1. Mean-Field Theory. 2. Bjerrum length

Size: px
Start display at page:

Download "1. Mean-Field Theory. 2. Bjerrum length"

Transcription

1 1. Mean-Feld Theory Contnuum models lke the Posson-Nernst-Planck equatons are mean-feld approxmatons whch descrbe how dscrete ons are affected by the mean concentratons c and potental φ. Each on mgrates n the mean electrc feld, whch s produced by the mean charge densty, not by the dscrete, fluctuatng charges n the molecular system. The self-consstent system of PNP equatons we have derved thus far s µ k B T ln(γ c ) + z eφ F M c µ c t + F (ε φ) ρ z ec However, dscrete on-on nteractons are a sgnfcant component of the excess chemcal potental for a charged speces n a bulk electrolytc soluton. To accurately model such systems, t s mportant to account for these dscrete nteractons.. Berrum length What s the length scale below whch electrostatc correlatons are mportant? In very dense charged systems, t s the on sze, as n solvent free onc lquds (see below). In typcal electrolytes, however, the relevant scale s the Berrum length, where the bare Coulomb energy between two elementary charges s balanced by the thermal fluctuaton energy: e e 4πεl B k B T l B 4πεkB T At larger length scales, we may expect that thermal fluctuatons are strong enough to ustfy replacng dscrete on-on Coulomb forces wth a contnuum mean-feld theory. In water at room temperature, the Berrum length s.7nm, whch s only a few molecular lengths, so t makes sense to try to use mean-feld theores based on the contnuum PNP equatons (such as Gouy-

2 Lecture 8: Electrostatc correlatons 1.66 (11) Bazant Chapman) to descrbe the dffuse part of the double layer, at least at low salt concentratons, when the Debye length greatly exceeds the Berrum length. Note that these two length scales are related as follows: 1 1 4πl B z c 8πl B I where I 1 z c s the molar onc strength, whch arses n Debye-Huckel theory, based on lnearzaton of the PNP mean-feld theory above for small voltages. (See also below.) The condton l B, whch s needed to ustfy a mean-feld theory of the dffuse part of the double layer, thus corresponds to 1 3 I 6 4π 3 l B whch says that the mean volume per on must be at least sx tmes larger than a sphere whose radus s the Berrum length. Put another way, the correlaton volume wthn one Berrum length of an on should contan fewer than 6 neghborng ons for the Debye-Huckel mean-feld theory to hold. 3. Correlaton Functons How can we go beyond mean feld theory, f we know the nteractons between dscrete partcles (e.g. Coulomb)? We smply need a statstcal descrpton of the lqud that gves us the probabltes of fndng dfferent local onc confguratons, whose energes we could n prncple calculate. From experments (e.g. neutron scatterng) or smulatons (e.g. molecular dynamcs, Monte Carlo, etc.), t s possble to measure statstcal correlatons between dscrete partcles, related to ther nteractons. For a gven system of ons of speces and speces, the number of pars of sad on, separated by a dstance r to r+dr s gven by n (r) 4πr g (r)c c where g (r) s the par correlaton functon (g s unty n a unform deal gas). In an electrolyte, we have g (r) for dfferent types of on pars. g +- (r) s the counter-on par correlaton functon, and g -- (r) s the co-on par correlaton.

3 Lecture 8: Electrostatc correlatons 1.66 (11) Bazant 3.5 g (r) r 1 r r 3 r Image by MIT OpenCourseWare. FIG. 1 Typcal g(r) for a lqud. The frst neghbor dstance s r 1, the second s r, etc. h(r) g +- (r) g (r) g++(r) o r (A) -.1 Image by MIT OpenCourseWare. FIG. 3 Total correlaton functons for a monovalent bnary electrolyte wth dameter of the on 5Å. g ++ (r) s the par correlaton functon for a central atom and a neghborng co-on and shows repulson. g +- (r) s the counter-on par correlaton functon and shows attracton. The sold lnes result from asymptotc analyss of the double layer and the dashed lnes result from settng the mean force potental equal to the sum of the core and electrostatc asymptotes.

4 Lecture 8: Electrostatc correlatons 1.66 (11) Bazant For par nteractons, the excess chemcal potental of speces s µ k B T lnγ ex 1 K (r)4πr g (r)c dr + many-body terms where K (r) par nteracton energy. The factor of 1 evaluatng all of the parwse nteractons. prevents double-countng when 4. Electrostatc Correlatons n a Dlute Electrolyte (Debye-Hückel Theory) The bare coulomb nteracton n a delectrc solvent for pont charges s gven by (z e )(z e) K 4πεr To calculate on profles n the screenng cloud, the regon of excess dffuse charge or dffuse countercharge, of a sphercal central on of speces I, we use the Debye-Hückel approxmaton c (r) g ( r)c c e z eψ k B z eψ T c 1 k B T where ψ s the perturbaton of electrostatc potental n the screenng cloud of the central on and s ψ φ φ. The fluctuatons have energy on the order of k B T whch s of a small enough magntude that the lnearzaton n the above equaton s vald. The lnear response of a screened central on s gven by the Debye-Hückel equaton for a general dlute electrolyte ψ ψ Over the length scales consdered, the potental vares only wth dstance from the central on. The potental s thus a functon of r only and the above equaton smplfes to d dψ r ψ r dr dr Because the fluctuatons n the potental decrease wth ncreasng dstance from the central on ( φ φ as r ), ψ( ). Applyng ths boundary condton, the soluton to the above equaton s a modfed sphercal Bessel functon e r λ D ψ(r) A r

5 Lecture 8: Electrostatc correlatons 1.66 (11) Bazant The constant A can be evaluated usng Gauss s law for a pont charge. The electrc feld generated about a pont charge s ndstngushable from that at the surface of a sphercally symmetrc charge dstrbuton of the same total charge. dψ z e ε dr r a 4πa z e dψ e a A 1 λ D 4πa a ε dr r a a e a A z e 4πε(a + ) Incorporatng these boundary condtons gves the screened Coulomb potental e a z e ψ(r) 4πεr(1 + a ) The par correlaton functon then becomes ( a r ) λ (z D g (r) 1 e)(z e)e 4πεk B Tr(1 + a ) Usng ths defnton for the par correlaton functon and gnorng many-body terms, the excess chemcal potental for speces s 1 (z e)(z e) (z e)(z e)e ( a r ) ex µ 1 4πr c dr a 4πεr 4πεk B Tr(1 + a ) (z e) c ( a r ) (z e ) ( z e) e z ec dr 8πεr a 8πε εk (1 + a BT ) The frst term n the above summaton s the product of the bare Coulomb potental and the bulk charge densty. Under bulk neutralty condtons, ths term s zero but would otherwse dverge. The excess chemcal potental smplfes to (z e) 1 µ ex k T ln(γ B ) 8 πε a + where s the Debye screenng length. The screenng length can also be wrtten n terms of the molar onc strength I

6 Lecture 8: Electrostatc correlatons 1.66 (11) Bazant εkbt (z e) c εk B T Ι Note that the excess chemcal potental gven by Debye-Hückel theory s negatve. The electrostatc nteracton between an on and ts oppostely charged screenng cloud s attractve, thereby lowerng the total electrostatc energy of the system. The excess chemcal potental of speces can be wrtten n terms of ts actvty coeffcent. Usng the above expresson for the screenng length, the Debye-Hückel actvty coeffcent for dlute electrolytes can be wrtten as z α Ι ln( γ ) 1 + Ba Ι 5. Ionc Lquds Ionc lquds exst both as molten salt (e.g. NaCl at C) and as room temperature onc lquds (e.g. large organc or fatty ons). RTILs can wthstand up to ±6 V, makng them good canddates for supercapactor desgner solvents. In onc lquds, there s no solvent, only hghly crowded ons, so the Gouy-Chapman-Stern model for dlute electrolytes s not vald. In fact, the Debye-Huckel screenng length s smaller than the sze of a sngle on, and the relevant length scale for electrostatc correlatons and double-layer screenng s the on sze. For hghly concentrated electrolytc solutons, the short-range Coulomb correlatons are very strong, and generally lead to overscreenng, whereby an excess of counter-ons are attracted to a central charge, leadng to an excess co-ons n the next layer. The end result s oscllatons n the charge densty untl electroneutralty s reached.

7 Lecture 8: Electrostatc correlatons 1.66 (11) Bazant Overscreenng Crowdng a V 1 kt e b V 1 kt e 4 3 V 1 C _ C + C + + C _ + _ C, C FIG. TOP: Structure of the onc-lqud double layer (n color) predcted by the modfed Posson equaton (*), n agreement wth molecular dynamcs smulatons. (a) At a moderate voltage, V 1 4 1kBTe (.6 V), the surface charge s overscreened by a monolayer of counterons, whch s corrected by an excess of coons n the second monolayer. (b) At a hgh voltage, V 1 4 1kBTe (.6 V), the crowdng of counterons extends across two monolayers and domnates overscreenng, whch now leads to a coon excess n the thrd monolayer. Because of electrostrcton, the dffuse double layer (colored ons) s more dense than the quasneutral bulk lqud (whte ons). BOTTOM: Ion profles obtaned by solvng (*) at hgh voltage, showng the structures of the top fgure. To descrbe these correlaton phenomena, a 4 th order modfed Posson-Boltzmann equaton has recently been proposed [1]: ε(1 l c ) ψ ρ eq (ψ) (*) where l c s an electrostatc correlaton length. The fourth dervatve term gves rse to the oscllatons. Ths theory s consstent wth experments and smulatons wth ρ eq (ψ) usng a lattce gas to account for the excluded volume and s convenent for mathematcal modelng. x/a Image by MIT OpenCourseWare.

V. Electrostatics. Lecture 25: Diffuse double layer structure

V. Electrostatics. Lecture 25: Diffuse double layer structure V. Electrostatcs Lecture 5: Dffuse double layer structure MIT Student Last tme we showed that whenever λ D L the electrolyte has a quas-neutral bulk (or outer ) regon at the geometrcal scale L, where there

More information

Gouy-Chapman model (1910) The double layer is not as compact as in Helmholtz rigid layer.

Gouy-Chapman model (1910) The double layer is not as compact as in Helmholtz rigid layer. CHE465/865, 6-3, Lecture 1, 7 nd Sep., 6 Gouy-Chapman model (191) The double layer s not as compact as n Helmholtz rgd layer. Consder thermal motons of ons: Tendency to ncrease the entropy and make the

More information

Electrical double layer: revisit based on boundary conditions

Electrical double layer: revisit based on boundary conditions Electrcal double layer: revst based on boundary condtons Jong U. Km Department of Electrcal and Computer Engneerng, Texas A&M Unversty College Staton, TX 77843-318, USA Abstract The electrcal double layer

More information

PES 1120 Spring 2014, Spendier Lecture 6/Page 1

PES 1120 Spring 2014, Spendier Lecture 6/Page 1 PES 110 Sprng 014, Spender Lecture 6/Page 1 Lecture today: Chapter 1) Electrc feld due to charge dstrbutons -> charged rod -> charged rng We ntroduced the electrc feld, E. I defned t as an nvsble aura

More information

Lecture 3 Electrostatic effects November 6, 2009

Lecture 3 Electrostatic effects November 6, 2009 The stablty of thn (soft) flms Lecture 3 Electrostatc effects November 6, 009 Ian Morrson 009 Revew of Lecture The dsjonng pressure s a jump n pressure at the boundary. It does not vary between the plates.

More information

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations Quantum Physcs 量 理 Robert Esberg Second edton CH 09 Multelectron atoms ground states and x-ray exctatons 9-01 By gong through the procedure ndcated n the text, develop the tme-ndependent Schroednger equaton

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015 Lecture 2. 1/07/15-1/09/15 Unversty of Washngton Department of Chemstry Chemstry 453 Wnter Quarter 2015 We are not talkng about truth. We are talkng about somethng that seems lke truth. The truth we want

More information

Solution Thermodynamics

Solution Thermodynamics Soluton hermodynamcs usng Wagner Notaton by Stanley. Howard Department of aterals and etallurgcal Engneerng South Dakota School of nes and echnology Rapd Cty, SD 57701 January 7, 001 Soluton hermodynamcs

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model EXACT OE-DIMESIOAL ISIG MODEL The one-dmensonal Isng model conssts of a chan of spns, each spn nteractng only wth ts two nearest neghbors. The smple Isng problem n one dmenson can be solved drectly n several

More information

Supplementary Notes for Chapter 9 Mixture Thermodynamics

Supplementary Notes for Chapter 9 Mixture Thermodynamics Supplementary Notes for Chapter 9 Mxture Thermodynamcs Key ponts Nne major topcs of Chapter 9 are revewed below: 1. Notaton and operatonal equatons for mxtures 2. PVTN EOSs for mxtures 3. General effects

More information

Chapter 2. Electrode/electrolyte interface: ----Structure and properties

Chapter 2. Electrode/electrolyte interface: ----Structure and properties Chapter 2 Electrode/electrolyte nterface: ----Structure and propertes Electrochemcal reactons are nterfacal reactons, the structure and propertes of electrode / electrolytc soluton nterface greatly nfluences

More information

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physcs 607 Exam 1 Please be well-organzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Probabilistic method to determine electron correlation energy

Probabilistic method to determine electron correlation energy Probablstc method to determne electron elaton energy T.R.S. Prasanna Department of Metallurgcal Engneerng and Materals Scence Indan Insttute of Technology, Bombay Mumba 400076 Inda A new method to determne

More information

This chapter illustrates the idea that all properties of the homogeneous electron gas (HEG) can be calculated from electron density.

This chapter illustrates the idea that all properties of the homogeneous electron gas (HEG) can be calculated from electron density. 1 Unform Electron Gas Ths chapter llustrates the dea that all propertes of the homogeneous electron gas (HEG) can be calculated from electron densty. Intutve Representaton of Densty Electron densty n s

More information

1st Year Thermodynamic Lectures Dr Mark R. Wormald BIBLIOGRAPHY

1st Year Thermodynamic Lectures Dr Mark R. Wormald BIBLIOGRAPHY M.R.W. -- Thermodynamcs 5 1st Year Thermodynamc Lectures Dr Mark R. Wormald Soluton thermodynamcs :- Lecture 1. Behavour of deal solutons (and solvents). Defnton of dealty. Solvent n dlute solutons, collgatve

More information

Frequency dependence of the permittivity

Frequency dependence of the permittivity Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but

More information

Equation of State Modeling of Phase Equilibrium in the Low-Density Polyethylene Process

Equation of State Modeling of Phase Equilibrium in the Low-Density Polyethylene Process Equaton of State Modelng of Phase Equlbrum n the Low-Densty Polyethylene Process H. Orbey, C. P. Boks, and C. C. Chen Ind. Eng. Chem. Res. 1998, 37, 4481-4491 Yong Soo Km Thermodynamcs & Propertes Lab.

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

If two volatile and miscible liquids are combined to form a solution, Raoult s law is not obeyed. Use the experimental data in Table 9.

If two volatile and miscible liquids are combined to form a solution, Raoult s law is not obeyed. Use the experimental data in Table 9. 9.9 Real Solutons Exhbt Devatons from Raoult s Law If two volatle and mscble lquds are combned to form a soluton, Raoult s law s not obeyed. Use the expermental data n Table 9.3: Physcal Chemstry 00 Pearson

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

1) Silicon oxide has a typical surface potential in an aqueous medium of ϕ,0

1) Silicon oxide has a typical surface potential in an aqueous medium of ϕ,0 1) Slcon oxde has a typcal surface potental n an aqueous medum of ϕ, = 7 mv n 5 mm l at ph 9. Whch concentraton of catons do you roughly expect close to the surface? What s the average dstance between

More information

Non-gaussianity in axion N-flation models

Non-gaussianity in axion N-flation models Non-gaussanty n axon N-flaton models Soo A Km Kyung Hee Unversty Based on arxv:1005.4410 by SAK, Andrew R. Lddle and Davd Seery (Sussex), and earler papers by SAK and Lddle. COSMO/CosPA 2010 @ Unversty

More information

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt Physcs 543 Quantum Mechancs II Fall 998 Hartree-Fock and the Self-consstent Feld Varatonal Methods In the dscusson of statonary perturbaton theory, I mentoned brey the dea of varatonal approxmaton schemes.

More information

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices Amplfcaton and Relaxaton of Electron Spn Polarzaton n Semconductor Devces Yury V. Pershn and Vladmr Prvman Center for Quantum Devce Technology, Clarkson Unversty, Potsdam, New York 13699-570, USA Spn Relaxaton

More information

Electrostatic Potential from Transmembrane Currents

Electrostatic Potential from Transmembrane Currents Electrostatc Potental from Transmembrane Currents Let s assume that the current densty j(r, t) s ohmc;.e., lnearly proportonal to the electrc feld E(r, t): j = σ c (r)e (1) wth conductvty σ c = σ c (r).

More information

Interconnect Modeling

Interconnect Modeling Interconnect Modelng Modelng of Interconnects Interconnect R, C and computaton Interconnect models umped RC model Dstrbuted crcut models Hgher-order waveform n dstrbuted RC trees Accuracy and fdelty Prepared

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

Quantum states of deuterons in palladium

Quantum states of deuterons in palladium Tsuchda K. Quantum states of deuterons n palladum. n Tenth Internatonal Conference on Cold Fuson. 003. Cambrdge MA: LENR-CANR.org. Ths paper was presented at the 10th Internatonal Conference on Cold Fuson.

More information

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate Internatonal Journal of Mathematcs and Systems Scence (018) Volume 1 do:10.494/jmss.v1.815 (Onlne Frst)A Lattce Boltzmann Scheme for Dffuson Equaton n Sphercal Coordnate Debabrata Datta 1 *, T K Pal 1

More information

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 -Davd Klenfeld - Fall 2005 (revsed Wnter 2011) 1 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys

More information

Supplementary information. Coulomb oscillations in a gate-controlled few-layer graphene quantum dot

Supplementary information. Coulomb oscillations in a gate-controlled few-layer graphene quantum dot Supplementary nformaton Coulomb oscllatons n a gate-controlled few-layer graphene quantum dot Ypu Song * Haonan Xong Wentao Jang Hongy Zhang Xao Xue Cheng Ma Yuln Ma Luyan Sun Hayan Wang and Lumng Duan

More information

Grand canonical Monte Carlo simulations of bulk electrolytes and calcium channels

Grand canonical Monte Carlo simulations of bulk electrolytes and calcium channels Grand canoncal Monte Carlo smulatons of bulk electrolytes and calcum channels Thess of Ph.D. dssertaton Prepared by: Attla Malascs M.Sc. n Chemstry Supervsor: Dr. Dezső Boda Unversty of Pannona Insttute

More information

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity 1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 1-6 () () () (v) (v) Overall Mass Balance Momentum

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

Appendix II Summary of Important Equations

Appendix II Summary of Important Equations W. M. Whte Geochemstry Equatons of State: Ideal GasLaw: Coeffcent of Thermal Expanson: Compressblty: Van der Waals Equaton: The Laws of Thermdynamcs: Frst Law: Appendx II Summary of Important Equatons

More information

,..., k N. , k 2. ,..., k i. The derivative with respect to temperature T is calculated by using the chain rule: & ( (5) dj j dt = "J j. k i.

,..., k N. , k 2. ,..., k i. The derivative with respect to temperature T is calculated by using the chain rule: & ( (5) dj j dt = J j. k i. Suppleentary Materal Dervaton of Eq. 1a. Assue j s a functon of the rate constants for the N coponent reactons: j j (k 1,,..., k,..., k N ( The dervatve wth respect to teperature T s calculated by usng

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Supplementary Information. Fundamental Growth Principles of Colloidal Metal Nanoparticles

Supplementary Information. Fundamental Growth Principles of Colloidal Metal Nanoparticles Electronc Supplementary Materal (ESI) for CrystEngComm. Ths journal s The Royal Socety of Chemstry 2015 Supplementary Informaton Fundamental Growth Prncples of Collodal Metal Nanopartcles Jörg Polte* a

More information

Lecture 7: Boltzmann distribution & Thermodynamics of mixing

Lecture 7: Boltzmann distribution & Thermodynamics of mixing Prof. Tbbtt Lecture 7 etworks & Gels Lecture 7: Boltzmann dstrbuton & Thermodynamcs of mxng 1 Suggested readng Prof. Mark W. Tbbtt ETH Zürch 13 März 018 Molecular Drvng Forces Dll and Bromberg: Chapters

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Assignment 4. Adsorption Isotherms

Assignment 4. Adsorption Isotherms Insttute of Process Engneerng Assgnment 4. Adsorpton Isotherms Part A: Compettve adsorpton of methane and ethane In large scale adsorpton processes, more than one compound from a mxture of gases get adsorbed,

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Temperature. Chapter Heat Engine

Temperature. Chapter Heat Engine Chapter 3 Temperature In prevous chapters of these notes we ntroduced the Prncple of Maxmum ntropy as a technque for estmatng probablty dstrbutons consstent wth constrants. In Chapter 9 we dscussed the

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski EPR Paradox and the Physcal Meanng of an Experment n Quantum Mechancs Vesseln C Nonnsk vesselnnonnsk@verzonnet Abstract It s shown that there s one purely determnstc outcome when measurement s made on

More information

Mass Transfer Processes

Mass Transfer Processes Mass Transfer Processes S. Majd Hassanzadeh Department of Earth Scences Faculty of Geoscences Utrecht Unversty Outlne: 1. Measures of Concentraton 2. Volatlzaton and Dssoluton 3. Adsorpton Processes 4.

More information

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations Physcs 178/278 - Davd Klenfeld - Wnter 2015 8 Dervaton of Network Rate Equatons from Sngle- Cell Conductance Equatons We consder a network of many neurons, each of whch obeys a set of conductancebased,

More information

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 14 GENERAL PERTURBATION THEORY CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

More information

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems Mathematca Aeterna, Vol. 1, 011, no. 06, 405 415 Applcaton of B-Splne to Numercal Soluton of a System of Sngularly Perturbed Problems Yogesh Gupta Department of Mathematcs Unted College of Engneerng &

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

4.2 Chemical Driving Force

4.2 Chemical Driving Force 4.2. CHEMICL DRIVING FORCE 103 4.2 Chemcal Drvng Force second effect of a chemcal concentraton gradent on dffuson s to change the nature of the drvng force. Ths s because dffuson changes the bondng n a

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Implicit Integration Henyey Method

Implicit Integration Henyey Method Implct Integraton Henyey Method In realstc stellar evoluton codes nstead of a drect ntegraton usng for example the Runge-Kutta method one employs an teratve mplct technque. Ths s because the structure

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 Lecture 16 8/4/14 Unversty o Washngton Department o Chemstry Chemstry 452/456 Summer Quarter 214. Real Vapors and Fugacty Henry s Law accounts or the propertes o extremely dlute soluton. s shown n Fgure

More information

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14 APPROXIMAE PRICES OF BASKE AND ASIAN OPIONS DUPON OLIVIER Prema 14 Contents Introducton 1 1. Framewor 1 1.1. Baset optons 1.. Asan optons. Computng the prce 3. Lower bound 3.1. Closed formula for the prce

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

SIO 224. m(r) =(ρ(r),k s (r),µ(r))

SIO 224. m(r) =(ρ(r),k s (r),µ(r)) SIO 224 1. A bref look at resoluton analyss Here s some background for the Masters and Gubbns resoluton paper. Global Earth models are usually found teratvely by assumng a startng model and fndng small

More information

Rate of Absorption and Stimulated Emission

Rate of Absorption and Stimulated Emission MIT Department of Chemstry 5.74, Sprng 005: Introductory Quantum Mechancs II Instructor: Professor Andre Tokmakoff p. 81 Rate of Absorpton and Stmulated Emsson The rate of absorpton nduced by the feld

More information

8.592J: Solutions for Assignment 7 Spring 2005

8.592J: Solutions for Assignment 7 Spring 2005 8.59J: Solutons for Assgnment 7 Sprng 5 Problem 1 (a) A flament of length l can be created by addton of a monomer to one of length l 1 (at rate a) or removal of a monomer from a flament of length l + 1

More information

Linear Regression Analysis: Terminology and Notation

Linear Regression Analysis: Terminology and Notation ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

More information

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 - Chapter 9R -Davd Klenfeld - Fall 2005 9 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys a set

More information

Thermodynamics General

Thermodynamics General Thermodynamcs General Lecture 1 Lecture 1 s devoted to establshng buldng blocks for dscussng thermodynamcs. In addton, the equaton of state wll be establshed. I. Buldng blocks for thermodynamcs A. Dmensons,

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2013

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2013 Lecture 8/8/3 Unversty o Washngton Departent o Chestry Chestry 45/456 Suer Quarter 3 A. The Gbbs-Duhe Equaton Fro Lecture 7 and ro the dscusson n sectons A and B o ths lecture, t s clear that the actvty

More information

Multi-electron atoms (11) 2010 update Extend the H-atom picture to more than 1 electron: H-atom sol'n use for N-elect., assume product wavefct.

Multi-electron atoms (11) 2010 update Extend the H-atom picture to more than 1 electron: H-atom sol'n use for N-elect., assume product wavefct. Mult-electron atoms (11) 2010 update Extend the H-atom pcture to more than 1 electron: VII 33 H-atom sol'n use for -elect., assume product wavefct. n ψ = φn l m where: ψ mult electron w/fct φ n l m one

More information

8. Superfluid to Mott-insulator transition

8. Superfluid to Mott-insulator transition 8. Superflud to Mott-nsulator transton Overvew Optcal lattce potentals Soluton of the Schrödnger equaton for perodc potentals Band structure Bloch oscllaton of bosonc and fermonc atoms n optcal lattces

More information

Uncertainty and auto-correlation in. Measurement

Uncertainty and auto-correlation in. Measurement Uncertanty and auto-correlaton n arxv:1707.03276v2 [physcs.data-an] 30 Dec 2017 Measurement Markus Schebl Federal Offce of Metrology and Surveyng (BEV), 1160 Venna, Austra E-mal: markus.schebl@bev.gv.at

More information

Chapter 18, Part 1. Fundamentals of Atmospheric Modeling

Chapter 18, Part 1. Fundamentals of Atmospheric Modeling Overhead Sldes for Chapter 18, Part 1 of Fundamentals of Atmospherc Modelng by Mark Z. Jacobson Department of Cvl & Envronmental Engneerng Stanford Unversty Stanford, CA 94305-4020 January 30, 2002 Types

More information

An introduction to continuum electrostatics

An introduction to continuum electrostatics Chapter An ntroducton to contnuum electrostatcs For both major subjects of ths work, foldng and ttraton, contnuum electrostatcs s of crucal mportance. Therefore, I wll gve n ths chapter a basc ntroducton

More information

SCALING OF MICRODISCHARGE DEVICES: PYRAMIDAL STRUCTURES*

SCALING OF MICRODISCHARGE DEVICES: PYRAMIDAL STRUCTURES* SCALING OF MICRODISCHARGE DEVICES: PYRAMIDAL STRUCTURES* Mark J. Kushner Dept. Electrcal and Computer Engneerng Urbana, IL 61801 USA mjk@uuc.edu http://ugelz.ece.uuc.edu October 2003 * Work supported by

More information

Comment on The Role of Concentration Dependent Static Permittivity of Electrolyte Solutions in the Debye Hückel Theory

Comment on The Role of Concentration Dependent Static Permittivity of Electrolyte Solutions in the Debye Hückel Theory Comment on The Role of Concentraton Dependent Statc Permttvty of Electrolyte Solutons n the Debye Hückel Theory Mónka Valskó and Dezső Boda Department of Physcal Chemstry, Unversty of Pannona, P. O. Box

More information

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit.

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit. Physcs 4B Solutons to Chapter 7 HW Chapter 7: Questons:, 8, 0 Problems:,,, 45, 48,,, 7, 9 Queston 7- (a) no (b) yes (c) all te Queston 7-8 0 μc Queston 7-0, c;, a;, d; 4, b Problem 7- (a) Let be the current

More information

3. Be able to derive the chemical equilibrium constants from statistical mechanics.

3. Be able to derive the chemical equilibrium constants from statistical mechanics. Lecture #17 1 Lecture 17 Objectves: 1. Notaton of chemcal reactons 2. General equlbrum 3. Be able to derve the chemcal equlbrum constants from statstcal mechancs. 4. Identfy how nondeal behavor can be

More information

STAT 3340 Assignment 1 solutions. 1. Find the equation of the line which passes through the points (1,1) and (4,5).

STAT 3340 Assignment 1 solutions. 1. Find the equation of the line which passes through the points (1,1) and (4,5). (out of 15 ponts) STAT 3340 Assgnment 1 solutons (10) (10) 1. Fnd the equaton of the lne whch passes through the ponts (1,1) and (4,5). β 1 = (5 1)/(4 1) = 4/3 equaton for the lne s y y 0 = β 1 (x x 0

More information

Chapter - 2. Distribution System Power Flow Analysis

Chapter - 2. Distribution System Power Flow Analysis Chapter - 2 Dstrbuton System Power Flow Analyss CHAPTER - 2 Radal Dstrbuton System Load Flow 2.1 Introducton Load flow s an mportant tool [66] for analyzng electrcal power system network performance. Load

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Supplementary Information for Observation of Parity-Time Symmetry in. Optically Induced Atomic Lattices

Supplementary Information for Observation of Parity-Time Symmetry in. Optically Induced Atomic Lattices Supplementary Informaton for Observaton of Party-Tme Symmetry n Optcally Induced Atomc attces Zhaoyang Zhang 1,, Yq Zhang, Jteng Sheng 3, u Yang 1, 4, Mohammad-Al Mr 5, Demetros N. Chrstodouldes 5, Bng

More information

STEADY STATE AND PSEUDO-TRANSIENT ELECTRIC POTENTIAL USING THE POISSON- BOLTZMANN EQUATION

STEADY STATE AND PSEUDO-TRANSIENT ELECTRIC POTENTIAL USING THE POISSON- BOLTZMANN EQUATION Brazlan Journal of Chemcal Engneerng ISSN - Prnted n Brazl www.abeq.org.br/bjche Vol., No., pp. 9 -, January - March, dx.do.org/.9/-.s STEADY STATE AND PSEUDO-TRANSIENT ELECTRIC POTENTIAL USING THE POISSON-

More information

3) Thermodynamic equation to characterize interfaces

3) Thermodynamic equation to characterize interfaces 3) Thermodynamc equaton to characterze nterfaces 3.1) Gbbs Model Realty: rapd contnuous change of chemcal and thermodynamc propertes Replaced by model (constant propertes up to the surface) uv bulk uv

More information

Advanced Topics in Equilibrium Statistical Mechanics

Advanced Topics in Equilibrium Statistical Mechanics Advanced Topcs n Equlbrum Statstcal Mechancs Glenn Fredrckson 10. Electrolyte and Collodal Solutons A. Systems and Models Thus far, we have restrcted our attenton to the equlbrum SM of smple fluds and

More information

Q e E i /k B. i i i i

Q e E i /k B. i i i i Water and Aqueous Solutons 3. Lattce Model of a Flud Lattce Models Lattce models provde a mnmalst, or coarse-graned, framework for descrbng the translatonal, rotatonal, and conformatonal degrees of freedom

More information

II. Equilibrium Thermodynamics. Lecture 8: The Nernst Equation

II. Equilibrium Thermodynamics. Lecture 8: The Nernst Equation II. Equlbrum Thermodynamcs Lecture 8: The Nernst Equaton Notes by MIT Student, re-wrtten by MZB 2014 February 27, 2014 1 Chemcal Actvty The fundamental thermodynamc quantty controllng transport and reactons

More information

Lecture 5.8 Flux Vector Splitting

Lecture 5.8 Flux Vector Splitting Lecture 5.8 Flux Vector Splttng 1 Flux Vector Splttng The vector E n (5.7.) can be rewrtten as E = AU (5.8.1) (wth A as gven n (5.7.4) or (5.7.6) ) whenever, the equaton of state s of the separable form

More information

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model Lecture 4. Thermodynamcs [Ch. 2] Energy, Entropy, and Avalablty Balances Phase Equlbra - Fugactes and actvty coeffcents -K-values Nondeal Thermodynamc Property Models - P-v-T equaton-of-state models -

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Classical Field Theory

Classical Field Theory Classcal Feld Theory Before we embark on quantzng an nteractng theory, we wll take a dverson nto classcal feld theory and classcal perturbaton theory and see how far we can get. The reader s expected to

More information

5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 2 May 11: Ligand Field Theory

5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 2 May 11: Ligand Field Theory 5.03, Inorganc Chemstry Prof. Danel G. Nocera Lecture May : Lgand Feld Theory The lgand feld problem s defned by the followng Hamltonan, h p Η = wth E n = KE = where = m m x y z h m Ze r hydrogen atom

More information

Grover s Algorithm + Quantum Zeno Effect + Vaidman

Grover s Algorithm + Quantum Zeno Effect + Vaidman Grover s Algorthm + Quantum Zeno Effect + Vadman CS 294-2 Bomb 10/12/04 Fall 2004 Lecture 11 Grover s algorthm Recall that Grover s algorthm for searchng over a space of sze wors as follows: consder the

More information

2 Finite difference basics

2 Finite difference basics Numersche Methoden 1, WS 11/12 B.J.P. Kaus 2 Fnte dfference bascs Consder the one- The bascs of the fnte dfference method are best understood wth an example. dmensonal transent heat conducton equaton T

More information

Computing MLE Bias Empirically

Computing MLE Bias Empirically Computng MLE Bas Emprcally Kar Wa Lm Australan atonal Unversty January 3, 27 Abstract Ths note studes the bas arses from the MLE estmate of the rate parameter and the mean parameter of an exponental dstrbuton.

More information

PHY2049 Exam 2 solutions Fall 2016 Solution:

PHY2049 Exam 2 solutions Fall 2016 Solution: PHY2049 Exam 2 solutons Fall 2016 General strategy: Fnd two resstors, one par at a tme, that are connected ether n SERIES or n PARALLEL; replace these two resstors wth one of an equvalent resstance. Now

More information

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

The equation of motion of a dynamical system is given by a set of differential equations. That is (1) Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

General Thermodynamics for Process Simulation. Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University

General Thermodynamics for Process Simulation. Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University General Thermodynamcs for Process Smulaton Dr. Jungho Cho, Professor Department of Chemcal Engneerng Dong Yang Unversty Four Crtera for Equlbra μ = μ v Stuaton α T = T β α β P = P l μ = μ l1 l 2 Thermal

More information

Solutions of execrises

Solutions of execrises Solutons of execrses 1) XPS spectrum analyss The fgure below shows an XPS spectrum measured on the surface of a clean nsoluble homo-polyether. Usng the formulas and tables n ths document, answer the followng

More information

Three-dimensional eddy current analysis by the boundary element method using vector potential

Three-dimensional eddy current analysis by the boundary element method using vector potential Physcs Electrcty & Magnetsm felds Okayama Unversty Year 1990 Three-dmensonal eddy current analyss by the boundary element method usng vector potental H. Tsubo M. Tanaka Okayama Unversty Okayama Unversty

More information