Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem

Size: px
Start display at page:

Download "Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem"

Transcription

1 IOSR Jourl of Mthemtics (IOSR-JM) e-issn: , p-issn: X. Volume 3, Issue 3 Ver. IV (My - Jue 7), PP -8 Gree s Fuctio Approch to Solve Nolier Secod Order Four Poit Directiol Boudry Vlue Prolem Goteti V R L Srm, Awet Merhtu, Merhtom Sehtu 3 Deprtmet of Mthemtics, Eritre Istitute of Techology, Mi-efhi, Eritre. Astrct: I this rticle four poit oudry vlue prolem ssocited with secod order differetil eutio ivolvig directiol derivtive oudry coditios is proposed. The its solutio is developed with the help of the Gree s fuctio ssocited with the homogeeous eutio. Usig this ide d Itertio method is proposed to solve the correspodig olier prolem. Key words: Gree s fuctio, Schuder fixed poit theorem, Vitli s covergece theorem. I. Itroductio No locl oudry vlue prolems rise much ttetio ecuse of its ility to ccommodte more oudry poits th their correspodig order of differetil eutios [5], [8]. Cosiderle studies were mde y Bi d Fg [], Gupt [4] d We [9]. This reserch rticle is cocered with the existece d uiueess of solutios for the secod order four poit oudry vlue prolem with directiol type oudry coditios u" f ( t, u), t [, ], (.) u( ) ku( ), u( ) ku( ); (.) where is give fuctio d k, k R The Gree s fuctio plys importt role i solvig oudry vlue prolems of differetil eutios. The exct expressios of the solutios for some lier ODEs oudry vlue prolems c e expressed y the correspodig Gree s fuctios of the prolems. The Gree s fuctio method will e used to oti iitil estimte for shootig method. The Grees fuctio method for solvig the oudry vlue prolem is effect tools i umericl experimets. Some BVPs for olier itegrl eutios the kerels of which re the Gree s fuctios of correspodig lier differetil eutios. The udetermied prmetric method we use i this pper is uiversl method, the Gree s fuctios of my oudry vlue prolems for ODEs c e otied y similr method. I (8), Zho discussed the solutios d Gree s fuctios for o locl lier secod-order Three-poit oudry vlue prolems. suject to oe of the followig oudry vlue coditios: i. ii. iii. iv. where k ws the give umer d is give poit. I (3), Mohmed ivestigte the positive solutios to sigulr secod order oudry vlue prolem with more geerlized oudry coditios. He cosider the Sturm-Liouville oudry vlue prolem with the oudry coditios, where re ll costts, is positive prmeter d is sigulr t. Also the existece of positive solutios of sigulr oudry vlue prolems of ordiry differetil eutios hs ee studied y my reserchers such s Agrwl d Stek estlished the existece criteri for positive solutios sigulr oudry vlue prolems for olier secod order ordiry d dely differetil eutios usig the Vitli s covergece theorem. Gticl et l proved the existece of positive solutio of the prolem with the oudry coditios, usig the itertive techiue d fixed poit theorem for coe for decresig mppigs. Recetly Goteti V.R.L. Srm et l., studied the solvility of four poit oudry vlue prolem with ordiry oudry coditios u f ( t), t [, ] stisfyig the oudry coditios u( ) k u( ), u( ) k u( ); where re rel costts. DOI:.979/ Pge

2 Gree s Fuctio Approch to Solve Nolier Secod Order Four Poit Directiol Boudry This rticle is orgized s follows: I sectio we costruct the Gree s fuctio to the homogeeous BVP correspodig to (.) stisfyig (.) d the usig this we proved the existece d uiueess of the solutio of the oudry vlue prolem (.) stisfyig the coditio (.). I sectio 3 we preset the itertive method of solutio to the correspodig o lier oudry vlue prolem. We illustrted our results y costructig suitle exmple. II. The Gree s fuctio: We hve the followig coclusios: Theorem. Assume k k. The the Gree s fuctio for the secod-order four-poit lier oudry vlue prolem (.), (.) is give y k k t k k t G( t, s) K( t, s) k k where ( s )( t), s t K( t, s) ( s)( t ), t s t K (, s) K (, s) Proof: It is well kow tht the Gree s fuctio is K(t, s) s i (.) for the secod-order two-poit lier oudry vlue prolem u f ( t), t [, ], u( ), u( ) Ad the solutio of (.3) is give y d t (.) (.) (.3) w( t) K( t, s) f ( s) ds, (.4) w( ), w( ), w( ) K(, s) f ( s) ds. (.5) The four-poit oudry vlue prolem (.), (.) c e otied from replcig u() =, u() = y u( ) k u ( ) d u( ) k u ( ) i (.3). Thus, we suppose the solutio of the four-poit oudry vlue prolem (.), (.) c e expressed y u( t) w( t) c dt w ( ) w ( ) (.6) where c d d re costts tht will e determied. From (.5), (.6) we kow tht u( ) c d w ( ) w ( ) u( ) c d w ( ) w ( ) u( ) w( ) c d w( ) w( ) u( ) w( ) c d w( ) w( ) Puttig this ito (.) yields c w( ) w( ) d k w( ) w( ) kw( ) cw( ) w( ) d k w( ) w( ) k w ( ) k k, solvig the system of lier eutios o the ukow umers c, d, usig Crmer s Sice rule we oti DOI:.979/ Pge

3 Gree s Fuctio Approch to Solve Nolier Secod Order Four Poit Directiol Boudry c d kw( ) k kw( ) k k k w( ) w( ) kw( ) kw( ) k k w( ) w( ) Hece, the solutio of (.) with the oudry coditio (.) is u( t) w( t) ( c dt) w( ) w( ) k( k t) w( ) k( k t) w( ) wt () k k This together with (.4) implies tht ( ) ( ) ( ) k k t (, ) ( ) (, ) ( ) (, ) ( ) k k t u t K t s f s ds Kt s f s ds Kt s f s ds k k k k Coseuetly, the Gree s fuctio G(t, s) for the oudry vlue prolem (.), (.) is s descried i (.). From Theorem. we oti the followig corollry. k k, the the secod-order four-poit lier oudry vlue prolem Corollry.. If u f ( t), t [, ], u( ) k u ( ), u( ) k u ( ) hs uiue solutio u( t) G( t, s) f ( s) ds where G(t, s) is s i (.). Proof: Assume tht the secod-order four-poit lier oudry vlue prolem (.7) hs two solutios u(t) d v(t), tht is Let u f ( t), t [, ], u( ) k u ( ), u( ) k u ( ) v f ( t), t [, ], v( ) k v ( ), v( ) k v ( ) (.7) d DOI:.979/ Pge (.8) z( t) v( t) u( t), t, (.9) The (.7) d (.8) z ( t) v ( t) u ( t), t,, therefore z( t) Ct C, d z( t) C. (.) where C d C re udetermied costts. From (.7), (.8) d (.9) we hve z( ) v( ) u( ) k z( ), (.) z( ) v( ) u( ) k z( ). (.) Usig (.) we oti z( ) C C, (.3) z( ) C C, (.4) z( ) C, (.5) z( ) C, (.6)

4 Gree s Fuctio Approch to Solve Nolier Secod Order Four Poit Directiol Boudry From (.), (.3) d (.5) we kow tht C k C (.7), d from (.), (.4) d (.6) we kow tht C k C (.8), Solvig the system of eutios (.7) d (.8), we get C d C. Therefore z( t), t,, so u( t) v( t), t,, tht is uiueess of the solutio. Corollry.. Suppose the olier fuctio g(t, u) is cotiuous o olier four-poit oudry vlue prolem u g( t, u), t [, ], u( ) k u ( ), u( ) k u ( ) is euivlet to the olier itegrl eutio,, the if k k, the u( t) G( t, s) g s, u( s) ds where G(t, s) s i (.) If the edpoits of the itervl re, i the oudry coditio, from Theorem., Corollries. d. we oti the followig corollry. Corollry.3. If k k the the Gree s fuctio for the secod-order four-poit lier oudry vlue prolem is where u f ( t), t [,], u() k u ( ), u() k u ( ) k k t Bt(, s) k k t Bt(, s) G( t, s) B( t, s) k k s( t), s t B( t, s) ( s) t, t s Hece the prolem (.9) hs uiue solutio If g(t, u) is cotiuous o u( t) G( t, s) f s ds.,, the the olier four-poit oudry vlue prolem u g( t, u), t [,], u() k u ( ), u() k u ( ) is euivlet to the olier itegrl eutio u( t) G( t, s) g s, u( s) ds. Exmple: Cosider the secod-order four-poit oudry vlue prolem: u cost, t [,], u() u, u() u (.9) (.) (.) Sice 4 k d k re ot eul, from (.), the Gree s fuctio is: 3 3 DOI:.979/ Pge

5 Gree s Fuctio Approch to Solve Nolier Secod Order Four Poit Directiol Boudry k k t Bt(, s) k k t Bt(, s) G( t, s) B( t, s) k k where k,, k, t t G( t, s) B( t, s) Bt, s Bt, s where 6 5 t s, s t B( t, s) ( s) t, t s s, s t Bt ( t, s) which implies ( s), t s s, s s, s Bt (, s) d Bt (, s) s, s s, s Hece the solutio of secod-order four-poit oudry vlue prolem is: u( t) G( t, s) f sds B( t, s) 4 3 t B, s t B, s f sds 6 5 3(t ) 3t 4 t 6t 8 cos( t) cos() si si 6 5 III. Applictio to olier prolem: I this sectio, we study the itertive solutios for the followig olier four-poit oudry vlue prolem u f ( t, u), t (,), u() k u( ), u() k u( ) (3.) with,,,. k k Let J I,,,,,, D xc( I) M m, such tht m t x( t) M t, t I. x x x x Cocerig the fuctio f we impose the followig hypotheses: f ( t, u) is oegtive cotiuous o J, f ( t, u) is mootoe icresig o u, for fixed t J, (,) such tht f ( t, ru) r f ( t, u), r, ( t, u) J. (3.) Oviously, from (3.) we oti (, ) f t u f ( t, u),, ( t, u) J. (3.3) We c see tht if, ( t) re oegtive cotiuous o J, for i =,,,,m, the i i m i f ( t, u) ( t) u stisfy the coditio (3.). i i DOI:.979/ Pge

6 Gree s Fuctio Approch to Solve Nolier Secod Order Four Poit Directiol Boudry Cocerig the oudry vlue prolem (3.), we hve followig coclusios. Theorem 3.. Suppose the fuctio f(t,u) stisfy the coditio (3.), it my e sigulr t t= d/or t=, d f ( t, t) dt. (3.4) The olier sigulr oudry vlue prolem (3.) hs uiue solutio w(t) i C( I) C ( J). Costructig successively the seuece of fuctios h( t) G( t, s) f ( s, h ( s)) ds,,,... (3.5) for y iitil fuctio h ( t ) ( ), t I of covergece is the h t () must coverge to w(t) uiformly o I d the rte mx ( ) ( ) h t w t O N, (3.6) ti where < N <, which depeds o the iitil fuctio h ( ), (, ) t G t s s i (.). Proof. Let P x( t) x( t) C I, x( t), Fx( t) G( t, s) f ( s, x( s)) ds, x( t) D. It is esy tht the opertor : (3.7) F D P is icresig; From Corollry.3 we kow tht if u D u( t) Fu( t), t I, (3.8) the u C I C J is solutio of (3.). For y x D, there exist positive umers m M such tht By (.) d (.) we hve m ( s) x( s) M ( s), s I, x x mx f ( s, s) f ( s, x( s)) M x f ( s, s), s J. k k k k t x (3.9) G( t, s) B( t, s) x k k( k t) Bt(, s) k( k t) Bt(, s) G( t, s) B( t, s) k k stisfies t B (, s) B (, s) t k t k( k t) kbt(, s) Bt(, s) t G( t, s) ( t) k k kbt(, s) k( k t) Bt(, s) G( t, s) t( t) k k k( k t) kbt(, s) Bt(, s) t G( t, s) ( t) k k Usig (3.7), (3.3) d (3.9)-(3.) d the coditios (3.), we oti (3.) (3.) DOI:.979/ Pge

7 Gree s Fuctio Approch to Solve Nolier Secod Order Four Poit Directiol Boudry Fx( t) G( t, s) f ( s, x( s)) ds t t k ( k t) k B (, s) B (, s) t ( t) mx f ( s, s) ds k k k( k t) k t ( t) m x Bt(, s) f ( s, s) ds Bt(, s) f ( s, s) ds, t I k k (3.) Fx( t) G( t, s) f ( s, x( s)) ds k( k t) kbt(, s) Bt(, s) t ( t) M x f ( s, s) ds k k k k kk B(, s) k kk B(, s) t ( t) M x f ( s, s) ds, t I k k k k (3.3) By (3.4), (3.) d (3.3) we oti For y o F : D D. h D, we let l sup l lh ( t) Fh ( t), t I, ho o o L if L Lh ( t) Fh ( t), t I, ho o o m mi, lh, M mx, L o h o u ( t) mh ( t), u ( t) Fu ( t) v ( t) Mh ( t), v ( t) Fv ( t),,,,... (3.4) (3.5) Sice the opertor F is icresig, from (3.), (3.4) d (3.5) we kow tht u ( t) u ( t) u ( t) v ( t) v ( t) v ( t), t I. (3.6) m For t, from (3.), (3.7) d (3.5), it c otied y iductio tht M u ( t) t v ( t), t I,,,, (3.7) From (3.6) d (3.7) we kow tht u ( t) u ( t) v ( t) u ( t) t Mh ( t),, p (3.8) p so tht there exist fuctio w() t D such tht DOI:.979/ Pge

8 d Gree s Fuctio Approch to Solve Nolier Secod Order Four Poit Directiol Boudry u ( t) w( t), v ( t) w( t), (uiformly o I), (3.9) u ( t) w( t) v ( t), t I,,,, (3.) From the opertor F is icresig d (3.5) we hve u ( t) Fu ( t) Fw( t) Fv ( t) v ( t),,,, This together with (3.9) d uiueess of the limit imply tht wt () stisfy (3.8), hece w() t C I C J is solutio of (3.). From (3.5) d (3.5) d the opertor F is icresig, we oti u ( t) h ( t) v ( t), t I,,,, (3.) thus, from (3.8), (3.) d (3.) we kow h ( t) w( t) h ( t) u ( t) u ( t) w( t) so tht v ( t) u ( t) t M h ( t), mx h ( t) w( t) t M mx h ( t). ti ti So tht (3.6) holds. From h () t which is ritrry i D we kow tht w(t) is the uiue solutio of the E. (3.8) i D. Suppose () w t is C I C J z( t) w ( t) Fw( t), t I. solutio of oudry vlue prolem (3.). Let Similr to the proof of (.9) i sectio we oti w ( t) w( t), hece wt () is the uiue solutio of E. (3.) i C I C J. Remrk: If f t, u is cotiuous o I X R + uiue solutio wt C J. the it is uite evidet tht the coditio (3.4) holds. Hece the Refereces [] Al-Hy, W. (7). A domi Decompositio method with Gree s fuctios for solvig Twelfth-order of oudry vlue prolems. Applied Mthemticl scieces, Vol. 9, 5, o. 8, [] Beder, C. M. d S. A. Orzg (999). Advced mthemticl methods for scietists d Egieers; Asymptotic methods d perturtio theory, ACM3. [3] Bechohr, M. et l Secod-Order oudry vlue prolem with itegrl oudry coditios. Boudry vlue prolems rticle ID 639 vol. [4] Dr. Risighi, M. D. (3), Itegrl eutios d oudry vlue prolems sixth editio; S. Chd & Compy PVT. LTD. [5] Greegrd, L. d V. Kokhli (99). O the umericl solutio of two-poit oudry vlue prolems. Commuictios o pure d pplied mthemtics vol. XLIV, 49-45(99) [6] Goteti V R L Srm, Merhtom Sehtu d Awet Merhtu, Solvility Of Four Poit Nolier Boudry Vlue Prolem Itl Jourl of Egieerig Reserch d Applictios. Volume 7, Issue ( Prt 4) Ferury 7 Pp 8. [7] Herro, I. H. Solvig sigulr oudry vlue prolems for ordiry differetil eutios. Cri. J. Mth. Comput. Sci. 5, 3, - 3. [8] Kumli, P. (3/4), A ote o ordiry differetil eutios; TMA4/MAN 67 Fuctiol Alysis. Mthemtics Chlmers & GU [9] Liu, Z., Kg, S. M d J. S. Ume (9). Triple positive solutios of olier third order oudry vlue prolems. Tiwese Jourl of Mthemtics Vol. 3, o. 3 pp [] Mohmed, M. & W. A. W. Azmi (3), positive solutios to solutios to sigulr secod order oudry vlue prolems. It. Jourl of mth. Alysis, Vol.7, 3, o. 4, 5-7. [] Risighi, M. D. (), Itegrl eutios d oudry vlue prolems sixth editio; S. Chd & Compy PVT. LTD. New Delthi- 55. [] Teteri, A. O. (3), The Gree s fuctio method for solutios of fourth order olier oudry vlue prolem. The uiversity of Teessee, Koxville [3] Yg, C. & P. Wg (7). Gree s fuctio d positive solutios for oudry vlue prolems of third order differetil eutios. Computers d mthemtics with pplictios 54(7) [4] Zho, Z. (7) positive solutios for sigulr three-poit oudry vlue prolems. Electroic Jourl of Differetil eutios Vol. 7(7), o. 56, pp. -8. ISSN [5] Zho, Z. (7), Solutio d gree s fuctios for lier secod order three-poit oudry vlue prolems; Computers d mthemtics with pplictios 56(8)4-3. DOI:.979/ Pge

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS RGMIA Reserch Report Collectio, Vol., No., 998 http://sci.vut.edu.u/ rgmi/reports.html AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS S.S. DRAGOMIR AND I.

More information

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind Ge. Mth. Notes, Vol. 2, No. 1, Jury 211, pp. 143-148 ISSN 2219-7184; Copyright ICSRS Publictio, 211 www.i-csrs.org Avilble free olie t http://www.gem.i Vritiol Itertio Method for Solvig Volterr d Fredholm

More information

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials Jourl of Al-Nhri Uiversity Vol.5 (), Mrch,, pp.-9 Sciece Numericl Solutio of Fuzzy Fredholm Itegrl Equtios of the Secod Kid usig Berstei Polyomils Srmd A. Altie Deprtmet of Computer Egieerig d Iformtio

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

Some New Iterative Methods Based on Composite Trapezoidal Rule for Solving Nonlinear Equations

Some New Iterative Methods Based on Composite Trapezoidal Rule for Solving Nonlinear Equations Itertiol Jourl of Mthemtics d Sttistics Ivetio (IJMSI) E-ISSN: 31 767 P-ISSN: 31-759 Volume Issue 8 August. 01 PP-01-06 Some New Itertive Methods Bsed o Composite Trpezoidl Rule for Solvig Nolier Equtios

More information

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x): Eigefuctio Epsio: For give fuctio o the iterl the eigefuctio epsio of f(): f ( ) cmm( ) m 1 Eigefuctio Epsio (Geerlized Fourier Series) To determie c s we multiply oth sides y Φ ()r() d itegrte: f ( )

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

Multiplication and Translation Operators on the Fock Spaces for the q-modified Bessel Function *

Multiplication and Translation Operators on the Fock Spaces for the q-modified Bessel Function * Advces i Pure Mthemtics 0-7 doi:0436/pm04039 Pulished Olie July 0 (http://wwwscirporg/jourl/pm) Multiplictio d Trsltio Opertors o the Fock Spces or the -Modiied Bessel Fuctio * Astrct Fethi Solti Higher

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Power Series Solutions to Generalized Abel Integral Equations

Power Series Solutions to Generalized Abel Integral Equations Itertiol Jourl of Mthemtics d Computtiol Sciece Vol., No. 5, 5, pp. 5-54 http://www.isciece.org/jourl/ijmcs Power Series Solutios to Geerlized Abel Itegrl Equtios Rufi Abdulli * Deprtmet of Physics d Mthemtics,

More information

On The Homogeneous Quintic Equation with Five Unknowns

On The Homogeneous Quintic Equation with Five Unknowns IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-78,p-ISSN: 319-76X, Volume 7, Issue 3 (Jul. - Aug. 013), PP 7-76 www.iosrjourls.org O The Homogeeous Quitic Equtio with Five Ukows y y 3 3 ( y ) 3(( y)( z w

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

Double Sums of Binomial Coefficients

Double Sums of Binomial Coefficients Itertiol Mthemticl Forum, 3, 008, o. 3, 50-5 Double Sums of Biomil Coefficiets Athoy Sofo School of Computer Sciece d Mthemtics Victori Uiversity, PO Box 448 Melboure, VIC 800, Austrli thoy.sofo@vu.edu.u

More information

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Certain sufficient conditions on N, p n, q n k summability of orthogonal series Avilble olie t www.tjs.com J. Nolier Sci. Appl. 7 014, 7 77 Reserch Article Certi sufficiet coditios o N, p, k summbility of orthogol series Xhevt Z. Krsiqi Deprtmet of Mthemtics d Iformtics, Fculty of

More information

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Uiv. Beogrd. Publ. Elektroteh. Fk. Ser. Mt. 8 006 4. Avilble electroiclly t http: //pefmth.etf.bg.c.yu SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Zheg Liu Usig vrit of Grüss iequlity to give ew proof

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

Notes 17 Sturm-Liouville Theory

Notes 17 Sturm-Liouville Theory ECE 638 Fll 017 Dvid R. Jckso Notes 17 Sturm-Liouville Theory Notes re from D. R. Wilto, Dept. of ECE 1 Secod-Order Lier Differetil Equtios (SOLDE) A SOLDE hs the form d y dy 0 1 p ( x) + p ( x) + p (

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

Numerical Integration by using Straight Line Interpolation Formula

Numerical Integration by using Straight Line Interpolation Formula Glol Jourl of Pure d Applied Mthemtics. ISSN 0973-1768 Volume 13, Numer 6 (2017), pp. 2123-2132 Reserch Idi Pulictios http://www.ripulictio.com Numericl Itegrtio y usig Stright Lie Iterpoltio Formul Mhesh

More information

COMPOSITE TRAPEZOID RULE FOR THE RIEMANN-STIELTJES INTEGRAL AND ITS RICHARDSON EXTRAPOLATION FORMULA

COMPOSITE TRAPEZOID RULE FOR THE RIEMANN-STIELTJES INTEGRAL AND ITS RICHARDSON EXTRAPOLATION FORMULA itli jourl of pure d pplied mthemtics. 5 015 (11 18) 11 COMPOSITE TRAPEZOID RULE FOR THE RIEMANN-STIELTJES INTEGRAL AND ITS RICHARDSON EXTRAPOLATION FORMULA Weijig Zho 1 College of Air Trffic Mgemet Civil

More information

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM Jourl of Applied Mthemtics d Computtiol Mechics () 57-6 SOUION O DIERENIA EQUAION OR HE EUER-ERNOUI EAM Izbel Zmorsk Istitute of Mthemtics Czestochow Uiversit of echolog Częstochow Pold izbel.zmorsk@im.pcz.pl

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

THE SOLUTION OF THE FRACTIONAL DIFFERENTIAL EQUATION WITH THE GENERALIZED TAYLOR COLLOCATIN METHOD

THE SOLUTION OF THE FRACTIONAL DIFFERENTIAL EQUATION WITH THE GENERALIZED TAYLOR COLLOCATIN METHOD IJRRAS August THE SOLUTIO OF THE FRACTIOAL DIFFERETIAL EQUATIO WITH THE GEERALIZED TAYLOR COLLOCATI METHOD Slih Ylçıbş Ali Kourlp D. Dömez Demir 3* H. Hilmi Soru 4 34 Cell Byr Uiversity Fculty of Art &

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

Math 104: Final exam solutions

Math 104: Final exam solutions Mth 14: Fil exm solutios 1. Suppose tht (s ) is icresig sequece with coverget subsequece. Prove tht (s ) is coverget sequece. Aswer: Let the coverget subsequece be (s k ) tht coverges to limit s. The there

More information

Calculus II Homework: The Integral Test and Estimation of Sums Page 1

Calculus II Homework: The Integral Test and Estimation of Sums Page 1 Clculus II Homework: The Itegrl Test d Estimtio of Sums Pge Questios Emple (The p series) Get upper d lower bouds o the sum for the p series i= /ip with p = 2 if the th prtil sum is used to estimte the

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

A general theory of minimal increments for Hirsch-type indices and applications to the mathematical characterization of Kosmulski-indices

A general theory of minimal increments for Hirsch-type indices and applications to the mathematical characterization of Kosmulski-indices Mlysi Jourl of Librry & Iformtio Sciece, Vol. 9, o. 3, 04: 4-49 A geerl theory of miiml icremets for Hirsch-type idices d pplictios to the mthemticl chrcteriztio of Kosmulski-idices L. Egghe Uiversiteit

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

( ) = A n + B ( ) + Bn

( ) = A n + B ( ) + Bn MATH 080 Test 3-SOLUTIONS Fll 04. Determie if the series is coverget or diverget. If it is coverget, fid its sum.. (7 poits) = + 3 + This is coverget geometric series where r = d

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem Secod Me Vlue Theorem for Itegrls By Ng Tze Beg This rticle is out the Secod Me Vlue Theorem for Itegrls. This theorem, first proved y Hoso i its most geerlity d with extesio y ixo, is very useful d lmost

More information

10. 3 The Integral and Comparison Test, Estimating Sums

10. 3 The Integral and Comparison Test, Estimating Sums 0. The Itegrl d Comriso Test, Estimtig Sums I geerl, it is hrd to fid the ect sum of series. We were le to ccomlish this for geometric series d for telescoig series sice i ech of those cses we could fid

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Scietific Reserch of the Istitute of Mthetics d Coputer Sciece 3() 0, 5-0 APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Jolt Borows, Le Łcińs, Jowit Rychlews Istitute of Mthetics,

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

{ } { S n } is monotonically decreasing if Sn

{ } { S n } is monotonically decreasing if Sn Sequece A sequece is fuctio whose domi of defiitio is the set of turl umers. Or it c lso e defied s ordered set. Nottio: A ifiite sequece is deoted s { } S or { S : N } or { S, S, S,...} or simply s {

More information

Simplification and Strengthening of Weyl s Definition of Asymptotic Equal Distribution of Two Families of Finite Sets

Simplification and Strengthening of Weyl s Definition of Asymptotic Equal Distribution of Two Families of Finite Sets Simplifictio d Stregtheig of Weyl s Defiitio of Asymptotic Equl Distributio of Two Fmilies of Fiite Sets Willim F. Trech Triity Uiversity, S Atoio, Texs, USA; wtrech@triity.edu Milig ddress: 95 Pie Le,

More information

Homework 2 solutions

Homework 2 solutions Sectio 2.1: Ex 1,3,6,11; AP 1 Sectio 2.2: Ex 3,4,9,12,14 Homework 2 solutios 1. Determie i ech uctio hs uique ixed poit o the speciied itervl. gx = 1 x 2 /4 o [0,1]. g x = -x/2, so g is cotiuous d decresig

More information

Definite Integral. The Left and Right Sums

Definite Integral. The Left and Right Sums Clculus Li Vs Defiite Itegrl. The Left d Right Sums The defiite itegrl rises from the questio of fidig the re betwee give curve d x-xis o itervl. The re uder curve c be esily clculted if the curve is give

More information

A VERSION OF THE KRONECKER LEMMA

A VERSION OF THE KRONECKER LEMMA UPB Sci Bull, Series A, Vol 70, No 2, 2008 ISSN 223-7027 A VERSION OF THE KRONECKER LEMMA Gheorghe BUDIANU I lucrre se prezit o vrit lemei lui Kroecer reltiv l siruri si serii de umere rele Rezulttele

More information

INSTRUCTOR: CEZAR LUPU. Problem 1. a) Let f(x) be a continuous function on [1, 2]. Prove that. nx 2 lim

INSTRUCTOR: CEZAR LUPU. Problem 1. a) Let f(x) be a continuous function on [1, 2]. Prove that. nx 2 lim WORKSHEET FOR THE PRELIMINARY EXAMINATION-REAL ANALYSIS (RIEMANN AND RIEMANN-STIELTJES INTEGRAL OF A SINGLE VARIABLE, INTEGRAL CALCULUS, FOURIER SERIES AND SPECIAL FUNCTIONS INSTRUCTOR: CEZAR LUPU Problem.

More information

The Definite Riemann Integral

The Definite Riemann Integral These otes closely follow the presettio of the mteril give i Jmes Stewrt s textook Clculus, Cocepts d Cotexts (d editio). These otes re iteded primrily for i-clss presettio d should ot e regrded s sustitute

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Solution of the exam in TMA4212 Monday 23rd May 2013 Time: 9:00 13:00

Solution of the exam in TMA4212 Monday 23rd May 2013 Time: 9:00 13:00 Norwegi Uiversity of Sciece d Techology Deprtmet of Mthemticl Scieces Cotct durig the exm: Ele Celledoi, tlf. 735 93541 Pge 1 of 7 of the exm i TMA4212 Mody 23rd My 2013 Time: 9:00 13:00 Allowed ids: Approved

More information

INTEGRAL SOLUTIONS OF THE TERNARY CUBIC EQUATION

INTEGRAL SOLUTIONS OF THE TERNARY CUBIC EQUATION Itertiol Reserch Jourl of Egieerig d Techology IRJET) e-issn: 9-006 Volume: 04 Issue: Mr -017 www.irjet.et p-issn: 9-007 INTEGRL SOLUTIONS OF THE TERNRY CUBIC EQUTION y ) 4y y ) 97z G.Jki 1, C.Sry,* ssistt

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 0 FURTHER CALCULUS II. Sequeces d series. Rolle s theorem d me vlue theorems 3. Tlor s d Mcluri s theorems 4. L Hopitl

More information

Research Article The Applications of Cardinal Trigonometric Splines in Solving Nonlinear Integral Equations

Research Article The Applications of Cardinal Trigonometric Splines in Solving Nonlinear Integral Equations ISRN Applied Mthemtics Volume 214, Article ID 21399, 7 pges http://d.doi.org/1.1155/214/21399 Reserch Article The Applictios of Crdil Trigoometric Splies i Solvig Nolier Itegrl Equtios Ji Xie, 1 Xioy Liu,

More information

Abel type inequalities, complex numbers and Gauss Pólya type integral inequalities

Abel type inequalities, complex numbers and Gauss Pólya type integral inequalities Mthemticl Commuictios 31998, 95-101 95 Abel tye iequlities, comlex umbers d Guss Póly tye itegrl iequlities S. S. Drgomir, C. E. M. Perce d J. Šude Abstrct. We obti iequlities of Abel tye but for odecresig

More information

Course 121, , Test III (JF Hilary Term)

Course 121, , Test III (JF Hilary Term) Course 2, 989 9, Test III (JF Hilry Term) Fridy 2d Februry 99, 3. 4.3pm Aswer y THREE questios. Let f: R R d g: R R be differetible fuctios o R. Stte the Product Rule d the Quotiet Rule for differetitig

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

Review of Sections

Review of Sections Review of Sectios.-.6 Mrch 24, 204 Abstrct This is the set of otes tht reviews the mi ides from Chpter coverig sequeces d series. The specific sectios tht we covered re s follows:.: Sequces..2: Series,

More information

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form 0.5 Power Series I the lst three sectios, we ve spet most of tht time tlkig bout how to determie if series is coverget or ot. Now it is time to strt lookig t some specific kids of series d we will evetully

More information

CALCULATION OF CONVOLUTION PRODUCTS OF PIECEWISE DEFINED FUNCTIONS AND SOME APPLICATIONS

CALCULATION OF CONVOLUTION PRODUCTS OF PIECEWISE DEFINED FUNCTIONS AND SOME APPLICATIONS CALCULATION OF CONVOLUTION PRODUCTS OF PIECEWISE DEFINED FUNCTIONS AND SOME APPLICATIONS Abstrct Mirce I Cîru We preset elemetry proofs to some formuls ive without proofs by K A West d J McClell i 99 B

More information

The Elementary Arithmetic Operators of Continued Fraction

The Elementary Arithmetic Operators of Continued Fraction Americ-Eursi Jourl of Scietific Reserch 0 (5: 5-63, 05 ISSN 88-6785 IDOSI Pulictios, 05 DOI: 0.589/idosi.ejsr.05.0.5.697 The Elemetry Arithmetic Opertors of Cotiued Frctio S. Mugssi d F. Mistiri Deprtmet

More information

Lecture 4 Recursive Algorithm Analysis. Merge Sort Solving Recurrences The Master Theorem

Lecture 4 Recursive Algorithm Analysis. Merge Sort Solving Recurrences The Master Theorem Lecture 4 Recursive Algorithm Alysis Merge Sort Solvig Recurreces The Mster Theorem Merge Sort MergeSortA, left, right) { if left < right) { mid = floorleft + right) / 2); MergeSortA, left, mid); MergeSortA,

More information

Canonical Form and Separability of PPT States on Multiple Quantum Spaces

Canonical Form and Separability of PPT States on Multiple Quantum Spaces Coicl Form d Seprbility of PPT Sttes o Multiple Qutum Spces Xio-Hog Wg d Sho-Mig Fei, 2 rxiv:qut-ph/050445v 20 Apr 2005 Deprtmet of Mthemtics, Cpitl Norml Uiversity, Beijig, Chi 2 Istitute of Applied Mthemtics,

More information

SOME IDENTITIES BETWEEN BASIC HYPERGEOMETRIC SERIES DERIVING FROM A NEW BAILEY-TYPE TRANSFORMATION

SOME IDENTITIES BETWEEN BASIC HYPERGEOMETRIC SERIES DERIVING FROM A NEW BAILEY-TYPE TRANSFORMATION SOME IDENTITIES BETWEEN BASIC HYPERGEOMETRIC SERIES DERIVING FROM A NEW BAILEY-TYPE TRANSFORMATION JAMES MC LAUGHLIN AND PETER ZIMMER Abstrct We prove ew Biley-type trsformtio reltig WP- Biley pirs We

More information

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property Lier Time-Ivrit Bsic Properties LTI The Commuttive Property The Distributive Property The Associtive Property Ti -6.4 / Chpter Covolutio y ] x ] ] x ]* ] x ] ] y] y ( t ) + x( τ ) h( t τ ) dτ x( t) * h(

More information

Numerical Integration - (4.3)

Numerical Integration - (4.3) Numericl Itegrtio - (.). Te Degree of Accurcy of Qudrture Formul: Te degree of ccurcy of qudrture formul Qf is te lrgest positive iteger suc tt x k dx Qx k, k,,,...,. Exmple fxdx 9 f f,,. Fid te degree

More information

Solving a Class of Non-Smooth Optimal Control Problems

Solving a Class of Non-Smooth Optimal Control Problems I.J. Itelliget Systes d Applictios, 213, 7, 16-22 ulished Olie Jue 213 i MECS (http://www.ecs-press.org/) DOI: 1.5815/iis.213.7.3 Solvig Clss of o-sooth Optil Cotrol roles M. H. oori Sdri E-il: Mth.oori@yhoo.co

More information

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a . Cosider two fuctios f () d g () defied o itervl I cotiig. f () is cotiuous t d g() is discotiuous t. Which of the followig is true bout fuctios f g d f g, the sum d the product of f d g, respectively?

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

Approximations of Definite Integrals

Approximations of Definite Integrals Approximtios of Defiite Itegrls So fr we hve relied o tiderivtives to evlute res uder curves, work doe by vrible force, volumes of revolutio, etc. More precisely, wheever we hve hd to evlute defiite itegrl

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

The Definite Integral

The Definite Integral The Defiite Itegrl A Riem sum R S (f) is pproximtio to the re uder fuctio f. The true re uder the fuctio is obtied by tkig the it of better d better pproximtios to the re uder f. Here is the forml defiitio,

More information

A GENERALIZATION OF GAUSS THEOREM ON QUADRATIC FORMS

A GENERALIZATION OF GAUSS THEOREM ON QUADRATIC FORMS A GENERALIZATION OF GAU THEOREM ON QUADRATIC FORM Nicole I Brtu d Adi N Cret Deprtmet of Mth - Criov Uiversity, Romi ABTRACT A origil result cocerig the extesio of Guss s theorem from the theory of biry

More information

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1 NOD6 (\Dt\04\Kot\J-Advced\SMP\Mths\Uit#0\NG\Prt-\0.Determits\0.Theory.p65. INTRODUCTION : If the equtios x + b 0, x + b 0 re stisfied by the sme vlue of x, the b b 0. The expressio b b is clled determit

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 UTCLIFFE NOTE: CALCULU WOKOWKI CHAPTER Ifiite eries Coverget or Diverget eries Cosider the sequece If we form the ifiite sum 0, 00, 000, 0 00 000, we hve wht is clled ifiite series We wt to fid the sum

More information

Mathematics for Engineers Part II (ISE) Version 1.1/

Mathematics for Engineers Part II (ISE) Version 1.1/ Mthemtics or Egieers Prt II (ISE Versio /4-6- Curves i Prmetric descriptio o curves We exted the theory o derivtives d itegrls to uctios whose rge re vectors i isted o rel umers Deiitio : A curve C i is

More information

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why? AB CALCULUS: 5.3 Positio vs Distce Velocity vs. Speed Accelertio All the questios which follow refer to the grph t the right.. Whe is the prticle movig t costt speed?. Whe is the prticle movig to the right?

More information

Interpolation. 1. What is interpolation?

Interpolation. 1. What is interpolation? Iterpoltio. Wht is iterpoltio? A uctio is ote give ol t discrete poits such s:.... How does oe id the vlue o t other vlue o? Well cotiuous uctio m e used to represet the + dt vlues with pssig through the

More information

HOMEWORK 1 1. P 229. # Then ; then we have. goes to 1 uniformly as n goes to infinity. Therefore. e x2 /n dx = = sin x.

HOMEWORK 1 1. P 229. # Then ; then we have. goes to 1 uniformly as n goes to infinity. Therefore. e x2 /n dx = = sin x. HOMEWORK 1 SHUANGLIN SHAO 1. P 229. # 7.1.2. Proof. (). Let f (x) x99 + 5. The x 66 + x3 f x 33 s goes to ifiity. We estimte the differece, f (x) x 33 5 x 66 + 3 5 x 66 5, for ll x [1, 3], which goes to

More information

CITY UNIVERSITY LONDON

CITY UNIVERSITY LONDON CITY UNIVERSITY LONDON Eg (Hos) Degree i Civil Egieerig Eg (Hos) Degree i Civil Egieerig with Surveyig Eg (Hos) Degree i Civil Egieerig with Architecture PART EXAMINATION SOLUTIONS ENGINEERING MATHEMATICS

More information

Riemann Integral and Bounded function. Ng Tze Beng

Riemann Integral and Bounded function. Ng Tze Beng Riem Itegrl d Bouded fuctio. Ng Tze Beg I geerlistio of re uder grph of fuctio, it is ormlly ssumed tht the fuctio uder cosidertio e ouded. For ouded fuctio, the rge of the fuctio is ouded d hece y suset

More information

NTMSCI 5, No. 1, (2017) 26

NTMSCI 5, No. 1, (2017) 26 NTMSCI 5, No. 1, - (17) New Treds i Mathematical Scieces http://dx.doi.org/1.85/tmsci.17.1 The geeralized successive approximatio ad Padé approximats method for solvig a elasticity problem of based o the

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

Toeplitz and Translation Operators on the q-fock Spaces *

Toeplitz and Translation Operators on the q-fock Spaces * Advces i Pure Mthemtics 35-333 doi:436/pm659 Published Olie November (http://wwwscirporg/jourl/pm) Toeplit d Trsltio Opertors o the -Foc Spces * Abstrct Fethi Solti Higher College o Techology d Iormtics

More information

Computer Algebra Algorithms for Orthogonal Polynomials and Special Functions

Computer Algebra Algorithms for Orthogonal Polynomials and Special Functions Computer Alger Algorithms for Orthogol Polyomils d Specil Fuctios Prof. Dr. Wolfrm Koepf Deprtmet of Mthemtics Uiversity of Kssel oepf@mthemti.ui-ssel.de http://www.mthemti.ui-ssel.de/~oepf Olie Demostrtios

More information

1.1 The FTC and Riemann Sums. An Application of Definite Integrals: Net Distance Travelled

1.1 The FTC and Riemann Sums. An Application of Definite Integrals: Net Distance Travelled mth 3 more o the fudmetl theorem of clculus The FTC d Riem Sums A Applictio of Defiite Itegrls: Net Distce Trvelled I the ext few sectios (d the ext few chpters) we will see severl importt pplictios of

More information