Solving a Class of Non-Smooth Optimal Control Problems

Size: px
Start display at page:

Download "Solving a Class of Non-Smooth Optimal Control Problems"

Transcription

1 I.J. Itelliget Systes d Applictios, 213, 7, ulished Olie Jue 213 i MECS ( DOI: /iis Solvig Clss of o-sooth Optil Cotrol roles M. H. oori Sdri E-il: Mth.oori@yhoo.co H. R. Erfi Correspodig uthor E-il: Erfi@usc.c.ir A.V. Kyd E-il: Avyd@yhoo.co M. H. Frhi E-il: Frhi@Mth.u.c.ir Fculty of Mtheticl Scieces, Ferdowsi Uiversity of Mshhd, Mshhd, Ir Astrct I this pper, we first propose ew geerlized derivtive for o-sooth fuctios d the we utilize this geerlized derivtive to covert clss of o-sooth optil cotrol prole to the correspodig sooth for. I the ext step, we pply the discretiztio ethod to pproxite the otied sooth prole to the olier progrig prole. Filly, y solvig the lst prole, we oti pproxite optil solutio for i prole. Idex ers Geerlized Derivtive, o-sooth Optil Cotrol, o-lier rogrig I. Itroductio Cosider the followig o-sooth optil cotrol prole: Miiize x ( ) suect to x ( t ) g ( x ( t )) f ( u ( t )), t [, ], x (), x ( t ) X, u ( t ) U, t [, ]. where x (.) :[, ] X is the stte vrile, u(.) :[, ] U is the cotrol vrile d,. Moreover ssue tht fuctio f (.) is sooth d fuctio g (.) (1) is o-sooth (or odifferetile) ut piecewise cotiuous. his id of optil cotrol proles ppers i y fields of scieces such s thetics, physics, ecooics d egieerig. I geerl, o-soothess rises vries i wide rge d oe c cosider the followig typicl pplictio res: echics (cotct d frictio proles), electricl egieerig (circuits with switchig d/or piecewise lier eleets), hydrulics (oe-wy vlves), theticl progrig (ic optiiztio suect to iequlity costrits), d theticl fice (pricig of derivtives with erly exercise opportuities) (see [1]). Also, y icl systes risig i pplictios re o-sooth. here is ture literture descriig y differet pproches to the stu of o-sooth ics such s copleetrity systes, differetil iclusios d Filippov systes (see [2]). I the pst, lrge collectio of vrious proles of o-sooth systes hs ee ivestigted withi severl fields. hese efforts lre resulted i susttil literture i the correspodig fields. My reserchers coied their efforts i resolvig the chlleges of o-sooth systes (see [1]). But, ethods for uericlly solvig optil cotrol proles re divided ito two ctegories: Idirect ethods d direct ethods. Idirect ethods re sed o the vritiol foru ltio, resultig i ult iplepoit oudry vlue prole. I s uch s ultiple-poit oudry vlue prole i geerl cot e solved lyticlly, oe hs to rely o uericl ethods. O the other hd, i direct ethods discretized stte vriles d cotrol vriles re treted s the desig vriles i the olier progrig ethod, d the perforce idex is directly iiized y hvig the stte equtios icluded i costrit coditios. Furtherore, direct ethods llow rther stright-forwrd tretet of iequlity coditios, d the solutios re ore roust to iitil solutio guesses. hese properties of the direct ethods hve recetly ttrcted ttetio for solvig coplex optil cotrol proles (see [3]). Despite existece of these ethods, solvig of osooth optil cotrol proles is difficult d ofte ipossile ct. o solve these proles, the

2 Solvig Clss of o-sooth Optil Cotrol roles 17 geerlized derivtive plys iportt role. Before of this pper, we hve proposed two ew pproches [4, 5, 6] for geerlized derivtive of o-sooth fuctios d i dditio, we used it for o-sooth ordiry differetil equtios, o-sooth optiiztio proles d syste of o-sooth equtios (see [7, 8]). he dvtges of our geerlized derivtives with respect to the other pproches except siplicity d prcticlly re s follows: i. he geerlized derivtive of o-sooth fuctio y our pproch does ot deped o the o-soothess poits of fuctio. hus we c use this GD for y cses tht we do ot ow the poits of o-differetiility of the fuctio. ii. he geerlized derivtive of o-sooth fuctios y our pproch gives good glol pproxite derivtive s o the doi of fuctios, wheres i the other pproches the GD re clculted i oe give poit. iii. he geerlized derivtive y our pproch is defied for o-sooth piecewise cotiuous fuctios, wheres the other pproches re defied usully for loclly Lipschiptz or covex fuctios. I this pper, i first step, we defie ew geerlized derivtive where it hs the ove-etio dvtges. he, we utilize this geerlized derivtive to covert the o-sooth optil cotrol prole (1) to the sooth for, d oti pproxite optil solutio. he structure of this pper is s follows. Sectio 2 proposes ew geerlized derivtive for o-sooth fuctios. I Sectio 3, the i o-sooth optil cotrol prole is coverted to sooth prole. I Sectio 4, the otied sooth prole is pproxited to discrete prole. I Sectios 5, uericl exple is preseted for efficiecy of our pproch d i Sectio 6, the coclusio of our pproch is give. II. A ovel Geerlized Derivtive We egi with the followig le. Le II.1: Let (.) : e ouded d itegrle fuctio. We hve ( ), x y y x x (2) where ( x, y ) e 2 ( y x ) 2 roof: See pge 124 d 125 of [9]., 2 ( x, y ). (3) By ttetio to the ove Le d (2), for y fuctio (.) : which is itegrle o itervl [, ] d zero o \[, ], we hve ( ), [, ]. x y y x x (4) ow, we hve the followig theore: heore II.2: Let g (.) :[, ] e ouded d differetile fuctio. We hve ( ), [, ] L x y g y g x x (5) where 2 L( x, y ) ( x, y ), ( x, y ). (6) y d (.,.) stisfies (3). roof: We defie the fuctio g (.) : g ( x ), x [, ] g( x ), otherwise. It is trivil tht fuctio g (.) is ouded d itegrle. So y itegrtig y prts d Le II.1, for y x [, ], we hve L( x, y) g( y) li L( x, y) g( y) li ( x, y) g( y) y li ( x, ) g( ) ( x, ) g( ) s ( x, y) g( y) li ( x, ) g( ) ( x, ) g( ) = li ( x, y) g( y) g( x) g( x). li ( x, y) g( y) li ( x, y) g( y) ow, we cosider the followig prole: Let g (.) e piecewise cotiuous o-sooth (C) fuctio. Fid fuctio (.) such tht for ( ), [, ] L x y g y x x (7)

3 18 Solvig Clss of o-sooth Optil Cotrol roles where L (.,.) is defied y (4). ote tht if g (.) is cotiuous differetile fuctio, the the uique solutio of (7) is (.) g (.). ow, we defie the followig geerlized derivtive for the C fuctios: Defiiti o II.4: Let g (.) e C fuctio o [, ] d (.) is the solutio of (7). he geerlized derivtive of fuctio g (.) is deoted y x g (.) d defied s x g (.) (.). Rer II.5: ote tht y heore II.2, if g (.) is dg sooth (or differetile) fuctio the x g (.) dx. his shows the vlidity d stility of this type of geerlized derivtive. ow cosider (7) d ssue tht ( x ) ( x ), x [, ] where (.),,1,... is totl set for spce of piecewise cotiuous fuctios o [, ]. By this ssuptio, we hve the followig prole: Let g (.) e C fuctio. Fid coefficiets,,1,2,... such tht for ll x [, ] L ( x, y ) g ( y ) ( x ), (8) where L (.,.) is defied y (6). For covertig the ifiite diesiol (8) to the fiite prole, we ssue tht d M re two sufficietly ig uers d write (8) s follows: L ( x, y ) g ( y ) ( x ), x [, ]. (9) M Here, we defie the followig optiiztio prole for the solvig ove equtio:,,1,2,..., L ( x, y) g( y) Miiize dx. ( x) Let M e ig turl uer d ssue (1) y x,,1,2,...,. (11) We utilize the trpezoidl pproxitio to covert the itegrl i (1) to the fiite su. We oti the followig olier progrig (L) prole: Miiize,=,1,2,..., i= w i = w L (x,y )g(y ) M i - (x ) = i where the weights w,,1, 2,..., re s follows: w w, w,,1,2,...,. 2 By ssuptio z w L ( x, y ) g ( y ) ( x ), i M i i (12) for i,1,2,..., the L (12) e coverted to the correspodig lier progrig (L) prole s follows: i i zi, i Miiize suect to w z (13) z ( x ) w L ( x, y ) g ( y ), i i M i z ( x ) w L ( x, y ) g ( y ), s i M i z, i,1,..., i where g (.) : is give C fuctio d, d M re sufficietly ig uers. But, For otiig etter geerlized derivtive we re goig to cosider soe costrits for (13). For this gol, we utilize the followig le: Le II.6: Let g (.) e cotiuously differetile fuctio o itervl [, ]. he there exists such tht for ll l 1,2,..., 1d l 1, l 1, g ( x ) ( ) ( ) g x l g x, where poits x, x1,..., x re defied y (11). roof: his is result of derivtive s defiitio. ow, we ssue g ( x ) ( x ), i,1,2,..., i i (14) d dd the costrit (14) to (13). We oti the followig L prole:

4 Solvig Clss of o-sooth Optil Cotrol roles 19 i i zi, i Miiize suect to w z (15) z ( x ) w L ( x, y ) g ( y ), i i M i z ( x ) w L ( x, y ) g ( y ), i i M i ( x ) g ( x ) g ( x l ), ( x ) g ( x ) g ( x l ), z, i,1,...,, l 1,2,..., 1, l 1, l 1. i By solvig the ove L prole, we oti the optil solutios z i, i,1,..., d,,1,...,. So we hve x s g ( x ) ( x ), x [, ]. (16) I the ext sectio, we covert the o-sooth optil cotrol prole (1) to the sooth for y usig ove GD. III. Soothig rocess Cosider the osooth optil cotrol prole (1). Let x g (.) is the geerlized derivtive of osooth fuctio g (.) defied y (16). We ssue X is the set of o-soothess poits of fuctio g (.). We lso ssue is coutle set. So y Rers dg II.5, x g (.) (.) o set X \. hus x (.) x g ( x (.)) dx dg x(.) ( x(.)) lost everywhere (.e) o X. Further, dx for ll t [, ], we hve t t dg x ( z ) ( ( )) ( ) ( ( )) x g x z dz x z x z dz dx t d g ( x ( z )) dz g ( x ( t )) g ( x ()) dz g ( x ( t )) g ( ). So y ove reltio the osooth optil cotrol prole (1), is coverted to the followig sooth for: Miiize x ( ) (17) suect to t x( t) g( ) x( z) g( x( z)) dz f ( u( t)), x(), x( t) X, u( t) U, t [, ] x IV. Discretiztio rocess I this stge, we pproxite the sooth optil cotrol prole (17), to the discrete for. For this gol, select poits t,,1,2,..., where is sufficietly ig u er, d ssue x ( t ) x,,1,2,...,. By these, we pproxite the velocity x (.) i poits t,,1,2,..., s follows: x ( t ) x x 1, x ( t ) x 1 x,,1,2,..., 1 Moreover, y usig the trpezoidl pproxitios, we pproxite the itegrl ter i (17) s follows: t x x x ( z ) g ( x ( z )) dz w x ( t ) g ( x ( t )), for,1,...,, where the weights w,,1,2,..., re s follows: 1 1 w, w w 1, 2. w w, w, 2,3,..., 2 So the discrete for of sooth optil cotrol prole (1) is s follows: Miiize suect to x (18) 1 1 x x g ( ) w x x g ( x ) x 1 f ( u ),,1,..., 1 x x 1 g ( ) w x x 1 x g ( x ) w x x g x f u 1 x ( ) ( x, x X, u U,,1,...,. By solvig the ove sooth L prole, we oti the followig pproxite optil solutios for the osooth optil cotrol prole (1). x ( t ) x, u ( t ) u,,1,..., We defie the poitwise error for ove pproxite optil solutio s follows: E( t ) x ( t ) g( x ( t ) f ( u ( t )),,1,...,. ), (19)

5 2 Solvig Clss of o-sooth Optil Cotrol roles V. uericl Result Cosider the followig o-sooth optil cotrol prole: Miiize x ( ) (2) suect to x( t) x( t).5 u( t), t [, ], x().3, x( t) 1, u( t) 1, t [, ], where 2. Here, we ssue g ( x ) x.5, ( x ) cos( x ), x [,1] d 69, 2, M 1. We solve the L prole (15) d oti the geerlized derivtive of fuctio g ( x ) x.5 s 69 g ( x ) cos( x ), x [,1] x which is show i Fig. 1. Further, y solvig the correspodig sooth L (18), we oti the pproxite optil stte d optil cotrol for the osooth optil cotrol prole (2) s follows: x ( t ) x, u ( t ) u,,1,...,2, where they re illustrted i Figs. 2 d 3, respectively. Here the oective fuctio is x (2) d the error of otied pproxite optil stte d cotrol, correspodig to the reltio (19), is show i Fig. (4). he upper oud for poitwise error is Fig. 1: he grph of geerlized derivtive Fig. 2: he pproxite optil stte

6 Solvig Clss of o-sooth Optil Cotrol roles 21 Fig. 3: he pproxite optil cotrol Fig. 4: he grph of error fuctio VI. Coclusio I this wor, we showed tht the o-sooth optil cotrol proles re coverted to the sooth for y usig ew prcticl geerlized derivtive. Moreover, we showed tht the sooth optil cotrol proles were pproxited to the olier progrig prole y usig the discretiztio ethod. Acowledgeets he reserch ws supported y grt fro Ferdowsi Uiversity of Mshhd (o. MA89187KAM).

7 22 Solvig Clss of o-sooth Optil Cotrol roles Refereces [1] Cliel M. K., d ieier H., Alysis d Cotrol of o-s ooth Dyicl Systes, It. J. Roust olier Cotrol, 27, 17: [2] Di Berrdo M., Bifurctios i o-sooth Dyicl Systes, SIAM Review, 28, 5(4): [3] Goto. d Kwle H., Direct optiiztio ethods pplied to olier optil cotrol prole, Mthetics d Coputers i Siultio, 2, 51 : [4] Kyd, A.V., oori Sdri, M.H. d Erfi, H. R., A ew Defiitio for Geerlized First Derivtive of o-sooth Fuctios, Applied Mthetics, 211, 2(1): [5] oori Sdri M.H., Kyd A.V., d Erfi H.R., A ew rcticl Geerlized Derivtive for o-sooth Fuctios, he Electroic Jourl of Mthetics d echology, 213, i press. [6] Erfi H. R, oori Sdri M.H., d Kyd A.V., A ew Approch for the Geerlized First Derivtive d Extesio It to the Geerlized Secod Derivtive of osooth Fuctios. I.J. Itelliget Systes d Applictios, 213, i press. [7] Erfi H. R, oori Sdri M.H., d Kyd A.V., A uericl Approch for o-sooth Ordiry Differetil Equtios. Jourl of Virtio d Cotrol, 212, Forthcoig pper. [8] Erfi H. R., oori Sdri M.H. d Kyd A. V, A ovel Approch for Solvig osooth Optiiztio roles with Applictio to osooth Equtios, Jourl of Mthetics, Hidwi pulictio, i press. [9] G.F. Roch, Gree s Fuctio: Itroductory heory with Applictios, V ostrd Reihold Copy, Lodo, 197. Hid Rez Erfi, h.d. i cotrol d optiiztio fro fculty of theticl scieces, Ferdowsi uiversity of Mshhd, Ir. His reserch iterests iclude optil cotrol, optiiztio, osooth lysis d cotrol of osooth icl systes. Ali Vhidi Kyd, h.d. i cotrol d optiiztio fro Leeds Uiversity, Egld. He is full professor t the fculty of theticl scieces, Ferdowsi Uiversity of Mshhd, Ir, his reserch iterests re ily o optil cotrol d optiiztio, fuzzy theory, osooth lysis d pplictio of cotrol i edicie. Mohd Hdi Frhi,, h.d. i cotrol d optiiztio fro Leeds Uiversity, Egld. He is full professor t the fculty of theticl scieces, Ferdowsi Uiversity of Mshhd, Ir d his reserch iterests re ily o optil cotrol d optiiztio. How to cite this pper: M. H. oori Sdri, H. R. Erfi, A.V. Kyd, M. H. Frhi,"Solvig Clss of o-sooth Optil Cotrol roles", Itertiol Jourl of Itelliget Systes d Applictios(IJISA), vol.5, o.7, pp.16-22, 213. DOI: /iis Authors rofiles Mohd Hdi oori Sdri, h.d. i cotrol d optiiztio fro fculty of theticl scieces, Ferdowsi Uiversity of Mshhd, Ir. His reserch iterests iclude sooth d osooth optil cotrol, cotiuous d discrete optiiztio d icl systes.

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Scietific Reserch of the Istitute of Mthetics d Coputer Sciece 3() 0, 5-0 APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Jolt Borows, Le Łcińs, Jowit Rychlews Istitute of Mthetics,

More information

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials Jourl of Al-Nhri Uiversity Vol.5 (), Mrch,, pp.-9 Sciece Numericl Solutio of Fuzzy Fredholm Itegrl Equtios of the Secod Kid usig Berstei Polyomils Srmd A. Altie Deprtmet of Computer Egieerig d Iformtio

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

Research Article Refinements of Aczél-Type Inequality and Their Applications

Research Article Refinements of Aczél-Type Inequality and Their Applications Hidwi Pulishig Corportio Jourl of Applied Mthetics Volue 04, Article ID 58354, 7 pges http://dxdoiorg/055/04/58354 Reserch Article Refieets of Aczél-Type Iequlity d Their Applictios Jigfeg Ti d We-Li Wg

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

Power Series Solutions to Generalized Abel Integral Equations

Power Series Solutions to Generalized Abel Integral Equations Itertiol Jourl of Mthemtics d Computtiol Sciece Vol., No. 5, 5, pp. 5-54 http://www.isciece.org/jourl/ijmcs Power Series Solutios to Geerlized Abel Itegrl Equtios Rufi Abdulli * Deprtmet of Physics d Mthemtics,

More information

degree non-homogeneous Diophantine equation in six unknowns represented by x y 2z

degree non-homogeneous Diophantine equation in six unknowns represented by x y 2z Scholrs Jourl of Egieerig d Techology (SJET Sch. J. Eg. Tech., ; (A:97- Scholrs Acdeic d Scietific Pulisher (A Itertiol Pulisher for Acdeic d Scietific Resources www.sspulisher.co ISSN -X (Olie ISSN 7-9

More information

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 3 Ver. IV (My - Jue 7), PP -8 www.iosrjourls.org Gree s Fuctio Approch to Solve Nolier Secod Order Four Poit Directiol

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

MATRIX ALGEBRA, Systems Linear Equations

MATRIX ALGEBRA, Systems Linear Equations MATRIX ALGEBRA, Systes Lier Equtios Now we chge to the LINEAR ALGEBRA perspective o vectors d trices to reforulte systes of lier equtios. If you fid the discussio i ters of geerl d gets lost i geerlity,

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case Chpter : Algebr: A. Bckgroud lgebr: A. Like ters: I lgebric expressio of the for: () x b y c z x y o z d x... p x.. we cosider x, y, z to be vribles d, b, c, d,,, o,.. to be costts. I lgebric expressio

More information

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Certain sufficient conditions on N, p n, q n k summability of orthogonal series Avilble olie t www.tjs.com J. Nolier Sci. Appl. 7 014, 7 77 Reserch Article Certi sufficiet coditios o N, p, k summbility of orthogol series Xhevt Z. Krsiqi Deprtmet of Mthemtics d Iformtics, Fculty of

More information

Some New Iterative Methods Based on Composite Trapezoidal Rule for Solving Nonlinear Equations

Some New Iterative Methods Based on Composite Trapezoidal Rule for Solving Nonlinear Equations Itertiol Jourl of Mthemtics d Sttistics Ivetio (IJMSI) E-ISSN: 31 767 P-ISSN: 31-759 Volume Issue 8 August. 01 PP-01-06 Some New Itertive Methods Bsed o Composite Trpezoidl Rule for Solvig Nolier Equtios

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Closed Newton-Cotes Integration

Closed Newton-Cotes Integration Closed Newto-Cotes Itegrtio Jmes Keeslig This documet will discuss Newto-Cotes Itegrtio. Other methods of umericl itegrtio will be discussed i other posts. The other methods will iclude the Trpezoidl Rule,

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

The Definite Riemann Integral

The Definite Riemann Integral These otes closely follow the presettio of the mteril give i Jmes Stewrt s textook Clculus, Cocepts d Cotexts (d editio). These otes re iteded primrily for i-clss presettio d should ot e regrded s sustitute

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

Algebra 2 Readiness Summer Packet El Segundo High School

Algebra 2 Readiness Summer Packet El Segundo High School Algebr Rediess Suer Pcket El Segudo High School This pcket is desiged for those who hve copleted Geoetry d will be erolled i Algebr (CP or H) i the upcoig fll seester. Suer Pcket Algebr II Welcoe to Algebr

More information

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind Ge. Mth. Notes, Vol. 2, No. 1, Jury 211, pp. 143-148 ISSN 2219-7184; Copyright ICSRS Publictio, 211 www.i-csrs.org Avilble free olie t http://www.gem.i Vritiol Itertio Method for Solvig Volterr d Fredholm

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

On New Bijective Convolution Operator Acting for Analytic Functions

On New Bijective Convolution Operator Acting for Analytic Functions Jourl o Mthetics d Sttistics 5 (: 77-87, 9 ISSN 549-3644 9 Sciece Pulictios O New Bijective Covolutio Opertor Actig or Alytic Fuctios Oqlh Al-Rei d Msli Drus School o Mtheticl Scieces, Fculty o Sciece

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS RGMIA Reserch Report Collectio, Vol., No., 998 http://sci.vut.edu.u/ rgmi/reports.html AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS S.S. DRAGOMIR AND I.

More information

A STUDY ON MULTIPLE IMPROPER INTEGRALS USING MAPLE

A STUDY ON MULTIPLE IMPROPER INTEGRALS USING MAPLE Itertiol Jourl of Physics d Mtheticl Scieces ISSN: 2277-2 (Olie) A Olie Itertiol Jourl Avilble t http://www.cibtech.org/ps.ht 203 Vol. 3 (3) July-Septeber, pp.55-0/yu A STUDY ON MULTIPLE IMPROPER INTEGRALS

More information

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM Jourl of Applied Mthemtics d Computtiol Mechics () 57-6 SOUION O DIERENIA EQUAION OR HE EUER-ERNOUI EAM Izbel Zmorsk Istitute of Mthemtics Czestochow Uiversit of echolog Częstochow Pold izbel.zmorsk@im.pcz.pl

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property Lier Time-Ivrit Bsic Properties LTI The Commuttive Property The Distributive Property The Associtive Property Ti -6.4 / Chpter Covolutio y ] x ] ] x ]* ] x ] ] y] y ( t ) + x( τ ) h( t τ ) dτ x( t) * h(

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

82A Engineering Mathematics

82A Engineering Mathematics Clss Notes 9: Power Series /) 8A Egieerig Mthetics Secod Order Differetil Equtios Series Solutio Solutio Ato Differetil Equtio =, Hoogeeous =gt), No-hoogeeous Solutio: = c + p Hoogeeous No-hoogeeous Fudetl

More information

Formal Languages The Pumping Lemma for CFLs

Formal Languages The Pumping Lemma for CFLs Forl Lguges The Pupig Le for CFLs Review: pupig le for regulr lguges Tke ifiite cotext-free lguge Geertes ifiite uer of differet strigs Exple: 3 I derivtio of log strig, vriles re repeted derivtio: 4 Derivtio

More information

The Elementary Arithmetic Operators of Continued Fraction

The Elementary Arithmetic Operators of Continued Fraction Americ-Eursi Jourl of Scietific Reserch 0 (5: 5-63, 05 ISSN 88-6785 IDOSI Pulictios, 05 DOI: 0.589/idosi.ejsr.05.0.5.697 The Elemetry Arithmetic Opertors of Cotiued Frctio S. Mugssi d F. Mistiri Deprtmet

More information

ALGEBRA II CHAPTER 7 NOTES. Name

ALGEBRA II CHAPTER 7 NOTES. Name ALGEBRA II CHAPTER 7 NOTES Ne Algebr II 7. th Roots d Rtiol Expoets Tody I evlutig th roots of rel ubers usig both rdicl d rtiol expoet ottio. I successful tody whe I c evlute th roots. It is iportt for

More information

Numerical Integration by using Straight Line Interpolation Formula

Numerical Integration by using Straight Line Interpolation Formula Glol Jourl of Pure d Applied Mthemtics. ISSN 0973-1768 Volume 13, Numer 6 (2017), pp. 2123-2132 Reserch Idi Pulictios http://www.ripulictio.com Numericl Itegrtio y usig Stright Lie Iterpoltio Formul Mhesh

More information

Notes 17 Sturm-Liouville Theory

Notes 17 Sturm-Liouville Theory ECE 638 Fll 017 Dvid R. Jckso Notes 17 Sturm-Liouville Theory Notes re from D. R. Wilto, Dept. of ECE 1 Secod-Order Lier Differetil Equtios (SOLDE) A SOLDE hs the form d y dy 0 1 p ( x) + p ( x) + p (

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

Approximations of Definite Integrals

Approximations of Definite Integrals Approximtios of Defiite Itegrls So fr we hve relied o tiderivtives to evlute res uder curves, work doe by vrible force, volumes of revolutio, etc. More precisely, wheever we hve hd to evlute defiite itegrl

More information

Taylor series expansion of nonlinear integrodifferential equations

Taylor series expansion of nonlinear integrodifferential equations AMERCA JOURAL OF SCEFC AD DUSRAL RESEARCH 2, Sciece Huβ, http://www.scihu.org/ajsr SS: 253-649X doi:.525/jsir.2.2.3.376.38 yor series expsio of oier itegrodiffereti equtios Eke A.. d 2 Jckreece P. C. Deprtet

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Uiv. Beogrd. Publ. Elektroteh. Fk. Ser. Mt. 8 006 4. Avilble electroiclly t http: //pefmth.etf.bg.c.yu SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Zheg Liu Usig vrit of Grüss iequlity to give ew proof

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

Fourier Series and Applications

Fourier Series and Applications 9/7/9 Fourier Series d Applictios Fuctios epsio is doe to uderstd the better i powers o etc. My iportt probles ivolvig prtil dieretil equtios c be solved provided give uctio c be epressed s iiite su o

More information

Cape Cod Community College

Cape Cod Community College Cpe Cod Couity College Deprtetl Syllus Prepred y the Deprtet of Mthetics Dte of Deprtetl Approvl: Noveer, 006 Dte pproved y Curriculu d Progrs: Jury 9, 007 Effective: Fll 007 1. Course Nuer: MAT110 Course

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

Review of Sections

Review of Sections Review of Sectios.-.6 Mrch 24, 204 Abstrct This is the set of otes tht reviews the mi ides from Chpter coverig sequeces d series. The specific sectios tht we covered re s follows:.: Sequces..2: Series,

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

Double Sums of Binomial Coefficients

Double Sums of Binomial Coefficients Itertiol Mthemticl Forum, 3, 008, o. 3, 50-5 Double Sums of Biomil Coefficiets Athoy Sofo School of Computer Sciece d Mthemtics Victori Uiversity, PO Box 448 Melboure, VIC 800, Austrli thoy.sofo@vu.edu.u

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

A general theory of minimal increments for Hirsch-type indices and applications to the mathematical characterization of Kosmulski-indices

A general theory of minimal increments for Hirsch-type indices and applications to the mathematical characterization of Kosmulski-indices Mlysi Jourl of Librry & Iformtio Sciece, Vol. 9, o. 3, 04: 4-49 A geerl theory of miiml icremets for Hirsch-type idices d pplictios to the mthemticl chrcteriztio of Kosmulski-idices L. Egghe Uiversiteit

More information

Riemann Integral and Bounded function. Ng Tze Beng

Riemann Integral and Bounded function. Ng Tze Beng Riem Itegrl d Bouded fuctio. Ng Tze Beg I geerlistio of re uder grph of fuctio, it is ormlly ssumed tht the fuctio uder cosidertio e ouded. For ouded fuctio, the rge of the fuctio is ouded d hece y suset

More information

Lecture 4 Recursive Algorithm Analysis. Merge Sort Solving Recurrences The Master Theorem

Lecture 4 Recursive Algorithm Analysis. Merge Sort Solving Recurrences The Master Theorem Lecture 4 Recursive Algorithm Alysis Merge Sort Solvig Recurreces The Mster Theorem Merge Sort MergeSortA, left, right) { if left < right) { mid = floorleft + right) / 2); MergeSortA, left, mid); MergeSortA,

More information

Linear Programming. Preliminaries

Linear Programming. Preliminaries Lier Progrmmig Prelimiries Optimiztio ethods: 3L Objectives To itroduce lier progrmmig problems (LPP To discuss the stdrd d coicl form of LPP To discuss elemetry opertio for lier set of equtios Optimiztio

More information

THE SOLUTION OF THE FRACTIONAL DIFFERENTIAL EQUATION WITH THE GENERALIZED TAYLOR COLLOCATIN METHOD

THE SOLUTION OF THE FRACTIONAL DIFFERENTIAL EQUATION WITH THE GENERALIZED TAYLOR COLLOCATIN METHOD IJRRAS August THE SOLUTIO OF THE FRACTIOAL DIFFERETIAL EQUATIO WITH THE GEERALIZED TAYLOR COLLOCATI METHOD Slih Ylçıbş Ali Kourlp D. Dömez Demir 3* H. Hilmi Soru 4 34 Cell Byr Uiversity Fculty of Art &

More information

On The Homogeneous Quintic Equation with Five Unknowns

On The Homogeneous Quintic Equation with Five Unknowns IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-78,p-ISSN: 319-76X, Volume 7, Issue 3 (Jul. - Aug. 013), PP 7-76 www.iosrjourls.org O The Homogeeous Quitic Equtio with Five Ukows y y 3 3 ( y ) 3(( y)( z w

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

Upper Bound of Partial Sums Determined by Matrix Theory

Upper Bound of Partial Sums Determined by Matrix Theory Turish Jourl of Alysis d Nuber Theory, 5, Vol, No 6, 49-5 Avilble olie t http://pubssciepubco/tjt//6/ Sciece d Eductio Publishig DOI:69/tjt--6- Upper Boud of Prtil Sus Deteried by Mtrix Theory Rbh W Ibrhi

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

On a New Subclass of Multivalant Functions Defined by Al-Oboudi Differential Operator

On a New Subclass of Multivalant Functions Defined by Al-Oboudi Differential Operator Glol Jourl o Pure d Alied Mthetics. ISSN 973-768 Volue 4 Nuer 5 28. 733-74 Reserch Idi Pulictios htt://www.riulictio.co O New Suclss o Multivlt Fuctios eied y Al-Ooudi ieretil Oertor r.m.thirucher 2 T.Stli

More information

A GENERALIZATION OF GAUSS THEOREM ON QUADRATIC FORMS

A GENERALIZATION OF GAUSS THEOREM ON QUADRATIC FORMS A GENERALIZATION OF GAU THEOREM ON QUADRATIC FORM Nicole I Brtu d Adi N Cret Deprtmet of Mth - Criov Uiversity, Romi ABTRACT A origil result cocerig the extesio of Guss s theorem from the theory of biry

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

MTH 146 Class 16 Notes

MTH 146 Class 16 Notes MTH 46 Clss 6 Notes 0.4- Cotiued Motivtio: We ow cosider the rc legth of polr curve. Suppose we wish to fid the legth of polr curve curve i terms of prmetric equtios s: r f where b. We c view the cos si

More information

Applications of Regular Closure

Applications of Regular Closure Applictios of Regulr Closure 1 The itersectio of cotext-free lguge d regulr lguge is cotext-free lguge L1 L2 cotext free regulr Regulr Closure L1 L 2 cotext-free 2 Liz 6 th, sectio 8.2, exple 8.7, pge

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

Discrete Mathematics I Tutorial 12

Discrete Mathematics I Tutorial 12 Discrete Mthemtics I Tutoril Refer to Chpter 4., 4., 4.4. For ech of these sequeces fid recurrece reltio stisfied by this sequece. (The swers re ot uique becuse there re ifiitely my differet recurrece

More information

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x Chpter 6 Applictios Itegrtio Sectio 6. Regio Betwee Curves Recll: Theorem 5.3 (Cotiued) The Fudmetl Theorem of Clculus, Prt :,,, the If f is cotiuous t ever poit of [ ] d F is tiderivtive of f o [ ] (

More information

Riemann Integral Oct 31, such that

Riemann Integral Oct 31, such that Riem Itegrl Ot 31, 2007 Itegrtio of Step Futios A prtitio P of [, ] is olletio {x k } k=0 suh tht = x 0 < x 1 < < x 1 < x =. More suitly, prtitio is fiite suset of [, ] otiig d. It is helpful to thik of

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 0 FURTHER CALCULUS II. Sequeces d series. Rolle s theorem d me vlue theorems 3. Tlor s d Mcluri s theorems 4. L Hopitl

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

Solution of the exam in TMA4212 Monday 23rd May 2013 Time: 9:00 13:00

Solution of the exam in TMA4212 Monday 23rd May 2013 Time: 9:00 13:00 Norwegi Uiversity of Sciece d Techology Deprtmet of Mthemticl Scieces Cotct durig the exm: Ele Celledoi, tlf. 735 93541 Pge 1 of 7 of the exm i TMA4212 Mody 23rd My 2013 Time: 9:00 13:00 Allowed ids: Approved

More information

Algebra 2 Important Things to Know Chapters bx c can be factored into... y x 5x. 2 8x. x = a then the solutions to the equation are given by

Algebra 2 Important Things to Know Chapters bx c can be factored into... y x 5x. 2 8x. x = a then the solutions to the equation are given by Alger Iportt Thigs to Kow Chpters 8. Chpter - Qudrtic fuctios: The stdrd for of qudrtic fuctio is f ( ) c, where 0. c This c lso e writte s (if did equl zero, we would e left with The grph of qudrtic fuctio

More information

Capacitance Computation of a Charge Conducting Plate using Method of Moments

Capacitance Computation of a Charge Conducting Plate using Method of Moments Itertiol Jourl of Reserch d Scietific Iovtio (IJRSI olue, Issue I, Jury 8 ISS 3 75 Cpcitce Coputtio of Chrge Coductig Plte usig Method of Moets Kishore Mity Deprtet of Electricl Egieerig d Coputer Sciece,

More information

Introduction to Modern Control Theory

Introduction to Modern Control Theory Itroductio to Moder Cotrol Theory MM : Itroductio to Stte-Spce Method MM : Cotrol Deig for Full Stte Feedck MM 3: Etitor Deig MM 4: Itroductio of the Referece Iput MM 5: Itegrl Cotrol d Rout Trckig //4

More information

Canonical Form and Separability of PPT States on Multiple Quantum Spaces

Canonical Form and Separability of PPT States on Multiple Quantum Spaces Coicl Form d Seprbility of PPT Sttes o Multiple Qutum Spces Xio-Hog Wg d Sho-Mig Fei, 2 rxiv:qut-ph/050445v 20 Apr 2005 Deprtmet of Mthemtics, Cpitl Norml Uiversity, Beijig, Chi 2 Istitute of Applied Mthemtics,

More information

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1 Numeril Methods Leture 5. Numeril itegrtio dr h. iż. Ktrzy Zkrzewsk, pro. AGH Numeril Methods leture 5 Outlie Trpezoidl rule Multi-segmet trpezoidl rule Rihrdso etrpoltio Romerg's method Simpso's rule

More information

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I EXERCISE I t Q. d Q. 6 6 cos si Q. Q.6 d d Q. d Q. Itegrte cos t d by the substitutio z = + e d e Q.7 cos. l cos si d d Q. cos si si si si b cos Q.9 d Q. si b cos Q. si( ) si( ) d ( ) Q. d cot d d Q. (si

More information

Definite Integral. The Left and Right Sums

Definite Integral. The Left and Right Sums Clculus Li Vs Defiite Itegrl. The Left d Right Sums The defiite itegrl rises from the questio of fidig the re betwee give curve d x-xis o itervl. The re uder curve c be esily clculted if the curve is give

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x): Eigefuctio Epsio: For give fuctio o the iterl the eigefuctio epsio of f(): f ( ) cmm( ) m 1 Eigefuctio Epsio (Geerlized Fourier Series) To determie c s we multiply oth sides y Φ ()r() d itegrte: f ( )

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem The Weierstrss Approximtio Theorem Jmes K. Peterso Deprtmet of Biologicl Scieces d Deprtmet of Mthemticl Scieces Clemso Uiversity Februry 26, 2018 Outlie The Wierstrss Approximtio Theorem MtLb Implemettio

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information

* power rule: * fraction raised to negative exponent: * expanded power rule:

* power rule: * fraction raised to negative exponent: * expanded power rule: Mth 15 Iteredite Alger Stud Guide for E 3 (Chpters 7, 8, d 9) You use 3 5 ote crd (oth sides) d scietific clcultor. You re epected to kow (or hve writte o our ote crd) foruls ou eed. Thik out rules d procedures

More information

Trapezoidal Rule of Integration

Trapezoidal Rule of Integration Trpezoidl Rule o Itegrtio Mjor: All Egieerig Mjors Authors: Autr Kw, Chrlie Brker Trsormig Numericl Methods Eductio or STEM Udergrdutes /0/200 Trpezoidl Rule o Itegrtio Wht is Itegrtio Itegrtio: The process

More information

{ } { S n } is monotonically decreasing if Sn

{ } { S n } is monotonically decreasing if Sn Sequece A sequece is fuctio whose domi of defiitio is the set of turl umers. Or it c lso e defied s ordered set. Nottio: A ifiite sequece is deoted s { } S or { S : N } or { S, S, S,...} or simply s {

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information