 (http://www.scrp.org/ournal/am) Dale s Prncple Is Necessary for an Optmal Neuronal Network s Dynamcs Eleonora Catsgeras

More information

Ines Grozdanović 1, Nataša Trišović 2, Wei Li 3

Ines Grozdanović 1, Nataša Trišović 2, Wei Li 3 Ines Grozdanovć 1, Nataša Tršovć, We L 3 EFFECTS OF NOISE AND INTERNAL DELAY ON COHERENT OSCILLATIONS IN TWO STOCHASTICALLY PERTURBED DELAYED DYNAMICAL SYSTEMS EFEKTI ŠUMA I UNUTRAŠNJEG KAŠNJENJA NA KOHERENTNE

More information

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR 5.0, Prncples of Inorganc Chemstry II MIT Department of Chemstry Lecture 3: Vbratonal Spectroscopy and the IR Vbratonal spectroscopy s confned to the 00-5000 cm - spectral regon. The absorpton of a photon

More information

Electrostatic Potential from Transmembrane Currents

Electrostatic Potential from Transmembrane Currents Electrostatc Potental from Transmembrane Currents Let s assume that the current densty j(r, t) s ohmc;.e., lnearly proportonal to the electrc feld E(r, t): j = σ c (r)e (1) wth conductvty σ c = σ c (r).

More information

Pulse Coded Modulation

Pulse Coded Modulation Pulse Coded Modulaton PCM (Pulse Coded Modulaton) s a voce codng technque defned by the ITU-T G.711 standard and t s used n dgtal telephony to encode the voce sgnal. The frst step n the analog to dgtal

More information

Chapter 2. Electrode/electrolyte interface: ----Structure and properties

Chapter 2. Electrode/electrolyte interface: ----Structure and properties Chapter 2 Electrode/electrolyte nterface: ----Structure and propertes Electrochemcal reactons are nterfacal reactons, the structure and propertes of electrode / electrolytc soluton nterface greatly nfluences

More information

An Integrated Asset Allocation and Path Planning Method to to Search for a Moving Target in in a Dynamic Environment

An Integrated Asset Allocation and Path Planning Method to to Search for a Moving Target in in a Dynamic Environment An Integrated Asset Allocaton and Path Plannng Method to to Search for a Movng Target n n a Dynamc Envronment Woosun An Mansha Mshra Chulwoo Park Prof. Krshna R. Pattpat Dept. of Electrcal and Computer

More information

1. Mean-Field Theory. 2. Bjerrum length

1. Mean-Field Theory. 2. Bjerrum length 1. Mean-Feld Theory Contnuum models lke the Posson-Nernst-Planck equatons are mean-feld approxmatons whch descrbe how dscrete ons are affected by the mean concentratons c and potental φ. Each on mgrates

More information

ANOMALOUS RELATIONSHIP BETWEEN SPATIAL AND TEMPORAL PATTERNS OF DYNAMICAL BEHAVIOR

ANOMALOUS RELATIONSHIP BETWEEN SPATIAL AND TEMPORAL PATTERNS OF DYNAMICAL BEHAVIOR Internatonal Journal of Bfurcaton and Chaos, Vol. 9, No. 12 (1999) 2329 2333 c World Scentfc Publshng Company ANOMALOUS RELATIONSHIP BETWEEN SPATIAL AND TEMPORAL PATTERNS OF DYNAMICAL BEHAVIOR LEONID RUBCHINSKY

More information

Networks of Neurons (Chapter 7)

Networks of Neurons (Chapter 7) CSE/NEUBEH 58 Networks of Neurons (Chapter 7) Drawng by Ramón y Cajal Today s Agenda F Computaton n Networks of Neurons Feedforward Networks: What can they do? Recurrent Networks: What more can they do?

More information

The Hopfield model. 1 The Hebbian paradigm. Sebastian Seung Lecture 15: November 7, 2002

The Hopfield model. 1 The Hebbian paradigm. Sebastian Seung Lecture 15: November 7, 2002 MIT Department of Bran and Cogntve Scences 9.29J, Sprng 2004 - Introducton to Computatonal euroscence Instructor: Professor Sebastan Seung The Hopfeld model Sebastan Seung 9.64 Lecture 5: ovember 7, 2002

More information

Queueing Networks II Network Performance

Queueing Networks II Network Performance Queueng Networks II Network Performance Davd Tpper Assocate Professor Graduate Telecommuncatons and Networkng Program Unversty of Pttsburgh Sldes 6 Networks of Queues Many communcaton systems must be modeled

More information

Physics 114 Exam 2 Spring Name:

Physics 114 Exam 2 Spring Name: Physcs 114 Exam Sprng 013 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red wth the amount beng

More information

Complex Numbers, Signals, and Circuits

Complex Numbers, Signals, and Circuits Complex Numbers, Sgnals, and Crcuts 3 August, 009 Complex Numbers: a Revew Suppose we have a complex number z = x jy. To convert to polar form, we need to know the magntude of z and the phase of z. z =

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit.

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit. Physcs 4B Solutons to Chapter 7 HW Chapter 7: Questons:, 8, 0 Problems:,,, 45, 48,,, 7, 9 Queston 7- (a) no (b) yes (c) all te Queston 7-8 0 μc Queston 7-0, c;, a;, d; 4, b Problem 7- (a) Let be the current

More information

Outline. Communication. Bellman Ford Algorithm. Bellman Ford Example. Bellman Ford Shortest Path [1]

Outline. Communication. Bellman Ford Algorithm. Bellman Ford Example. Bellman Ford Shortest Path [1] DYNAMIC SHORTEST PATH SEARCH AND SYNCHRONIZED TASK SWITCHING Jay Wagenpfel, Adran Trachte 2 Outlne Shortest Communcaton Path Searchng Bellmann Ford algorthm Algorthm for dynamc case Modfcatons to our algorthm

More information

FEEDBACK AMPLIFIERS. v i or v s v 0

FEEDBACK AMPLIFIERS. v i or v s v 0 FEEDBCK MPLIFIERS Feedback n mplers FEEDBCK IS THE PROCESS OF FEEDING FRCTION OF OUTPUT ENERGY (VOLTGE OR CURRENT) BCK TO THE INPUT CIRCUIT. THE CIRCUIT EMPLOYED FOR THIS PURPOSE IS CLLED FEEDBCK NETWORK.

More information

MOLECULAR DYNAMICS ,..., What is it? 2 = i i

MOLECULAR DYNAMICS ,..., What is it? 2 = i i MOLECULAR DYNAMICS What s t? d d x t 2 m 2 = F ( x 1,..., x N ) =1,,N r ( x1 ( t),..., x ( t)) = v = ( x& 1 ( t ),..., x& ( t )) N N What are some uses of molecular smulatons and modelng? Conformatonal

More information

Computational Modelling of the Unbalanced Magnetic Pull by Finite Element Method

Computational Modelling of the Unbalanced Magnetic Pull by Finite Element Method Avalable onlne at www.scencedrect.com Proceda Engneerng 48 (2012 ) 83 89 MMaMS 2012 Computatonal Modellng of the Unbalanced Magnetc Pull by Fnte Element Method Martn Donát a * a Brno Unversty of Technology,

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erckson Department of Electrcal, Computer, and Energy Engneerng Unersty of Colorado, Boulder 3.5. Example: ncluson of semconductor conducton losses n the boost conerter model Boost conerter example

More information

Optimal information storage in noisy synapses under resource constraints

Optimal information storage in noisy synapses under resource constraints Optmal nformaton storage n nosy synapses under resource constrants Lav arshney MIT Jesper Sjöström Brandes, UCL London Dmtr Mtya Chklovsk Cold Sprng Harbor Laboratory Modfcatons of synaptc connectons store

More information

Formulation of Circuit Equations

Formulation of Circuit Equations ECE 570 Sesson 2 IC 752E Computer Aded Engneerng for Integrated Crcuts Formulaton of Crcut Equatons Bascs of crcut modelng 1. Notaton 2. Crcut elements 3. Krchoff laws 4. ableau formulaton 5. Modfed nodal

More information

EN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics

EN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics N40: ynamcs and Vbratons Homewor 7: Rgd Body Knematcs School of ngneerng Brown Unversty 1. In the fgure below, bar AB rotates counterclocwse at 4 rad/s. What are the angular veloctes of bars BC and C?.

More information

PREDICTIVE CONTROL BY DISTRIBUTED PARAMETER SYSTEMS BLOCKSET FOR MATLAB & SIMULINK

PREDICTIVE CONTROL BY DISTRIBUTED PARAMETER SYSTEMS BLOCKSET FOR MATLAB & SIMULINK PREDICTIVE CONTROL BY DISTRIBUTED PARAMETER SYSTEMS BLOCKSET FOR MATLAB & SIMULINK G. Hulkó, C. Belavý, P. Buček, P. Noga Insttute of automaton, measurement and appled nformatcs, Faculty of Mechancal Engneerng,

More information

Rate of Absorption and Stimulated Emission

Rate of Absorption and Stimulated Emission MIT Department of Chemstry 5.74, Sprng 005: Introductory Quantum Mechancs II Instructor: Professor Andre Tokmakoff p. 81 Rate of Absorpton and Stmulated Emsson The rate of absorpton nduced by the feld

More information

Note 10. Modeling and Simulation of Dynamic Systems

Note 10. Modeling and Simulation of Dynamic Systems Lecture Notes of ME 475: Introducton to Mechatroncs Note 0 Modelng and Smulaton of Dynamc Systems Department of Mechancal Engneerng, Unversty Of Saskatchewan, 57 Campus Drve, Saskatoon, SK S7N 5A9, Canada

More information

Department of Chemistry Purdue University Garth J. Simpson

Department of Chemistry Purdue University Garth J. Simpson Objectves: 1. Develop a smple conceptual 1D model for NLO effects. Extend to 3D and relate to computatonal chemcal calculatons of adabatc NLO polarzabltes. 2. Introduce Sum-Over-States (SOS) approaches

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Electricity and Magnetism Lecture 07 - Physics 121 Current, Resistance, DC Circuits: Y&F Chapter 25 Sect. 1-5 Kirchhoff s Laws: Y&F Chapter 26 Sect.

Electricity and Magnetism Lecture 07 - Physics 121 Current, Resistance, DC Circuits: Y&F Chapter 25 Sect. 1-5 Kirchhoff s Laws: Y&F Chapter 26 Sect. Electrcty and Magnetsm Lecture 07 - Physcs Current, esstance, DC Crcuts: Y&F Chapter 5 Sect. -5 Krchhoff s Laws: Y&F Chapter 6 Sect. Crcuts and Currents Electrc Current Current Densty J Drft Speed esstance,

More information

Dynamic Systems on Graphs

Dynamic Systems on Graphs Prepared by F.L. Lews Updated: Saturday, February 06, 200 Dynamc Systems on Graphs Control Graphs and Consensus A network s a set of nodes that collaborates to acheve what each cannot acheve alone. A network,

More information

Physics 114 Exam 2 Fall 2014 Solutions. Name:

Physics 114 Exam 2 Fall 2014 Solutions. Name: Physcs 114 Exam Fall 014 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse ndcated,

More information

Airflow and Contaminant Simulation with CONTAM

Airflow and Contaminant Simulation with CONTAM Arflow and Contamnant Smulaton wth CONTAM George Walton, NIST CHAMPS Developers Workshop Syracuse Unversty June 19, 2006 Network Analogy Electrc Ppe, Duct & Ar Wre Ppe, Duct, or Openng Juncton Juncton

More information

COEFFICIENT DIAGRAM: A NOVEL TOOL IN POLYNOMIAL CONTROLLER DESIGN

COEFFICIENT DIAGRAM: A NOVEL TOOL IN POLYNOMIAL CONTROLLER DESIGN Int. J. Chem. Sc.: (4), 04, 645654 ISSN 097768X www.sadgurupublcatons.com COEFFICIENT DIAGRAM: A NOVEL TOOL IN POLYNOMIAL CONTROLLER DESIGN R. GOVINDARASU a, R. PARTHIBAN a and P. K. BHABA b* a Department

More information

2010 Black Engineering Building, Department of Mechanical Engineering. Iowa State University, Ames, IA, 50011

2010 Black Engineering Building, Department of Mechanical Engineering. Iowa State University, Ames, IA, 50011 Interface Energy Couplng between -tungsten Nanoflm and Few-layered Graphene Meng Han a, Pengyu Yuan a, Jng Lu a, Shuyao S b, Xaolong Zhao b, Yanan Yue c, Xnwe Wang a,*, Xangheng Xao b,* a 2010 Black Engneerng

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Chapter 7 Channel Capacty and Codng Contents 7. Channel models and channel capacty 7.. Channel models Bnary symmetrc channel Dscrete memoryless channels Dscrete-nput, contnuous-output channel Waveform

More information

SELF-IGNITION IN SUPERSONIC CONFINED FLOWS: HYDROGEN VERSUS HYDROCARBONS/HYDROGEN MIXTURES - CHEMISTRY/MIXING INTERPLAY

SELF-IGNITION IN SUPERSONIC CONFINED FLOWS: HYDROGEN VERSUS HYDROCARBONS/HYDROGEN MIXTURES - CHEMISTRY/MIXING INTERPLAY SELF-IGNITION IN SUPERSONIC CONFINED FLOWS: HYDROGEN VERSUS HYDROCARBONS/HYDROGEN MIXTURES - CHEMISTRY/MIXING INTERPLAY Vladmr SABELNIKOV ONERA, DEFA/PRA, Palaseau, France wth collaboraton P. Magre, E.

More information

DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA. 1. Matrices in Mathematica

DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA. 1. Matrices in Mathematica demo8.nb 1 DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA Obectves: - defne matrces n Mathematca - format the output of matrces - appl lnear algebra to solve a real problem - Use Mathematca to perform

More information

Coupling Element and Coupled circuits. Coupled inductor Ideal transformer Controlled sources

Coupling Element and Coupled circuits. Coupled inductor Ideal transformer Controlled sources Couplng Element and Coupled crcuts Coupled nductor Ideal transformer Controlled sources Couplng Element and Coupled crcuts Coupled elements hae more that one branch and branch oltages or branch currents

More information