Research Article Positive Solutions for a Second-Order p-laplacian Boundary Value Problem with Impulsive Effects and Two Parameters

Size: px
Start display at page:

Download "Research Article Positive Solutions for a Second-Order p-laplacian Boundary Value Problem with Impulsive Effects and Two Parameters"

Transcription

1 Hidwi Pulihig Corporio Arc d Applied Alyi Volume 24, Aricle ID , 4 pge hp://dx.doi.org/.55/24/ Reerch Aricle Poiive Soluio for Secod-Order p-lplci Boudry Vlue Prolem wih Impulive Effec d Two Prmeer Meiqig Feg School of Applied Sciece, Beijig Iformio Sciece & Techology Uiveriy, Beijig, 92, Chi Correpodece hould e ddreed o Meiqig Feg; meiqigfeg@i.com Received April 24; Acceped 9 My 24; Pulihed 8 Jue 24 AcdemicEdior:PriciJ.Y.Wog Copyrigh 24 Meiqig Feg. Thi i ope cce ricle diriued uder he Creive Commo Ariuio Licee, which permi urericed ue, diriuio, d reproducio i y medium, provided he origil work i properly cied. The uhor coider impulive oudry vlue prolem ivolvig he oe-dimeiol p-lplci (φ p (u )) = λω () f (, u), <<, = k, Δu =k =μi k ( k, u( k )), Δu =k =, k=,2,...,, u() u () g()u()d, u () =, where λ>d μ>rewoprmeer. Uig fixed poi heorie, everl ew d more geerl exiece d mulipliciy reul re derived i erm of differe vlue of λ>d μ>. The exc upper d lower oud for hee poiive oluio re lo give. Moreover, he pproch o del wih he impulive erm i differe from erlier pproche. I hi pper, our reul cover equio wihou impulive effec d re compred wih ome rece reul y Dig d Wg.. Iroducio Impulive differeil equio, which provide url decripio of oerved evoluio procee, re regrded impor mhemicl ool for he eer uderdig of everl rel-world prolem i pplied ciece, uch populio dymic, ecology, iologicl yem, ioechology, iduril rooic, phrmcokieic, d opiml corol. Therefore, he udy of hi cl of impulive differeil equio h gied promiece, d i i rpidly growig field. For he geerl heory of impulive differeil equio, we refer he reder o [ 3], where he pplicio of impulive differeil equio c e foud i [4 2]. I priculr, we would like o meio ome reul of Li d Jig [8] dfegdxie[]. I [8], Li d Jig iveiged he followig Dirichle oudry vlue prolem wih impule effec: u () =f(, u ()), J, = k, Δu = k = I k (u ( k )), k=,2,...,m, u () =u() =, d, y virue of he fixed poi idex heory i coe, he uhor oied ome ufficie codiio for he exiece of muliple poiive oluio. () Recely, uig fixed poi heorem i coe, Feg d Xie [] coidered he exiece of poiive oluio for he followig prolem: u () =f(, u ()), J, = k, Δu = k =I k (u ( k )), k=,2,...,, u () = m 2 i= i u(ξ i ), u() = m 2 i= i u(ξ i ). Moreover, differeil equio wih p-lplci rie urlly i he udy of flow hrough porou medi p = 3/2, oliereliciyp 2,glciology p 4/3, d o forh. I rece yer, my ce of he exiece, mulipliciy, d uiquee of poiive oluio of differeil equio wih p-lplci hve rced coiderle eio [2 46]. Here, i i worh meioighe udie y Di d M [25] dkjikiyel.[26]. I [25], Di d M coidered he followig oe-dimeiol p-lplci prolem: (φ p (u )) +f(, u) =, (, ), u () =u() =. (2) (3)

2 2 Arc d Applied Alyi By uig he glol ifurcio heory, he uhor howed he exiece of odl oluio. I [26], Kjikiy e l. iveiged he followig oedimeiol p-lplci prolem: (φ p (u )) +λω() f (u) =, (, ), u () =u() =, d, y virue of he glol ifurcio heory, hey oied he exiece, oexiece, uiquee, d mulipliciy of poiive oluio well ig-chgig oluio uder uile codiio impoed o he olier erm f. A he me ime, we oice h here h ee coiderle eio o impulive differeil equio wih oe-dimeiol p-lplci. For exmple, i [3], Dig d O Reg udied he ecod-order p-lplci oudry vlueprolemivolvigimpuliveeffec: (φ p (u ())) = f(, u ()), <<, = k, Δu =k =I k (u ( k )), Δu = k =, k=,2,...,m, u () =u () =, d, vi Jee iequliy, he fir eigevlue of relev lier operor, d he Kroelkii-Zreiko fixed poi heorem, hey oied he exiece d mulipliciy of poiive oluio uder uile codiio impoed o he olier erm f d he impulive erm I k. I [33], employig he clicl fixed poi idex heorem forcompcmp,zhgdgeoiedomeufficie codiio for he exiece of muliple poiive oluio of he followig prolem: (φ p (u ())) = f(, u ()), < <, = k, Δu =k = I k (u ( k )), Δu = k =, k=,2,...,m, u () = m 2 i= i u(ξ i ), u () =. However, o he e of our kowledge, o pper h coidered he ecod-order impulive differeil equio wih oe-dimeiol p-lplci d wo prmeer ill ow; for exmple, ee [4 2, 3, 32, 43 45] d he referece herei. I hi pper, we will ue fixed poi heorem o iveige he exiece d mulipliciy of poiive oluio for ecod-order impulive differeil equio ivolvig oe-dimeiol p-lplci d wo prmeer. (4) (5) (6) Coider he followig ecod-order impulive differeil equio wih oe-dimeiol p-lplci: (φ p (u )) =λω() f (, u), <<,= k, Δu =k =μi k ( k,u( k )), Δu = k =, k=,2,...,, u () u () g () u () d, u () =, where λ>, μ>re wo prmeer, φ p () = p 2, p>, (φ p ) =φ q, (/p) + (/q) =,, >, ω my e igulr =d/or =, k (k=,2,...,,where i fixed poiive ieger) re fixed poi wih < < 2 < < k < < <,d Δu =k deoe he jump of u() = k ;hi, (7) Δu =k =u( + k ) u( k ), (8) where u( + k ) d u( k ) repree he righ-hd limi d lefhd limi of u() = k, repecively. I ddiio, ω, f, I k, d g ify he followig: (H )ωi oegive meurle fucio o (, ) d ω oyopeuiervl i (, ); (H 2 ) f C ([, ] [, + ), [, + )) wih f(, u) > for ll d u>; (H 3 )I k C ([, ] [, + ), [, + )) wih I k (, u) > (k=,2,...,)for ll d u>; (H 4 )g L [, ] i oegive d σ [,),where σ= g () d. (9) Some pecil ce of (7) hveeeiveiged.for exmple, Dig d Wg [4] coidered prolem (7) wih p = 2, λ =, μ =,dω(), [, ]. By uig Kroelkii fixed poi heorem, hey proved he exiece reul of poiive oluio of prolem (7). However, he uhor oly oied h prolem (7) h le oe poiive oluio. Moived y he pper meioed ove, we will exed he reul of [, 4, 23, 3, 33, 47, 48] oprolem(7). We remrk h o impulive differeil equio wih prmeer oly few reul hve ee oied, o o meio impulive differeil equio wih wo prmeer; ee, for ice, [2, 8, 9, 45]. Thee reul oly del wih he ce h p = 2 d μ =. My difficulie occur whe we udy prolem (7);forexmple,iidifficulocoruche coe d he operor ecue i e i dicoiuou. I i lo difficul o del wih λ d μ ecue of λ wih oedimeiol p-lplci, d μ wihou oe-dimeiolp- Lplci i he me equio (2). I hi pper, we ry o olvehikidofprolem.moreover,wewilluediffere pproch o del wih he impulive erm o oi he exiece d mulipliciy of poiive oluio for prolem (7); for deil, ee he proof of Theorem.

3 Arc d Applied Alyi 3 The re of he pper i orgized follow: i Secio 2, we e he mi reul of prolem (7). I Secio 3, we provide ome prelimiry reul, d he proof of he mi reul ogeher wih everl echicl lemm re give i Secio 4. The fil ecio of he pper coi exmple o illure he heoreicl reul. 2. Mi Reul I hi ecio, we e he mi reul, icludig exiece d mulipliciy reul of poiive oluio for prolem (7). For coveiece, we iroduce he followig oio: f = lim up u + f = lim if u + f (, u) mx J φ p (u), mi f (, u) J φ p (u), I (k) = lim up u + I (k) = lim up u I (k) = lim if u + I (k) = lim if J=[, ], f = lim up u f = lim if mx J mx J mi J mi u J mi u J I k (, u), u I k (, u), u I k (, u), u I k (, u), u k=,2,...,. f (, u) mx J φ p (u), f (, u) φ p (u), () Moreover, we chooe four umer r, r, r 2,dR ifyig where δ i defied i (23). <r<r <δr 2 <r 2 <R<+, () Theorem. Aume h (H ) (H 4 )holddf, f, I (k), d I (k) (k=,2,...,)re poiive co. The, (i) here exi λ >d μ >uch h, for y λ>λ d μ>μ,prolem(7) h poiive oluio u wih δr u () R, J; (2) δ (ii) here exi λ >d μ >uch h, for y <λ< λ d <μ<μ,prolem(7) h poiive oluio u wih propery (2). Theorem 2. Aume h (H ) (H 4 )holddf, f, I (k), d I (k) (k=,2,...,)re poiive co. The, (i) here exi λ >d μ >uch h, for y λ>λ d μ>μ,prolem(7) h poiive oluio u wih δr u () R, J; (3) (ii) here exi λ >d μ >uch h, for y <λ< λ d <μ<μ,prolem(7) h poiive oluio u wih propery (3). Remrk 3. Some ide of he proof of Theorem d 2 re from Y [47]. I [47], Y udied cl of he periodic impulive fuciol differeil equio wih wo prmeer d proved he followig exiece reul y uig well-kowfixedpoiidexheoremdueokroelkii. Theorem 4 (ee [47, Theorem3.]). Aume h (A ) (A 6 ) hold d f, f, I,dI re poiive co. If β(λf PI Q) <, ασ(λf PI Q) >, he prolem (7) h poiive ω-periodic oluio. (4) I i o difficul o ee h he codiio of Theorem 4 re o he opiml codiio which guree he exiece of le oe poiive ω-periodic oluio for he reled prolem. I fc, if or β(λf PI Q) < (5) ασ (λf PI Q) >, (6) we c prove h he prolem udied i [47] h le oe poiive ω-periodic oluio, repecively. Theorem 5. Aume h (H ) (H 4 )hold. (i) If f =d I (k) =, k =,2,...,, he here exi λ > d μ > uch h, for y λ > λ d μ>μ,prolem(7) h poiive oluio u wih propery (2). (ii) If f =d I (k) =, k =,2,...,, he here exi λ > d μ > uch h, for y λ > λ d μ>μ,prolem(7) h poiive oluio u wih propery (3). (iii) If f =f =I (k) = I (k) =, k =,2,...,, he here exi λ >d μ >uch h, for y λ>λ d μ>μ,prolem(7) h le wo poiive oluio u d u 2 wih δr u () r <δr 2 u 2 () R, J. (7) Theorem 6. Aume h (H ) (H 4 )hold. (i) If f = d I (k) =, k=,2,...,, he here exi λ >d μ >uch h, for y <λ<λ d <μ<μ,prolem(7) h poiive oluio u wih propery (2). (ii) If f = d I (k) =, k =,2,...,, he here exi λ >d μ >uch h, for y <λ<λ d <μ<μ,prolem(7) h poiive oluio u wih propery (3).

4 4 Arc d Applied Alyi (iii) If f =f =I (k) = I (k) = +, k =,2,...,, he here exi λ >d μ >uch h, for y <λ<λ d <μ<μ,prolem(7) h le wo poiive oluio u d u 2 wih δr u () r <δr 2 u 2 () R, J. (8) δ Remrk 7. Some ide of he proof of Theorem 5 d 6 re from Gref e l. [48]. 3. Prelimirie Le J =J\{, 2,..., } d le E e he Bch pce: E= {u u:j R i coiuou = k, (9) u( k )=u( k),u( + k ) exi, k=,2,...,} wih u = mx u(). We deoe Ω r := {u E: u <r} (2) for ll r>i he equel. Iourmireul,wewillmkeueofhefollowig defiiio d lemm. Defiiio 8 (ee [49]). Le E e rel Bch pce over R. A oempy cloed e P Ei id o e coe provided h (i) u + V Pfor ll u, V Pd ll, ; (ii) u, u P implie u=. Every coe P Eiduce orderig i E give y x y if d oly if y x P. Defiiio 9. Afuciou E C (, ) wih φ p (u ) C (, ) i clled oluio of (7) if i ifie (7). If u() d u() o J,heui clled poiive oluio of (7). Lemm. Aume h (H ) (H 4 )hold.the,u E C (, ) wih φ p (u ) C (, ) i oluio of prolem (7) if d oly if u Eioluioofhefollowigimpuliveiegrl equio: u () φ q (λ ω (r) f (r, u (r)) dr) d I k ( k,u( k )) + k < σ { g () [ φ q (λ ω (r) f (r, u (r)) dr) d] d +φ q (λ ω () f (, u ()) d) g () I k ( k,u( k )) d}. k < (2) Moreover, if u ipoiiveoluioofprolem(7),he mi J (22) where g () d δ=. g () d + g () d (23) Proof. Fir, uppoe h u Ei oluio of prolem (7). I i ey o ee y iegrio of (7)h φ p (u ()) +φ p (u ()) λω () f (, u ()) d. (24) By he oudry codiio u () =,wehve u () =φ q ( λω () f (, u ()) d), (25) u () =φ q ( λω () f (, u ()) d). (26) If <,iegrig(25)from o we oi u () u() φ q ( λω (r) f (r, u (r)) dr) d. (27) If < 2,iegrig(25)from o we oi u ( ) u() φ q ( λω (r) f (r, u (r)) dr) d, (28) d iegrig (25)from o we oi u () u( + )= φ q ( λω (r) f (r, u (r)) dr) d. (29) I follow h u () u() φ q ( λω (r) f (r, u (r)) dr) d I (,u( )), < 2. For k < k+, repeig he proce we hve u () =u() + φ q ( λω (r) f (r, u (r)) dr) d I k ( k,u( k )). k < Comiig hi wih he oudry codiio, we hve u () = g () d { g () [ (3) (3) φ q ( λω (r) f (r, u (r)) dr) d] d +φ q ( λω () f (, u ()) d) g () I k ( k,u( k )) d}. k < The, he proof of ufficie i complee. (32)

5 Arc d Applied Alyi 5 Coverely, if u Ei oluio of (2), he we hve he followig. Direc differeiio of (2)implie Evidely, u () =φ q ( λω () f (, u ()) d), J. (33) Defie T μ λ :K Ey u) () φ q (λ ω (r) f (r, u (r)) dr) d < k I k ( k,u( k )) + σ (φ p (u ())) = λω() f (, u ()), u () u () g () u () d, u () =. (34) { g () [ φ q (λ ω (r) f (r, u (r)) dr) d] d +φ q (λ ω () f (, u ()) d) Filly, we how h (22) hold.iiclerhu () = φ q ( λω()f(, u())d) >, which implie h u =u(), mi J u () =u(). (35) A we ume h f(, u) d ω(), weeeh y orivil oluio u of prolem (7) i cocve o J;h i, u,dhewegehu () i oicreig o J. So, for every (, ],wehve u () u() h i, u() u() u() u(). Therefore, g () u () d g () du () u () u() ; (36) g () du () g () du (). (37) Noicig h u i poiive oluio of prolem (7) d u() u () g()u()d,wehve g()u()d u(). Thu, we oi u () The lemm i proved. Defie coe K i E y g () d g () d + g () d u (). (38) K={u E:u,mi u () δ u }, (39) J where δ i defied i (23). I i ey o ee h K i cloed covex coe of E. g () I k ( k,u( k )) d}. < k (4) From (4) dlemm, iieyooihefollowig reul. Lemm. Aume h (H ) (H 4 ) hold. Prolem (7) i equivle o he fixed poi prolem of T μ λ i K. Lemm 2 (ee [47,Lemm2. d 2.2]). Aume h (H ) (H 4 )hold.the,t μ λ :K Ki compleely coiuou. The followig well-kow reul of he fixed poi i crucil i our rgume. Lemm 3 (ee [49]). Le P e coe i rel Bch pce E. Aume h Ω, Ω 2 re ouded ope e i E wih Ω, Ω Ω 2.If A:P (Ω 2 \Ω ) P (4) i compleely coiuou uch h eiher () Ax x, x P Ω,d Ax x, x P Ω 2,or () Ax x, x P Ω,d Ax x, x P Ω 2, he A h le oe fixed poi i P (Ω 2 \Ω ). 4. Proof of he Mi Reul For coveiece, we iroduce he followig oio: γ=φ q ( ω () d), σ g () d. (42) Proof of Theorem. Pr (i). Noicig h f(, u) >, I k (,u)> (k=,2,...,)for ll d u>, we c defie m r = mi {f (, u)} >, J,δr u r m = mi {m k,k=,2,...,}>, where r>, m k = mi J,δr u r {I k (, u)}, k=,2,...,. (43)

6 6 Arc d Applied Alyi Le λ ( σ p 2δγ r) m r, μ ( σ) r 2σ m. (44) The, for u K Ω r d λ>λ, μ>μ,wehve u) () φ q (λ ω (r) f (r, u (r)) dr) d I k ( k,u( k )) k < + σ { g () φ q (λ ω (r) f (r, u (r)) dr) d] d +φ q (λ ω () f (, u ()) d) g () I k ( k,u( k )) d} k < σ φ q (λ ω () f (, u ()) d) + σ μ g () I k ( k,u( k )) d k < σ λq φ q ( ω () m r d) + μ σ [ 2 g () I (,u( )) d 3 + g () (I (,u( )) 2 +I 2 ( 2,u( 2 )) ) d + + g () (I (,u( )) + I 2 ( 2,u( 2 )) = σ λq φ q ( ω () m r d) + μ σ [ g () (I (,u( )) d + +I (,u( )) ) d] + g () I 2 ( 2,u( 2 )) d g () I (,u( ))) d] σ λq φ q ( ω () m r d) > + μ σ g () I (,u( )) d σ λq m q r γ+ σ σ μm σ λ q m q r γ+ σ σ μ m 2 r+ 2 r=r, (45) which implie h Tμ λ u > u, u K Ω r, λ>λ, μ > μ. (46) If <f <+, <I <+, he here exi l >, d l 2 >d R>r>uch h where l ifie l 2 ifie f (, u) <l φ p (u), I k (, u) <l 2 u, ( J, ur, k=,2,...,), (47) 2 (+) σ φ q (λ) φ q (l ) γ (48) 2 σ μl 2. (49) Le ] =R/δ.Thu,wheu K Ω ],wehve dhewege u) () u () δ u =δ] =R, J, (5) φ q (λ ω (r) f (r, u (r)) dr) d + μi k ( k,u( k )) < k + σ { g () φ q (λ ω (r) f (r, u (r)) dr) d] d +φ q (λ ω () f (, u ()) d) g () I k ( k,u( k )) d} < k

7 Arc d Applied Alyi 7 φ q (λ ω (r) f (r, u (r)) dr) d + σ { g () k= φ q (λ ω (r) f (r, u (r)) dr) d] d +φ q (λ ω () f (, u ()) d)} I k ( k,u( k )) + σ μ g () k= I k ( k,u( k )) d φ q (λ ω (r) f (r, u (r)) dr) d ( + + σ φ q (λ ω () f (, u ()) d) k= I k ( k,u( k )) + σ μ g () σ k= I k ( k,u( k )) d φ q (λ ω (r) f (r, u (r)) dr) d + σ φ q (λ ω () f (, u ()) d) k= I k ( k,u( k )) + σ μ g () k= I k ( k,u( k )) d = + σ φ q (λ ω () f (, u ()) d) k= I k ( k,u( k )) + σ μ g () k= I k ( k,u( k )) d + σ φ q (λ ω () l φ p (u ()) d) k= l 2 u( k ) + σ μ g () k= l 2 u( k )d σ σ ) + σ φ q (l ) u φ q (λ ω () d) l 2 u + σ μσl 2 u = + σ φ q (λ) φ q (l )γ u + σ μl 2 u 2 u + 2 u = u. (5) Thi yield Tμ λ u u, u K Ω ]. (52) Applyig () of Lemm 3 o (46) d(52) yield h T h fixed poi u K (Ω ] \Ω r ) wih r u ] = (/δ)r. Hece, ice for u K we hve u() δ u for J,i follow h (2)hold.Thi give heproof of Pr(i). Pr (ii). Noicig h f(, u) >, I k (, u) > for ll d u>, we c defie M r = mx {f (, u)} >, J, u r M = mx {M k,k=,2,...,}>, where r>, M k = mx J, u r {I k (, u)}, k=,2,...,. Le (53) p ( σ) r λ ( 2 (+) γ ) M r, μ ( σ) r 2M. (54) The, for u K Ω r d λ<λ, μ<μ,wehve u) () φ q (λ ω (r) f (r, u (r)) dr) d < k I k ( k,u( k )) + σ { g () φ q (λ ω (r) f (r, u (r)) dr) d] d +φ q (λ ω () f (, u ()) d) g () I k ( k,u( k )) d} < k

8 8 Arc d Applied Alyi φ q (λ ω (r) f (r, u (r)) dr) d + σ { g () k= φ q (λ ω (r) f (r, u (r)) dr) d] d +φ q (λ ω () f (, u ()) d)} I k ( k,u( k )) + σ μ g () k= I k ( k,u( k )) d φ q (λ ω (r) f (r, u (r)) dr) d ( + + σ φ q (λ ω () f (, u ()) d) k= I k ( k,u( k )) + σ μ g () σ k= I k ( k,u( k )) d φ q (λ ω (r) f (r, u (r)) dr) d + σ φ q (λ ω () f (, u ()) d) k= I k ( k,u( k )) + σ μ g () k= I k ( k,u( k )) d = + σ φ q (λ ω () f (, u ()) d) k= I k ( k,u( k )) + σ μ g () k= + σ φ q (λ ω () M r d) k= I k ( k,u( k )) d M + σ μ g () k= M d + σ φ q (λ) φ q (M r )γ+ σ μm σ σ ) < + σ φ q (λ )φ q (M r )γ+ σ μ M 2 u + 2 u = u. (55) Thi implie h Tμ λ u < u, u K Ω r. (56) If <f <+, <I <+, he here exi l 3 >,dl 4 >d R>r>uch h where l 3 ifie l 4 ifie f (, u) >l 3 φ p (u), I k (, u) >l 4 u, ( J, ur, k=,2,...,), (57) 2 σ λq l q 3 γδ (58) 2σ σ μl 4δ. (59) Le ] =R/δ.The,foru K Ω ],weoi d i follow from (4)h u) () u () δr=], J, (6) φ q (λ ω (r) f(r,u (r))dr)d < k I k ( k,u( k )) + σ { g () φ q (λ ω (r) f(r,u (r))dr)d]d +φ q (λ ω () f(,u ())d) g () I k ( k,u( k )) d} < k σ φ q (λ ω () f(,u ())d) + σ μ g () < k I k ( k,u( k )) d

9 Arc d Applied Alyi 9 σ φ q (λ ω () f(,u ())d) + σ μ g () I (,u( )) d σ λq φ q ( ω () l 3 φ p (u ()) d) + μ σ g () l 4 u( )d σ λq l q 3 γδ u + σ σ μl 4δ u 2 u + 2 u = u, (6) which implie h Tμ λ u > u, u K Ω ]. (62) Applyig () of Lemm 3 o (56)d(62)yieldhT μ λ h fixed poi u K (Ω ] \Ω r ) wih r u ] = (/δ)r. Hece, ice for u Kwe hve u() δ u for J,ifollow h (3) hold. Thi fiihe he proof of Pr (ii). Proof of Theorem 2. Pr (i). Noicig h f(, u) >, I k (,u)> (k=,2,...,)for ll d u>, we c defie m R = mi {f (, u)} >, J, δr u R (63) m R = mi {m Rk,k=,2,...,}>, where R>, m Rk = mi J,δR u R {I k (, u)}, k=,2,...,. Le λ ( σ 2δγ R) p m R, μ ( σ) R 2σ mr. (64) The, for u K Ω R d λ>λ, μ>μ,wehve u) () φ q (λ ω (r) f (r, u (r)) dr) d < k I k ( k,u( k )) + σ { g () φ q (λ ω (r) f (r, u (r)) dr) d] d +φ q (λ ω () f (, u ()) d) g () I k ( k,u( k )) d} < k σ φ q (λ ω () f (, u ()) d) + σ μ g () < k I k ( k,u( k )) d σ φ q (λ ω () f (, u ()) d) + σ μ g () I (,u( )) d σ λq φ q ( ω () m R d) > + μ σ g () m R d σ λq m q R γ+ σ σ μm R σ λ q m q R γ+ σ σ μ m R 2 R+ 2 R=R, (65) which implie h Tμ λ u > u, u K Ω R, (66) λ>λ, μ > μ. If <f <+, <I <+, he here exi l >, l 2 >d <r<ruch h f (, u) <l φ p (u), I k (, u) <l 2 u, (67) ( J, u r, 2k=,2,...,), where l d l 2 ify (48)d(49), repecively. Therefore, for u K Ω r,wehve u) () φ q (λ ω (r) f (r, u (r)) dr) d < k I k ( k,u( k )) + σ { g () φ q (λ ω (r) f (r, u (r)) dr) d] d +φ q (λ ω () f (, u ()) d) g () I k ( k,u( k )) d} < k

10 Arc d Applied Alyi φ q (λ ω (r) f (r, u (r)) dr) d + σ { g () k= φ q (λ ω (r) f (r, u (r)) dr) d] d +φ q (λ ω () f (, u ()) d)} I k ( k,u( k )) + σ μ g () k= I k ( k,u( k )) d φ q (λ ω (r) f (r, u (r)) dr) d ( + + σ φ q (λ ω () f (, u ()) d) k= I k ( k,u( k )) + σ μ g () σ k= I k ( k,u( k )) d φ q (λ ω (r) f (r, u (r)) dr) d + σ φ q (λ ω () f (, u ()) d) k= I k ( k,u( k )) + σ μ g () k= I k ( k,u( k )) d = + σ φ q (λ ω () f (, u ()) d) k= I k ( k,u( k )) + σ μ g () k= I k ( k,u( k )) d + σ φ q (λ ω () l φ p (u ()) d) k= l 2 u( k ) + σ μ g () k= l 2 u( k )d σ σ ) + σ φ q (l ) u φ q (λ ω () d) l 2 u + σ μσl 2 u = + σ φ q (λ) φ q (l )γ u + σ μσl 2 u 2 u + 2 u = u. (68) Thi yield Tμ λ u u, u K Ω r. (69) Applyig () of Lemm 3 o (66)d(69)yieldhT μ λ h fixed poi u K (Ω R \Ω r ) wih r u R.Hece, ice for u Kwe hve u() δ u for J,ifollowh (3)hold.ThigiveheproofofPr(i). Pr (ii). Noicig h f(, u) >, I k (, u) > (k =,2,...,)for ll d u>, we c defie M R = mx {f (, u)} >, J, u R M R = mx {M Rk,k=,2,...,}>, where R>, M Rk = mx J, u R {I k (, u)}, k=,2,...,. Le λ ( σ p 2 (+) γ R) M R, μ (7) ( σ) R 2σMR. (7) The, for u K Ω R d λ<λ, μ<μ,wehve u) () φ q (λ ω (r) f (r, u (r)) dr) d < k I k ( k,u( k )) + σ { g () φ q (λ ω (r) f (r, u (r)) dr) d] d +φ q (λ ω () f (, u ()) d) g () I k ( k,u( k )) d} < k

11 Arc d Applied Alyi φ q (λ ω (r) f (r, u (r)) dr) d + σ { g () k= φ q (λ ω (r) f (r, u (r)) dr) d] d +φ q (λ ω () f (, u ()) d)} I k ( k,u( k )) + σ μ g () k= I k ( k,u( k )) d φ q (λ ω (r) f (r, u (r)) dr) d ( + + σ φ q (λ ω () f (, u ()) d) k= I k ( k,u( k )) + σ μ g () σ k= I k ( k,u( k )) d φ q (λ ω (r) f (r, u (r)) dr) d + σ φ q (λ ω () f (, u ()) d) k= I k ( k,u( k )) + σ μ g () k= I k ( k,u( k )) d = + σ φ q (λ ω () f (, u ()) d) k= I k ( k,u( k )) + σ μ g () k= + σ φ q (λ ω () M R d) k= I k ( k,u( k )) d M R + σ μ g () k= M R d + σ φ q (λ) φ q (M R )γ+ σ μm R σ σ ) < + σ φ q (λ )φ q (M R )γ+ σ μ M R 2 R+ 2 R=R. (72) Thi implie h Tμ λ u < u, u K Ω R. (73) If <f <+, <I <+, he here exi l 3 >, l 4 > d <r<ruch h f (, u) >l 3 φ p (u), I k (, u) >l 4 u (74) ( J, u r, k=,2,...,), where l 3 d l 4 ify (58)d(59), repecively. Therefore, for u K Ω r,weoi u) () φ q (λ ω (r) f (r, u (r)) dr) d < k I k ( k,u( k )) + σ { g () φ q (λ ω (r) f (r, u (r)) dr) d] d +φ q (λ ω () f (, u ()) d) g () I k ( k,u( k )) d} < k σ φ q (λ ω () f (, u ()) d) + σ μ g () I k ( k,u( k )) d < k σ φ q (λ ω () f (, u ()) d) + σ μ g () I (,u( )) d σ λq φ q ( ω () l 3 φ p (u ()) d) + μ σ g () l 4 u( k )d σ λq l q 3 γδ u + σ σ μkl 4δ u 2 u + 2 u = u, (75)

12 2 Arc d Applied Alyi which implie h Tμ λ u > u, u K Ω r. (76) Applyig () of Lemm 3 o (73)d(76)yieldhT μ λ h fixed poi u K (Ω R \Ω r ) wih r u R.Hece, ice for u Kwe hve u() δ u for J,ifollowh (3) hold. Thi fiihe he proof of Pr (ii). Proof of Theorem 5. SimilroheproofofTheorem(i) d 2(i), repecively, oe c how h Theorem 5(i) d (ii) hold. Coiderig Pr (iii), chooe wo umer r d r 2 ifyig (). By Theorem (i) d 2(i), here exi λ > d μ >uch h Tμ λ u > u, u K Ω r i, i =,2. (77) Sice f = f = I = I =,fromheproofof Theorem (i) d Theorem 2(i) d from (), i follow h Tμ λ u < u, u K Ω r, (78) Tμ λ u < u, u K Ω R. (79) Applyig Lemm 2 o (77) (79) yieldht μ λ h wo fixed poi u d u 2 uch h u K (Ω r \Ω r ) d u 2 K (Ω R \Ω r2 ). Thee re he deired diic poiive oluio of prolem (7)forλ >d μ >ifyig (7). The, he reul of Pr (iii) follow. Proof of Theorem 6. SimilroheproofofTheorem(ii) d 2(ii), repecively, oe c how h Theorem 6(i) d (ii) hold. Now, coiderig Pr (iii), chooe wo umer r d r 2 ifyig (). By Theorem (ii) d 2(ii), here exi λ > d μ >uch h Tμ λ u < u, < λ < λ, <μ<μ, u K Ω ri, i =,2. (8) Sice f = f = I = I =,fromheproofof Theorem (ii)d 2(ii)d from (), i follow h Tμ λ u > u, u K Ω r, (8) Tμ λ u > u, u K Ω R. (82) Applyig Lemm 3 o (8) (82) yieldht μ λ h wo fixed poi u d u 2 uch h u K (Ω r \Ω r ) d u 2 K (Ω R \Ω r2 ). Thee re he deired diic poiive oluio of prolem (7) for<λ<λ d <μ<μ ifyig (8). The, proof of Pr (iii) i complee. 5. A Exmple To illure how our mi reul c e ued i prcice, we pree exmple. Exmple. For p = 3/2, coider he followig oudry vlue prolem: (φ p (u )) =λ( ( )) /2 ( 2 +) /2 u p, Δu =/2 =μi ( 2,u( 2 )), Δu =/2 =, u () 2u () 2 u () d, u () =. J, Evidely, u() i he rivil oluio of prolem (83). 6. Cocluio (83) Prolem (83) h le oe poiive oluio for y λ > 6/4π d μ>3. Proof. Prolem (83) c e regrded prolem of he form (7), where =, =2,d ω () = ( ( )) /2, f(, u) =( 2 +) /2 u p, I (, u) = (+) u, g () (84) 2, J. I follow from he defiiio of ω, f, dg h (H ) (H 4 )hold,dω() i igulr = d =.By clculig, we hve ω () d = π, f f 2, I I 2, q=3, δ= 3, σ = 2, σ = 4, γ=π 2, m r = 3 r, m r = 3 r, λ 6 4π, μ 3, (85) wherer >i co. Hece, y Theorem (i), he cocluio follow, d he proof i complee. Coflic of Iere The uhor declre h here i o coflic of iere regrdig he pulicio of hi pper. Ackowledgme Thi work i poored y he Projec NSFC (378 d 732) d he Improvig Projec of Grdue Educio of Beijig Iformio Sciece d Techology Uiveriy (YJT246).

13 Arc d Applied Alyi 3 Referece [] V. Lkhmikhm, D. D. Bĭov, d P. S. Simeoov, Theory of Impulive Differeil Equio, vol.6ofserie i Moder Applied Mhemic, World Scieific, Sigpore, 989. [2] A. M. Smoĭleko d N. A. Pereyuk, Impulive Differeil Equio,vol.4ofWorld Scieific Serie o Nolier Sciece. Serie A: Moogrph d Treie, World Scieific, Sigpore, 995. [3] M.Bechohr,J.Hedero,dS.Nouy,Impulive Differeil Equio d Icluio, vol.2ofcoemporry Mhemic d I Applicio, Hidwi Pulihig Corporio, New York, NY, USA, 26. [4] R. P. Agrwl d D. O Reg, Muliple oegive oluio for ecod order impulive differeil equio, Applied Mhemic d Compuio,vol.4,o.,pp.5 59,2. [5] J.J.NieodR.Rodríguez-López, Boudry vlue prolem for cl of impulive fuciol equio, Compuer & Mhemic wih Applicio, vol.55,o.2,pp , 28. [6] X. Zhg d M. Feg, Trformio echique d fixed poi heorie o elih he poiive oluio of ecod order impulive differeil equio, Jourl of Compuiol d Applied Mhemic,vol.27,pp.7 29,24. [7] W. Dig d M. H, Periodic oudry vlue prolem for he ecod order impulive fuciol differeil equio, Applied Mhemic d Compuio,vol.55,o.3,pp , 24. [8] X. Li d D. Jig, Muliple poiive oluio of Dirichle oudry vlue prolem for ecod order impulive differeil equio, Jourl of Mhemicl Alyi d Applicio,vol.32,o.2,pp.5 54,26. [9] B. Liu d J. Yu, Exiece of oluio of m-poi oudry vlue prolem of ecod-order differeil yem wih impule, Applied Mhemic d Compuio, vol.25,o. 2-3, pp , 22. [] M. Feg d D. Xie, Muliple poiive oluio of mulipoi oudry vlue prolem for ecod-order impulive differeil equio, Jourl of Compuiol d Applied Mhemic,vol.223,o.,pp ,29. [] M. Feg, B. Du, d W. Ge, Impulive oudry vlue prolem wih iegrl oudry codiio d oe-dimeiol p-lplci, Nolier Alyi: Theory, Mehod & Applicio,vol.7,o.9,pp ,29. [2]M.Feg,X.Li,dC.Xue, Muliplepoiiveoluiofor impulive igulr oudry vlue prolem wih iegrl oudry codiio, Ieriol Jourl of Ope Prolem i Compuer Sciece d Mhemic,vol.2,o.4,pp , 29. [3] X. Zhg, M. Feg, d W. Ge, Exiece of oluio of oudry vlue prolem wih iegrl oudry codiio for ecod-order impulive iegro-differeil equio i Bch pce, Jourl of Compuiol d Applied Mhemic,vol.233,o.8,pp ,2. [4] W. Dig d Yu. Wg, New reul for cl of impulive differeil equio wih iegrl oudry codiio, Commuicio i Nolier Sciece d Numericl Simulio,vol. 8, o. 5, pp. 95 5, 23. [5] G. Ife, P. Pierml, d M. Zim, Poiive oluio for cl of olocl impulive BVP vi fixed poi idex, Topologicl Mehod i Nolier Alyi, vol.36,o.2,pp , 2. [6] T. Jkowki, Poiive oluio for ecod order impulive differeil equio ivolvig Sielje iegrl codiio, Nolier Alyi: Theory, Mehod & Applicio,vol.74,o., pp , 2. [7] Y. Liu d D. O Reg, Mulipliciy reul uig ifurcio echique for cl of oudry vlue prolem of impulive differeil equio, Commuicio i Nolier Sciece d Numericl Simulio,vol.6,o.4,pp ,2. [8] X. Ho, L. Liu, d Y. Wu, Poiive oluio for ecod order impulive differeil equio wih iegrl oudry codiio, Commuicio i Nolier Sciece d Numericl Simulio, vol. 6, o., pp., 2. [9] J. Su, H. Che, d L. Yg, The exiece d mulipliciy of oluio for impulive differeil equio wih wo prmeer vi vriiol mehod, Nolier Alyi: Theory, Mehod & Applicio,vol.73,o.2,pp ,2. [2] J. She d W. Wg, Impulive oudry vlue prolem wih olier oudry codiio, Nolier Alyi: Theory, Mehod & Applicio,vol.69,o.,pp ,28. [2] L. E. Boiud, Sedy-e urule flow wih recio, The Rocky Moui Jourl of Mhemic,vol.2,o.3,pp.993 7, 99. [22] R. Glowiki d J. Rppz, Approximio of olier ellipic prolem riig i o-newoi fluid flow model i glciology, M2AN: Mhemicl Modellig d Numericl Alyi,vol.37,o.,pp.75 86,23. [23] J. Sáchez, Muliple poiive oluio of igulr eigevlue ype prolem ivolvig he oe-dimeiol p-lplci, Jourl of Mhemicl Alyi d Applicio,vol.292,o. 2, pp. 4 44, 24. [24] G. Di, R. M, d Y. Lu, Bifurcio from ifiiy d odl oluio of quilier prolem wihou he igum codiio, Jourl of Mhemicl Alyi d Applicio, vol. 397, o., pp. 9 23, 23. [25] G. Di d R. M, Uilerl glol ifurcio pheome d odl oluio for p-lplci, Jourl of Differeil Equio,vol.252,o.3,pp ,22. [26] R. Kjikiy, Y.-H. Lee, d I. Sim, Bifurcio of ig-chgig oluio for oe-dimeiol p-lplci wih rog igulr weigh; p-ulier, Nolier Alyi: Theory, Mehod & Applicio,vol.7,o.3-4,pp ,29. [27] R. Kjikiy, Y.-H. Lee, d I. Sim, Bifurcio of ig-chgig oluio for oe-dimeiol p-lplci wih rog igulr weigh: p-uperlier, Nolier Alyi: Theory, Mehod & Applicio,vol.74,o.7,pp ,2. [28] L. Iurrig d J. Sáchez, Exc umer of oluio of iory recio-diffuio equio, Applied Mhemic d Compuio,vol.26,o.4,pp ,2. [29] D.Ji,W.Ge,dY.Yg, Theexieceofymmericpoiive oluio for Surm-Liouville-like four-poi oudry vlue prolem wih p-lplci operor, Applied Mhemic d Compuio,vol.89,o.2,pp.87 98,27. [3] R. Kjikiy, Y.-H. Lee, d I. Sim, Oe-dimeiol p- Lplci wih rog igulr idefiie weigh. I. Eigevlue, Jourl of Differeil Equio,vol.244,o.8,pp , 28. [3] Y. Dig d D. O Reg, Poiive oluio for ecod-order p-lplci impulive oudry vlue prolem, Advce i Differece Equio,vol.22,ricle59,22. [32] M. Feg, Muliple poiive oluio of fourh-order impulive differeil equio wih iegrl oudry codiio d oe-dimeiol p-lplci, Boudry Vlue Prolem, vol. 2, Aricle ID 65487, 26 pge, 2.

14 4 Arc d Applied Alyi [33] X. Zhg d W. Ge, Impulive oudry vlue prolem ivolvig he oe-dimeiol p-lplci, Nolier Alyi: Theory, Mehod & Applicio,vol.7,o.4,pp.692 7, 29. [34] A. Cd d J. Tomeček, Exreml oluio for olier fuciol φ-lplci impulive equio, Nolier Alyi: Theory, Mehod & Applicio, vol.67,o.3,pp , 27. [35] J. Hedero d H. Wg, Nolier eigevlue prolem for quilier yem, Compuer & Mhemic wih Applicio,vol.49,o.-2,pp ,25. [36] Z. Yg d D. O Reg, Poiive oluio of focl prolem for oe-dimeiol p-lplci equio, Mhemicl d Compuer Modellig,vol.55,o.7-8,pp ,22. [37] H. Lü, D. O Reg, d C. Zhog, Muliple poiive oluio for he oe-dimeiol igulr p-lplci, Applied Mhemic d Compuio,vol.33,o.2-3,pp ,22. [38] R. P.Agrwl, H. Lü, d D. O Reg, Eigevlue d he oedimeiol p-lplci, Jourl of Mhemicl Alyi d Applicio,vol.266,o.2,pp.383 4,22. [39] H. Wg, O he umer of poiive oluio of olier yem, Jourl of Mhemicl Alyi d Applicio,vol. 28,o.,pp ,23. [4] G. Boo d R. Livre, Mulipliciy heorem for he Dirichle prolem ivolvig he p-lplci, Nolier Alyi: Theory, Mehod & Applicio,vol.54,o.,pp. 7,23. [4] Z. Du, X. Li, d C. C. Tidell, A mulipliciy reul for p- Lpci oudry vlue prolem vi criicl poi heorem, Applied Mhemic d Compuio,vol.25,o.,pp , 28. [42] D.-X. M, Z.-J. Du, d W.-G. Ge, Exiece d ierio of moooe poiive oluio for mulipoi oudry vlue prolem wih p-lplci operor, Compuer & Mhemic wih Applicio,vol.5,o.5-6,pp ,25. [43] L. Bi d B. Di, Three oluio for p-lplci oudry vlue prolem wih impulive effec, Applied Mhemic d Compuio,vol.27,o.24,pp ,2. [44] J. Xu, P. Kg, d Z. Wei, Sigulr mulipoi impulive oudry vlue prolem wih p-lplci operor, Jourl of Applied Mhemic d Compuig, vol.3,o.-2,pp.5 2, 29. [45] P. Nig, Q. Hu, d W. Dig, Exiece reul for impulive differeil equio wih iegrl oudry codiio, Arc d Applied Alyi, vol.23,aricleid3469,9 pge, 23. [46] X. Zhg d M. Feg, Exiece of poiive oluio for oe-dimeiol igulr p-lplci prolem d i prmeer depedece, Jourl of Mhemicl Alyi d Applicio,vol.43,o.2,pp ,24. [47] J. Y, Exiece of poiive periodic oluio of impulive fuciol differeil equio wih wo prmeer, Jourl of Mhemicl Alyi d Applicio, vol.327,o.2,pp , 27. [48] J. R. Gref, L. Kog, d H. Wg, Exiece, mulipliciy, d depedece o prmeer for periodic oudry vlue prolem, Jourl of Differeil Equio, vol. 245, o. 5, pp , 28. [49] D. J. Guo d V. Lkhmikhm, Nolier Prolem i Arc Coe, vol.5ofnoe d Repor i Mhemic i Sciece d Egieerig, Acdemic Pre, Boo, M, USA, 988.

15 Advce i Operio Reerch Hidwi Pulihig Corporio hp:// Volume 24 Advce i Deciio Sciece Hidwi Pulihig Corporio hp:// Volume 24 Jourl of Applied Mhemic Alger Hidwi Pulihig Corporio hp:// Hidwi Pulihig Corporio hp:// Volume 24 Jourl of Proiliy d Siic Volume 24 The Scieific World Jourl Hidwi Pulihig Corporio hp:// Hidwi Pulihig Corporio hp:// Volume 24 Ieriol Jourl of Differeil Equio Hidwi Pulihig Corporio hp:// Volume 24 Volume 24 Sumi your mucrip hp:// Ieriol Jourl of Advce i Comioric Hidwi Pulihig Corporio hp:// Mhemicl Phyic Hidwi Pulihig Corporio hp:// Volume 24 Jourl of Complex Alyi Hidwi Pulihig Corporio hp:// Volume 24 Ieriol Jourl of Mhemic d Mhemicl Sciece Mhemicl Prolem i Egieerig Jourl of Mhemic Hidwi Pulihig Corporio hp:// Volume 24 Hidwi Pulihig Corporio hp:// Volume 24 Volume 24 Hidwi Pulihig Corporio hp:// Volume 24 Dicree Mhemic Jourl of Volume 24 Hidwi Pulihig Corporio hp:// Dicree Dymic i Nure d Sociey Jourl of Fucio Spce Hidwi Pulihig Corporio hp:// Arc d Applied Alyi Volume 24 Hidwi Pulihig Corporio hp:// Volume 24 Hidwi Pulihig Corporio hp:// Volume 24 Ieriol Jourl of Jourl of Sochic Alyi Opimizio Hidwi Pulihig Corporio hp:// Hidwi Pulihig Corporio hp:// Volume 24 Volume 24

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions Reserch Ivey: Ieriol Jourl Of Egieerig Ad Sciece Vol., Issue (April 3), Pp 8- Iss(e): 78-47, Iss(p):39-6483, Www.Reserchivey.Com Exisece Of Soluios For Nolier Frciol Differeil Equio Wih Iegrl Boudry Codiios,

More information

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO

More information

Forced Oscillation of Nonlinear Impulsive Hyperbolic Partial Differential Equation with Several Delays

Forced Oscillation of Nonlinear Impulsive Hyperbolic Partial Differential Equation with Several Delays Jourl of Applied Mhemics d Physics, 5, 3, 49-55 Published Olie November 5 i SciRes hp://wwwscirporg/ourl/mp hp://dxdoiorg/436/mp5375 Forced Oscillio of Nolier Impulsive Hyperbolic Pril Differeil Equio

More information

Local Fractional Kernel Transform in Fractal Space and Its Applications

Local Fractional Kernel Transform in Fractal Space and Its Applications From he SelecedWorks of Xio-J Yg 22 Locl Frciol Kerel Trsform i Frcl Spce d Is Applicios Yg Xioj Aville : hps://works.epress.com/yg_ioj/3/ Advces i Compuiol Mhemics d is Applicios 86 Vol. No. 2 22 Copyrigh

More information

ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION

ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION N.S. BARNETT, S.S. DRAGOMIR, AND G. HANNA Absrc. I his pper we poi ou pproximio for he Fourier rsform for fucios

More information

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions. Segi Rhm, Mohmd Rfi (2014) Iegrl rform mehod for olvig frciol dymic equio o ime cle. Abrc d Applied Alyi, 2014 (2014). pp. 1-10. ISSN 1085-3375 Acce from he Uiveriy of Noighm repoiory: hp://epri.oighm.c.uk/27710/1/iegrl%20rform%20mehod%20for

More information

Special Functions. Leon M. Hall. Professor of Mathematics University of Missouri-Rolla. Copyright c 1995 by Leon M. Hall. All rights reserved.

Special Functions. Leon M. Hall. Professor of Mathematics University of Missouri-Rolla. Copyright c 1995 by Leon M. Hall. All rights reserved. Specil Fucios Leo M. Hll Professor of Mhemics Uiversiy of Missouri-Roll Copyrigh c 995 y Leo M. Hll. All righs reserved. Chper 5. Orhogol Fucios 5.. Geerig Fucios Cosider fucio f of wo vriles, ( x,), d

More information

Boundary Value Problems of Conformable. Fractional Differential Equation with Impulses

Boundary Value Problems of Conformable. Fractional Differential Equation with Impulses Applied Meicl Scieces Vol 2 28 o 8 377-397 HIKARI Ld www-irico ps://doiorg/2988/s28823 Boudry Vlue Probles of Coforble Frciol Differeil Equio wi Ipulses Arisr Tgvree Ci Tipryoo d Apisi Ppogpu Depre of

More information

An Extension of Hermite Polynomials

An Extension of Hermite Polynomials I J Coemp Mh Scieces, Vol 9, 014, o 10, 455-459 HIKARI Ld, wwwm-hikricom hp://dxdoiorg/101988/ijcms0144663 A Exesio of Hermie Polyomils Ghulm Frid Globl Isiue Lhore New Grde Tow, Lhore, Pkis G M Hbibullh

More information

Positive and negative solutions of a boundary value problem for a

Positive and negative solutions of a boundary value problem for a Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference

More information

Theoretical Physics Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter Q Notes. Laplace Transforms. Q1. The Laplace Transform.

Theoretical Physics Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter Q Notes. Laplace Transforms. Q1. The Laplace Transform. Theoreical Phyic Prof. Ruiz, UNC Aheville, docorphy o YouTue Chaper Q Noe. Laplace Traform Q1. The Laplace Traform. Pierre-Simo Laplace (1749-187) Courey School of Mhemic ad Siic Uiveriy of S. Adrew, Scolad

More information

VARIATIONAL ITERATION METHOD (VIM) FOR SOLVING PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS

VARIATIONAL ITERATION METHOD (VIM) FOR SOLVING PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS Jourl of Theoreicl d Applied Iformio Techology h Jue 16. Vol.88. No. 5-16 JATIT & LLS. All righs reserved. ISSN: 199-8645 www.ji.org E-ISSN: 1817-195 VARIATIONAL ITERATION ETHOD VI FOR SOLVING PARTIAL

More information

RESEARCH PAPERS FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

RESEARCH PAPERS FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA RESEARCH PAPERS FACULTY OF MATERALS SCENCE AND TECHNOLOGY N TRNAVA SLOVAK UNVERSTY OF TECHNOLOGY N BRATSLAVA Numer 8 SNGULARLY PERTURBED LNEAR NEUMANN PROBLEM WTH THE CHARACTERSTC ROOTS ON THE MAGNARY

More information

Supplement: Gauss-Jordan Reduction

Supplement: Gauss-Jordan Reduction Suppleme: Guss-Jord Reducio. Coefficie mri d ugmeed mri: The coefficie mri derived from sysem of lier equios m m m m is m m m A O d he ugmeed mri derived from he ove sysem of lier equios is [ ] m m m m

More information

NATURAL TRANSFORM AND SOLUTION OF INTEGRAL EQUATIONS FOR DISTRIBUTION SPACES

NATURAL TRANSFORM AND SOLUTION OF INTEGRAL EQUATIONS FOR DISTRIBUTION SPACES Americ J o Mhemic d Sciece Vol 3 o - Jry 4 Copyrih Mid Reder Plicio ISS o: 5-3 ATURAL TRASFORM AD SOLUTIO OF ITERAL EQUATIOS FOR DISTRIBUTIO SPACES Deh Looker d P Berji Deprme o Mhemic Fcly o Sciece J

More information

F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics

F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics F.Y. Diplom : Sem. II [CE/CR/CS] Applied Mhemics Prelim Quesio Pper Soluio Q. Aemp y FIVE of he followig : [0] Q. () Defie Eve d odd fucios. [] As.: A fucio f() is sid o e eve fucio if f() f() A fucio

More information

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3 The Cumulive Disribuio Fucio (cd) ONE RANDOM VARIABLE cd is deied s he probbiliy o he eve { x}: F ( ) [ ] x P x x - Applies o discree s well s coiuous RV. Exmple: hree osses o coi x 8 3 x 8 8 F 3 3 7 x

More information

ON BILATERAL GENERATING FUNCTIONS INVOLVING MODIFIED JACOBI POLYNOMIALS

ON BILATERAL GENERATING FUNCTIONS INVOLVING MODIFIED JACOBI POLYNOMIALS Jourl of Sciece d Ars Yer 4 No 227-6 24 ORIINAL AER ON BILATERAL ENERATIN FUNCTIONS INVOLVIN MODIFIED JACOBI OLYNOMIALS CHANDRA SEKHAR BERA Muscri received: 424; Acceed er: 3524; ublished olie: 3624 Absrc

More information

A new approach to Kudryashov s method for solving some nonlinear physical models

A new approach to Kudryashov s method for solving some nonlinear physical models Ieriol Jourl of Physicl Scieces Vol. 7() pp. 860-866 0 My 0 Avilble olie hp://www.cdeicourls.org/ijps DOI: 0.897/IJPS.07 ISS 99-90 0 Acdeic Jourls Full Legh Reserch Pper A ew pproch o Kudryshov s ehod

More information

ON SOME FRACTIONAL PARABOLIC EQUATIONS DRIVEN BY FRACTIONAL GAUSSIAN NOISE

ON SOME FRACTIONAL PARABOLIC EQUATIONS DRIVEN BY FRACTIONAL GAUSSIAN NOISE IJRRAS 6 3) Februry www.rppress.com/volumes/vol6issue3/ijrras_6_3_.pdf ON SOME FRACIONAL ARABOLIC EQUAIONS RIVEN BY FRACIONAL GAUSSIAN NOISE Mhmoud M. El-Bori & hiri El-Sid El-Ndi Fculy of Sciece Alexdri

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form Joural of Applied Mahemaics Volume 03, Aricle ID 47585, 7 pages hp://dx.doi.org/0.55/03/47585 Research Aricle A Geeralized Noliear Sum-Differece Iequaliy of Produc Form YogZhou Qi ad Wu-Sheg Wag School

More information

Transient Solution of the M/M/C 1 Queue with Additional C 2 Servers for Longer Queues and Balking

Transient Solution of the M/M/C 1 Queue with Additional C 2 Servers for Longer Queues and Balking Jourl of Mhemics d Sisics 4 (): 2-25, 28 ISSN 549-3644 28 Sciece ublicios Trsie Soluio of he M/M/C Queue wih Addiiol C 2 Servers for Loger Queues d Blkig R. O. Al-Seedy, A. A. El-Sherbiy,,2 S. A. EL-Shehwy

More information

. Since P-U I= P+ (p-l)} Aap Since pn for every GF(pn) we have A pn A Therefore. As As. A,Ap. (Zp,+,.) ON FUNDAMENTAL SETS OVER A FINITE FIELD

. Since P-U I= P+ (p-l)} Aap Since pn for every GF(pn) we have A pn A Therefore. As As. A,Ap. (Zp,+,.) ON FUNDAMENTAL SETS OVER A FINITE FIELD Ie J Mh & Mh Sci Vol 8 No 2 (1985) 373-388 373 ON FUNDAMENTAL SETS OVER A FINITE FIELD YOUSEF ABBAS d JOSEH J LIANG Dee of Mheic Uiveiy of Souh Floid T, Floid 33620 USA (Received Mch 3, 1983) ABSTRACT

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

CHAPTER 2 Quadratic diophantine equations with two unknowns

CHAPTER 2 Quadratic diophantine equations with two unknowns CHAPTER - QUADRATIC DIOPHANTINE EQUATIONS WITH TWO UNKNOWNS 3 CHAPTER Quadraic diophaie equaio wih wo ukow Thi chaper coi of hree ecio. I ecio (A), o rivial iegral oluio of he biar quadraic diophaie equaio

More information

HOMEWORK 6 - INTEGRATION. READING: Read the following parts from the Calculus Biographies that I have given (online supplement of our textbook):

HOMEWORK 6 - INTEGRATION. READING: Read the following parts from the Calculus Biographies that I have given (online supplement of our textbook): MAT 3 CALCULUS I 5.. Dokuz Eylül Uiversiy Fculy of Sciece Deprme of Mhemics Isrucors: Egi Mermu d Cell Cem Srıoğlu HOMEWORK 6 - INTEGRATION web: hp://kisi.deu.edu.r/egi.mermu/ Tebook: Uiversiy Clculus,

More information

Types Ideals on IS-Algebras

Types Ideals on IS-Algebras Ieraioal Joural of Maheaical Aalyi Vol. 07 o. 3 635-646 IARI Ld www.-hikari.co hp://doi.org/0.988/ija.07.7466 Type Ideal o IS-Algebra Sudu Najah Jabir Faculy of Educaio ufa Uiveriy Iraq Copyrigh 07 Sudu

More information

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead)

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead) Week 8 Lecure 3: Problems 49, 5 Fourier lysis Coursewre pp 6-7 (do look Frech very cofusig look i he Coursewre ised) Fourier lysis ivolves ddig wves d heir hrmoics, so i would hve urlly followed fer he

More information

International Journal of Computer Sciences and Engineering. Research Paper Volume-6, Issue-1 E-ISSN:

International Journal of Computer Sciences and Engineering. Research Paper Volume-6, Issue-1 E-ISSN: Ieriol Jourl of Compuer Scieces d Egieerig Ope ccess Reserch Pper Volume-6, Issue- E-ISSN: 47-69 pplicios of he boodh Trsform d he Homoopy Perurbio Mehod o he Nolier Oscillors P.K. Ber *, S.K. Ds, P. Ber

More information

The Trigonometric Representation of Complex Type Number System

The Trigonometric Representation of Complex Type Number System Ieriol Jourl of Scieific d Reserch Pulicios Volume 7 Issue Ocoer 7 587 ISSN 5-353 The Trigoomeric Represeio of Complex Type Numer Sysem ThymhyPio Jude Nvih Deprme of Mhemics Eser Uiversiy Sri Lk Asrc-

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecure 9, Sae Space Repreeaio Emam Fahy Deparme of Elecrical ad Corol Egieerig email: emfmz@aa.edu hp://www.aa.edu/cv.php?dip_ui=346&er=6855 Trafer Fucio Limiaio TF = O/P I/P ZIC

More information

Elzaki transform and the decomposition method for nonlinear fractional partial differential equations

Elzaki transform and the decomposition method for nonlinear fractional partial differential equations I. J. Ope Proble Cop. Mh. Vol. 9 No. Deceber ISSN 998-; Copyrigh ICSRS Publicio.i-cr.org lzi ror d he decopoiio ehod or olier rciol pril diereil equio Djelloul ZIN Depre o Phyic Uieriy o Hib Bebouli Pole

More information

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming*

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming* The Eighh Ieraioal Symposium o Operaios esearch ad Is Applicaios (ISOA 9) Zhagjiajie Chia Sepember 2 22 29 Copyrigh 29 OSC & APOC pp 33 39 Some Properies of Semi-E-Covex Fucio ad Semi-E-Covex Programmig*

More information

Citation Abstract and Applied Analysis, 2013, v. 2013, article no

Citation Abstract and Applied Analysis, 2013, v. 2013, article no Tile An Opil-Type Inequliy in Time Scle Auhor() Cheung, WS; Li, Q Ciion Arc nd Applied Anlyi, 13, v. 13, ricle no. 53483 Iued De 13 URL hp://hdl.hndle.ne/17/181673 Righ Thi work i licened under Creive

More information

NOTES ON BERNOULLI NUMBERS AND EULER S SUMMATION FORMULA. B r = [m = 0] r

NOTES ON BERNOULLI NUMBERS AND EULER S SUMMATION FORMULA. B r = [m = 0] r NOTES ON BERNOULLI NUMBERS AND EULER S SUMMATION FORMULA MARK WILDON. Beroulli umbers.. Defiiio. We defie he Beroulli umbers B m for m by m ( m + ( B r [m ] r r Beroulli umbers re med fer Joh Beroulli

More information

Computable Analysis of the Solution of the Nonlinear Kawahara Equation

Computable Analysis of the Solution of the Nonlinear Kawahara Equation Diache Lu e al IJCSE April Vol Iue 49-64 Compuale Aalyi of he Soluio of he Noliear Kawahara Equaio Diache Lu Jiai Guo Noliear Scieific eearch Ceer Faculy of Sciece Jiagu Uiveri Zhejiag Jiagu 3 Chia dclu@uj.edu.c

More information

S n. = n. Sum of first n terms of an A. P is

S n. = n. Sum of first n terms of an A. P is PROGREION I his secio we discuss hree impora series amely ) Arihmeic Progressio (A.P), ) Geomeric Progressio (G.P), ad 3) Harmoic Progressio (H.P) Which are very widely used i biological scieces ad humaiies.

More information

The Inverse of Power Series and the Partial Bell Polynomials

The Inverse of Power Series and the Partial Bell Polynomials 1 2 3 47 6 23 11 Joural of Ieger Sequece Vol 15 2012 Aricle 1237 The Ivere of Power Serie ad he Parial Bell Polyomial Miloud Mihoubi 1 ad Rachida Mahdid 1 Faculy of Mahemaic Uiveriy of Sciece ad Techology

More information

ON PRODUCT SUMMABILITY OF FOURIER SERIES USING MATRIX EULER METHOD

ON PRODUCT SUMMABILITY OF FOURIER SERIES USING MATRIX EULER METHOD Ieriol Jourl o Advces i Egieerig & Techology Mrch IJAET ISSN: 3-963 N PRDUCT SUMMABILITY F FURIER SERIES USING MATRIX EULER METHD BPPdhy Bii Mlli 3 UMisr d 4 Mhedr Misr Depre o Mheics Rold Isiue o Techology

More information

Coefficient Inequalities for Certain Subclasses. of Analytic Functions

Coefficient Inequalities for Certain Subclasses. of Analytic Functions I. Jourl o Mh. Alysis, Vol., 00, o. 6, 77-78 Coeiie Iequliies or Ceri Sulsses o Alyi Fuios T. Rm Reddy d * R.. Shrm Deprme o Mhemis, Kkiy Uiversiy Wrgl 506009, Adhr Prdesh, Idi reddyr@yhoo.om, *rshrm_005@yhoo.o.i

More information

S.E. Sem. III [EXTC] Applied Mathematics - III

S.E. Sem. III [EXTC] Applied Mathematics - III S.E. Sem. III [EXTC] Applied Mhemic - III Time : 3 Hr.] Prelim Pper Soluio [Mrk : 8 Q.() Fid Lplce rform of e 3 co. [5] A.: L{co }, L{ co } d ( ) d () L{ co } y F.S.T. 3 ( 3) Le co 3 Q.() Prove h : f (

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

An arithmetic interpretation of generalized Li s criterion

An arithmetic interpretation of generalized Li s criterion A riheic ierpreio o geerlized Li crierio Sergey K. Sekkii Lboroire de Phyique de l Mière Vive IPSB Ecole Polyechique Fédérle de Lue BSP H 5 Lue Swizerld E-il : Serguei.Sekki@epl.ch Recely we hve eblihed

More information

Research Article The General Solution of Differential Equations with Caputo-Hadamard Fractional Derivatives and Noninstantaneous Impulses

Research Article The General Solution of Differential Equations with Caputo-Hadamard Fractional Derivatives and Noninstantaneous Impulses Hindwi Advnce in Mhemicl Phyic Volume 207, Aricle ID 309473, pge hp://doi.org/0.55/207/309473 Reerch Aricle The Generl Soluion of Differenil Equion wih Cpuo-Hdmrd Frcionl Derivive nd Noninnneou Impule

More information

LOCUS 1. Definite Integration CONCEPT NOTES. 01. Basic Properties. 02. More Properties. 03. Integration as Limit of a Sum

LOCUS 1. Definite Integration CONCEPT NOTES. 01. Basic Properties. 02. More Properties. 03. Integration as Limit of a Sum LOCUS Defiie egrio CONCEPT NOTES. Bsic Properies. More Properies. egrio s Limi of Sum LOCUS Defiie egrio As eplied i he chper iled egrio Bsics, he fudmel heorem of clculus ells us h o evlue he re uder

More information

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017 Deparme of Ecoomic The Ohio Sae Uiveriy Ecoomic 8723 Macroecoomic Theory Problem Se 3 Skech of Soluio Profeor Sajay Chugh Sprig 27 Taylor Saggered Nomial Price-Seig Model There are wo group of moopoliically-compeiive

More information

Meromorphic Functions Sharing Three Values *

Meromorphic Functions Sharing Three Values * Alied Maheaic 11 718-74 doi:1436/a11695 Pulihed Olie Jue 11 (h://wwwscirporg/joural/a) Meroorhic Fucio Sharig Three Value * Arac Chagju Li Liei Wag School o Maheaical Sciece Ocea Uiveriy o Chia Qigdao

More information

Degree of Approximation of Conjugate of Signals (Functions) by Lower Triangular Matrix Operator

Degree of Approximation of Conjugate of Signals (Functions) by Lower Triangular Matrix Operator Alied Mhemics 2 2 448-452 doi:.4236/m.2.2226 Pulished Olie Decemer 2 (h://www.scirp.org/jourl/m) Degree of Aroimio of Cojuge of Sigls (Fucios) y Lower Trigulr Mri Oeror Asrc Vishu Nry Mishr Huzoor H. Kh

More information

Available online at J. Math. Comput. Sci. 4 (2014), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 4 (2014), No. 4, ISSN: Available olie a hp://sci.org J. Mah. Compu. Sci. 4 (2014), No. 4, 716-727 ISSN: 1927-5307 ON ITERATIVE TECHNIQUES FOR NUMERICAL SOLUTIONS OF LINEAR AND NONLINEAR DIFFERENTIAL EQUATIONS S.O. EDEKI *, A.A.

More information

Fourier series representations of the logarithms of the Euler gamma function and the Barnes multiple gamma functions. Donal F.

Fourier series representations of the logarithms of the Euler gamma function and the Barnes multiple gamma functions. Donal F. Fourier erie repreeio of he logrihm of he Euler gmm fucio d he Bre muliple gmm fucio Dol F. Coo dcoo@bopeworld.com 5 Mrch 9 Abrc Kummer Fourier erie for log Γ ( ) i well ow, hvig bee dicovered i 847. I

More information

Extension of Hardy Inequality on Weighted Sequence Spaces

Extension of Hardy Inequality on Weighted Sequence Spaces Jourl of Scieces Islic Reublic of Ir 20(2): 59-66 (2009) Uiversiy of ehr ISS 06-04 h://sciecesucir Eesio of Hrdy Iequliy o Weighed Sequece Sces R Lshriour d D Foroui 2 Dere of Mheics Fculy of Mheics Uiversiy

More information

On Absolute Indexed Riesz Summability of Orthogonal Series

On Absolute Indexed Riesz Summability of Orthogonal Series Ieriol Jourl of Couiol d Alied Mheics. ISSN 89-4966 Volue 3 Nuer (8). 55-6 eserch Idi Pulicios h:www.riulicio.co O Asolue Ideed iesz Suiliy of Orhogol Series L. D. Je S. K. Piry *. K. Ji 3 d. Sl 4 eserch

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

Variational Iteration Method for Solving Differential Equations with Piecewise Constant Arguments

Variational Iteration Method for Solving Differential Equations with Piecewise Constant Arguments I.J. Egieerig ad Maufacurig, 1,, 36-43 Publihed Olie April 1 i MECS (hp://www.mec-pre.e) DOI: 1.5815/ijem.1..6 Available olie a hp://www.mec-pre.e/ijem Variaioal Ieraio Mehod for Solvig Differeial Equaio

More information

Reinforcement Learning

Reinforcement Learning Reiforceme Corol lerig Corol polices h choose opiml cios Q lerig Covergece Chper 13 Reiforceme 1 Corol Cosider lerig o choose cios, e.g., Robo lerig o dock o bery chrger o choose cios o opimize fcory oupu

More information

arxiv: v1 [math.nt] 13 Dec 2010

arxiv: v1 [math.nt] 13 Dec 2010 WZ-PROOFS OF DIVERGENT RAMANUJAN-TYPE SERIES arxiv:0.68v [mah.nt] Dec 00 JESÚS GUILLERA Abrac. We prove ome diverge Ramauja-ype erie for /π /π applyig a Bare-iegral raegy of he WZ-mehod.. Wilf-Zeilberger

More information

DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR

DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR Bllei UASVM, Horilre 65(/008 pissn 1843-554; eissn 1843-5394 DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR Crii C. MERCE Uiveriy of Agrilrl iee d Veeriry Mediie Clj-Npo,

More information

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c)

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c) per I. Le α 7 d β 7. The α d β re he roos o he equio, such h α α, β β, --- α β d αβ. For, α β For, α β α β αβ 66 The seme is rue or,. ssume Cosider, α β d α β y deiiio α α α α β or some posiive ieer.

More information

ECE 636: Systems identification

ECE 636: Systems identification ECE 636: Sysems ideificio Lecures 7 8 Predicio error mehods Se spce models Coiuous ime lier se spce spce model: x ( = Ax( + Bu( + w( y( = Cx( + υ( A:, B: m, C: Discree ime lier se spce model: x( + = A(

More information

Fractional Fourier Series with Applications

Fractional Fourier Series with Applications Aeric Jourl o Couiol d Alied Mheics 4, 4(6): 87-9 DOI: 593/jjc446 Frciol Fourier Series wih Alicios Abu Hd I, Khlil R * Uiversiy o Jord, Jord Absrc I his er, we iroduce coorble rciol Fourier series We

More information

Integration and Differentiation

Integration and Differentiation ome Clculus bckgroud ou should be fmilir wih, or review, for Mh 404 I will be, for he mos pr, ssumed ou hve our figerips he bsics of (mulivrible) fucios, clculus, d elemer differeil equios If here hs bee

More information

Common Fixed Point Theorem in Intuitionistic Fuzzy Metric Space via Compatible Mappings of Type (K)

Common Fixed Point Theorem in Intuitionistic Fuzzy Metric Space via Compatible Mappings of Type (K) Ieraioal Joural of ahemaics Treds ad Techology (IJTT) Volume 35 umber 4- July 016 Commo Fixed Poi Theorem i Iuiioisic Fuzzy eric Sace via Comaible aigs of Tye (K) Dr. Ramaa Reddy Assisa Professor De. of

More information

Two Implicit Runge-Kutta Methods for Stochastic Differential Equation

Two Implicit Runge-Kutta Methods for Stochastic Differential Equation Alied Mahemaic, 0, 3, 03-08 h://dx.doi.org/0.436/am.0.306 Publihed Olie Ocober 0 (h://www.scirp.org/oural/am) wo mlici Ruge-Kua Mehod for Sochaic Differeial quaio Fuwe Lu, Zhiyog Wag * Dearme of Mahemaic,

More information

Some Newton s Type Inequalities for Geometrically Relative Convex Functions ABSTRACT. 1. Introduction

Some Newton s Type Inequalities for Geometrically Relative Convex Functions ABSTRACT. 1. Introduction Malaysia Joural of Mahemaical Scieces 9(): 49-5 (5) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/joural Some Newo s Type Ieualiies for Geomerically Relaive Covex Fucios

More information

TIME RESPONSE Introduction

TIME RESPONSE Introduction TIME RESPONSE Iroducio Time repoe of a corol yem i a udy o how he oupu variable chage whe a ypical e ipu igal i give o he yem. The commoly e ipu igal are hoe of ep fucio, impule fucio, ramp fucio ad iuoidal

More information

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 3 Ver. IV (My - Jue 7), PP -8 www.iosrjourls.org Gree s Fuctio Approch to Solve Nolier Secod Order Four Poit Directiol

More information

Solving Wave and Diffusion Equations on Cantor Sets

Solving Wave and Diffusion Equations on Cantor Sets Proceedigs o he Pkis Acdemy o Scieces 5 : 8 87 5 Copyrigh Pkis Acdemy o Scieces ISSN: 77-969 pri 6-448 olie Pkis Acdemy o Scieces Reserch Aricle Solvig Wve d Disio qios o Cor Ses Jmshd Ahmd * d Syed Tsee

More information

Asymptotic Properties of Solutions of Two Dimensional Neutral Difference Systems

Asymptotic Properties of Solutions of Two Dimensional Neutral Difference Systems Avilble t http://pvmuedu/m Appl Appl Mth ISSN: 192-9466 Vol 8, Iue 2 (December 21), pp 585 595 Applictio d Applied Mthemtic: A Itertiol Jourl (AAM) Aymptotic Propertie of Solutio of Two Dimeiol Neutrl

More information

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs America Joural of Compuaioal Mahemaics, 04, 4, 80-88 Published Olie Sepember 04 i SciRes. hp://www.scirp.org/joural/ajcm hp://dx.doi.org/0.436/ajcm.04.4404 Mea Square Coverge Fiie Differece Scheme for

More information

Spherical refracting surface. Here, the outgoing rays are on the opposite side of the surface from the Incoming rays.

Spherical refracting surface. Here, the outgoing rays are on the opposite side of the surface from the Incoming rays. Sphericl refrctig urfce Here, the outgoig ry re o the oppoite ide of the urfce from the Icomig ry. The oject i t P. Icomig ry PB d PV form imge t P. All prxil ry from P which trike the phericl urfce will

More information

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Suppleme for SADAGRAD: Srogly Adapive Sochasic Gradie Mehods" Zaiyi Che * 1 Yi Xu * Ehog Che 1 iabao Yag 1. Proof of Proposiio 1 Proposiio 1. Le ɛ > 0 be fixed, H 0 γi, γ g, EF (w 1 ) F (w ) ɛ 0 ad ieraio

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

Chapter #5 EEE Control Systems

Chapter #5 EEE Control Systems Sprig EEE Chpter #5 EEE Cotrol Sytem Deig Bed o Root Locu Chpter / Sprig EEE Deig Bed Root Locu Led Cotrol (equivlet to PD cotrol) Ued whe the tedy tte propertie of the ytem re ok but there i poor performce,

More information

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar Ieraioal Joural of Scieific ad Research Publicaios, Volue 2, Issue 7, July 22 ISSN 225-353 EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D S Palikar Depare of Maheaics, Vasarao Naik College, Naded

More information

CONTROL SYSTEMS. Chapter 3 : Time Response Analysis

CONTROL SYSTEMS. Chapter 3 : Time Response Analysis CONTROL SYSTEMS Chper 3 : Time Repoe Alyi GATE Objecive & Numericl Type Soluio Queio 4 [Prcice Book] [GATE EC 99 IIT-Mdr : Mrk] A uiy feedbck corol yem h he ope loop rfer fucio. 4( ) G () ( ) If he ipu

More information

EE757 Numerical Techniques in Electromagnetics Lecture 9

EE757 Numerical Techniques in Electromagnetics Lecture 9 EE757 uericl Techiques i Elecroeics Lecure 9 EE757 06 Dr. Mohed Bkr Diereil Equios Vs. Ierl Equios Ierl equios ke severl ors e.. b K d b K d Mos diereil equios c be epressed s ierl equios e.. b F d d /

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k =

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k = wwwskshieduciocom BINOMIAL HEOREM OBJEIVE PROBLEMS he coefficies of, i e esio of k e equl he k /7 If e coefficie of, d ems i e i AP, e e vlue of is he coefficies i e,, 7 ems i e esio of e i AP he 7 7 em

More information

Free Flapping Vibration of Rotating Inclined Euler Beams

Free Flapping Vibration of Rotating Inclined Euler Beams World cdemy of Sciece, Egieerig d Techology 56 009 Free Flppig Vibrio of Roig Iclied Euler Bems Chih-ig Hug, We-Yi i, d Kuo-Mo Hsio bsrc mehod bsed o he power series soluio is proposed o solve he url frequecy

More information

On computing two special cases of Gauss hypergeometric function

On computing two special cases of Gauss hypergeometric function O comuig wo secil cses of Guss hyergeomeric fucio Mohmmd Msjed-Jmei Wolfrm Koef b * Derme of Mhemics K.N.Toosi Uiversiy of Techology P.O.Bo 65-68 Tehr Ir E-mil: mmjmei@u.c.ir mmjmei@yhoo.com b* Isiue of

More information

arxiv:math/ v1 [math.fa] 1 Feb 1994

arxiv:math/ v1 [math.fa] 1 Feb 1994 arxiv:mah/944v [mah.fa] Feb 994 ON THE EMBEDDING OF -CONCAVE ORLICZ SPACES INTO L Care Schü Abrac. I [K S ] i wa how ha Ave ( i a π(i) ) π i equivale o a Orlicz orm whoe Orlicz fucio i -cocave. Here we

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Chapter #3 EEE Subsea Control and Communication Systems

Chapter #3 EEE Subsea Control and Communication Systems EEE 87 Chter #3 EEE 87 Sube Cotrol d Commuictio Sytem Cloed loo ytem Stedy tte error PID cotrol Other cotroller Chter 3 /3 EEE 87 Itroductio The geerl form for CL ytem: C R ', where ' c ' H or Oe Loo (OL)

More information

Solution of the Hyperbolic Partial Differential Equation on Graphs and Digital Spaces: a Klein Bottle a Projective Plane and a 4D Sphere

Solution of the Hyperbolic Partial Differential Equation on Graphs and Digital Spaces: a Klein Bottle a Projective Plane and a 4D Sphere Soluio of he Hyperbolic Parial Differeial Equaio o Graph ad Digial Space: a Klei Bole a Projecive Plae ad a 4D Sphere Alexader V. Evako Diae, Laboraory of Digial Techologie, Mocow, Ruia Email addre: evakoa@mail.ru

More information

CONTROL SYSTEMS. Chapter 3 : Time Response Analysis. [GATE EE 1991 IIT-Madras : 2 Mark]

CONTROL SYSTEMS. Chapter 3 : Time Response Analysis. [GATE EE 1991 IIT-Madras : 2 Mark] CONTROL SYSTEMS Chper 3 : Time Repoe lyi GTE Objecive & Numericl Type Soluio Queio 4 [GTE EC 99 IIT-Mdr : Mrk] uiy feedbck corol yem h he ope loop rfer fucio. 4( ) G () ( ) If he ipu o he yem i ui rmp,

More information

State-Space Model. In general, the dynamic equations of a lumped-parameter continuous system may be represented by

State-Space Model. In general, the dynamic equations of a lumped-parameter continuous system may be represented by Sae-Space Model I geeral, he dyaic equaio of a luped-paraeer coiuou ye ay be repreeed by x & f x, u, y g x, u, ae equaio oupu equaio where f ad g are oliear vecor-valued fucio Uig a liearized echique,

More information

Observations on the Non-homogeneous Quintic Equation with Four Unknowns

Observations on the Non-homogeneous Quintic Equation with Four Unknowns Itertiol Jourl of Mthemtic Reerch. ISSN 976-84 Volume, Number 1 (13), pp. 17-133 Itertiol Reerch Publictio Houe http://www.irphoue.com Obervtio o the No-homogeeou Quitic Equtio with Four Ukow S. Vidhylkhmi

More information

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX.

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX. ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX. MEHMET ZEKI SARIKAYA?, ERHAN. SET, AND M. EMIN OZDEMIR Asrc. In his noe, we oin new some ineuliies

More information

Dynamic h-index: the Hirsch index in function of time

Dynamic h-index: the Hirsch index in function of time Dyamic h-idex: he Hirsch idex i fucio of ime by L. Egghe Uiversiei Hassel (UHassel), Campus Diepebeek, Agoralaa, B-3590 Diepebeek, Belgium ad Uiversiei Awerpe (UA), Campus Drie Eike, Uiversieisplei, B-260

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

Notes 17 Sturm-Liouville Theory

Notes 17 Sturm-Liouville Theory ECE 638 Fll 017 Dvid R. Jckso Notes 17 Sturm-Liouville Theory Notes re from D. R. Wilto, Dept. of ECE 1 Secod-Order Lier Differetil Equtios (SOLDE) A SOLDE hs the form d y dy 0 1 p ( x) + p ( x) + p (

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties MASSACHUSES INSIUE OF ECHNOLOGY 6.65/15.7J Fall 13 Lecture 16 11/4/13 Ito itegral. Propertie Cotet. 1. Defiitio of Ito itegral. Propertie of Ito itegral 1 Ito itegral. Exitece We cotiue with the cotructio

More information

graph of unit step function t

graph of unit step function t .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002 ME 31 Kiemaic ad Dyamic o Machie S. Lamber Wier 6.. Forced Vibraio wih Dampig Coider ow he cae o orced vibraio wih dampig. Recall ha he goverig diereial equaio i: m && c& k F() ad ha we will aume ha he

More information

Research Article Generalized Equilibrium Problem with Mixed Relaxed Monotonicity

Research Article Generalized Equilibrium Problem with Mixed Relaxed Monotonicity e Scieific World Joural, Aricle ID 807324, 4 pages hp://dx.doi.org/10.1155/2014/807324 Research Aricle Geeralized Equilibrium Problem wih Mixed Relaxed Moooiciy Haider Abbas Rizvi, 1 Adem KJlJçma, 2 ad

More information

Actuarial Society of India

Actuarial Society of India Acuarial Sociey of Idia EXAMINAIONS Jue 5 C4 (3) Models oal Marks - 5 Idicaive Soluio Q. (i) a) Le U deoe he process described by 3 ad V deoe he process described by 4. he 5 e 5 PU [ ] PV [ ] ( e ).538!

More information

The Estimates of Diagonally Dominant Degree and Eigenvalue Inclusion Regions for the Schur Complement of Matrices

The Estimates of Diagonally Dominant Degree and Eigenvalue Inclusion Regions for the Schur Complement of Matrices dvces i Pure Mhemics 05 5 643-65 Pubished Oie ugus 05 i SciRes hp://wwwscirporg/jour/pm hp://dxdoiorg/0436/pm0550058 he Esimes of Digoy Domi Degree d Eigevue Icusio Regios for he Schur Compeme of Mrices

More information