Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Size: px
Start display at page:

Download "Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1"

Transcription

1 Numeril Methods Leture 5. Numeril itegrtio dr h. iż. Ktrzy Zkrzewsk, pro. AGH Numeril Methods leture 5

2 Outlie Trpezoidl rule Multi-segmet trpezoidl rule Rihrdso etrpoltio Romerg's method Simpso's rule Gussi method Numeril Methods leture 5

3 Numeril itegrtio - ide d Y The itegrl e pproimted y: d S i i Δ i X i i i Numeril Methods leture 5

4 Newto Cotes methods Newto Cotes itegrtio elogs to lss o methods with ied odes: utio is iterpolted y polyomil e.g. Lgrge polyomil where: 0... The, the itegrl o e pproimted s itegrl o the iterpolted utio d d Numeril Methods leture 5

5 5 Trpezoidl rule The trpezoidl rule ssumes:, thus: 0 d d d 0 But wht is 0 d? 0 Now i oe hooses,, i, s the two poits to pproimte y stright lie rom to. t ollows tht: Numeril Methods leture 5

6 Trpezoidl rule d d re o trpezoid Y X Numeril Methods leture 5 6

7 Trpezoidl rule Emple : Veloity vt o roket rom t 8 s to t 0 s is give y: 0000 v t 000 l 9. 8t t Use the sigle segmet trpezoidl rule to id the diste overed y the roket rom t 8 s to t 0 s Fid the true reltive error. Numeril Methods leture 5 7

8 Trpezoidl rule 0000 t 000 l 9. 8t t l l s 0 s m / m / s s m Numeril Methods leture 5 8

9 Trpezoidl rule The true vlue Δ l 9.8t dt t 0 06m The reltive error: t % 06 Numeril Methods leture 5 9

10 Multi-segmet trpezoidl rule The true error usig Y sigle segmet trpezoidl rule ws lrge. We divide the itervl rom to ito smller segmets o equl legth h d pply the trpezoidl rule over eh segmet: h or X d h h h d d d h h h h d Numeril Methods leture 5 0

11 d ih i h h h h h h d d... d d d... h h h h h ] [... h h Multi-segmet trpezoidl rule Numeril Methods leture 5

12 Emple : Multi-segmet trpezoidl rule Veloity vt o roket rom t 8 s to t 0 s is give y: 0000 v t 000 l 9. 8t t Use the omple segmet trpezoidl rule to id the diste overed rom t 8 s to t 0 s or Fid the true reltive error. Numeril Methods leture 5

13 Multi-segmet trpezoidl rule 8 s 0 s ih i 0 8 h s i ih 0 [ 8 9 0] [ ] 66 m Numeril Methods leture 5

14 Multi-segmet trpezoidl rule true vlue: l 9. 8t dt t 06m The reltive error: 0666 t 00.85% 06 Numeril Methods leture 5

15 Multi-segmet trpezoidl rule E t % % t Numeril Methods leture 5 5

16 Estimtio o error The reltive error or simple trpezoidl rule is E t " ζ, < ζ < The reltive error i the multi-segmet trpezoidl rule is sum o errors or eh segmet. The reltive error withi the irst segmet is give y: [ h ] E " ζ, < ζ < h " ζ h Numeril Methods leture 5 6

17 Estimtio o error By logy: [ ih i h ] Ei " ζi, i h < ζi < ih h " ζ i or -th segmet : [ { h} ] E " ζ, h < ζ < h " ζ Numeril Methods leture 5 7

18 Estimtio o error The totl error i the omple trpezoidl rule is sum o the errors or sigle segmet: E t E i i Formul: " ζ h i " ζi i i yields pproimte verge vlue o the seod derivtive i the rge o E t " ζ i α i < < Numeril Methods leture 5 8

19 Estimtio o error Tle elow presets the results or the itegrl l 9. 8t dt t s utio o the umer o segmets. Whe twie ireses, the solute error E t dereses our times! Vlue E % % t t Numeril Methods leture 5 9

20 Rihrdso s etrpoltio d Romerg s method o itegrtio Rihrdso s etrpoltio d Romerg s method o itegrtio ostitute etesio o the trpezoidl method d give etter pproimtio o the itegrl y reduig the true error. Numeril Methods leture 5 0

21 Rihrdso etrpoltio The true error otied whe usig the multi-segmet trpezoidl rule with segmets to pproimte itegrl is give y: E t where: C is pproimte ostt o proportiolity C Sie: E TV t true vlue pproimte vlue usig -segmets Numeril Methods leture 5

22 Rihrdso etrpoltio t e show tht: C TV the umer o segmets is douled rom to : C C TV TV We get: TV Numeril Methods leture 5

23 Rihrdso etrpoltio Emple : The veloity vt o roket rom t 8 s to t 0 is give y: 0000 v t 000 l 9. 8t t Use Rihrdso etrpoltio rule to id the diste overed or Fid the reltive true error Numeril Methods leture 5

24 Tle o results or 8 segmets trpezoidl rule E t % % t Numeril Methods leture 5

25 Rihrdso etrpoltio 66m m TV TV or 66 06m Numeril Methods leture 5 5

26 Rihrdso etrpoltio The true vlue: l 9. 8t dt t 06 m The solute true error: Et 0606 m Numeril Methods leture 5 6

27 Rihrdso etrpoltio The reltive error: 0606 t % 06 Compriso o dieret methods:. 8 m Trpezoidl rule % m % t Trpezoidl rule Rihrdso etrpoltio t Rihrdso etrpoltio Numeril Methods leture 5 7

28 Romerg's method Romerg s method uses the sme ptter s Rihrdso etrpoltio. However, Romerg used reursive lgorithm or the etrpoltio s ollows: TV The true vlue TV is repled y the result o the Rihrdso etrpoltio R Note lso tht the sig is repled y the sig R Numeril Methods leture 5 8

29 Romerg's method TV Ch Esimted true vlue is give y: R where: Ch is the vlue o the error o pproimtio Aother vlue o itegrl otied while doulig the umer o segmets rom to : R Estimted true vlue is give y: TV R R 5 R R R R Numeril Methods leture 5 9

30 Romerg's method A geerl epressio or Romerg itegrtio e writte s: k, j k, j k, j k, j, k k The ide k represets the order o etrpoltio k represets the vlues otied rom the regulr trpezoidl rule k represets the vlues otied usig the true error estimte s Oh The vlue o itegrl with or j is more urte th the vlue o the itegrl or j ide Numeril Methods leture 5 0

31 Romerg's method Emple : Veloity vt o roket rom t 8 s to t 0 s is give y: 0000 v t 000 l 9. 8t t Use Romerg s method to id the diste overed. Use,,, d 8 Fid the solute true error d the reltive pproimte error Numeril Methods leture 5

32 Tle o results or 8 segmets trpezoidl rule E t % % t Numeril Methods leture 5

33 Romerg's method From this tle, the iitil vlues rom the trpezoidl rule re: ,,, 07, To get the irst order etrpoltio vlues:,,,, Numeril Methods leture 5

34 Romerg's method Similrly,,,,,,,,, Numeril Methods leture 5

35 Romerg's method For the seod order etrpoltio: Similrly,,,, 06 06, 06 06, 5, ,, Numeril Methods leture 5 5

36 Romerg's method For the third order etrpoltio,,, 6, m Numeril Methods leture 5 6

37 Romerg's method Appr. Appr. Appr. -segmet segmet segmet segmet 07 mproved estimtes o the vlue o itegrl usig Romerg itegrtio Numeril Methods leture 5 7

38 Simpso's rule The trpezoidl rule ws sed o pproimtig the itegrd y irst order polyomil, d the itegrtig the polyomil over itervl rom to. Simpso s rule ssumes tht the itegrd e pproimted y seod order polyomil. d d where: 0 Numeril Methods leture 5 8

39 Simpso's rule A prol pssig through three poits :,, Y,,, X Numeril Methods leture 5 9

40 0 Coeiiets 0,, re: Simpso's rule Numeril Methods leture 5 0

41 Simpso's rule Sie: d 0 d 0 0 Numeril Methods leture 5

42 Simpso's rule d 6 h t ollows tht: h d it is lled Simpso s / rule Numeril Methods leture 5

43 d d d 0... Multi-segmet Simpso's rule 0 d d Numeril Methods leture d i i h i,,...,...

44 Simpso's rule d 0 h 6... h... 6 h 6... h 6 Numeril Methods leture 5

45 Simpso's rule h d 0 {... } [...] {... } }]... h odd i i 0 i i i i eve odd i i 0 i i i i eve Numeril Methods leture 5 5

46 Estimtio o errors i Simpso's rule Approimte vlues o the itegrl, usig Simpso's rule with multiple segmets Approimte vlues E t Є t % 0.007% % 0.000% % Numeril Methods leture 5 6

47 Simpso's rule errors Error or oe segmet 5 E t ζ, < ζ < 880 Error or the multi-segmet E E 5 h 5 0 ζ ζ, h ζ ζ, < 0 < ζ < < ζ E i i i ζ i 5 h 90 ζ i, i < ζi < i Numeril Methods leture 5 7

48 Simpso's rule errors True error E i t E i i ζ i 5 h 90 i ζ i ζ i i 90 E t i ζ the verge vlue o the derivtive i Numeril Methods leture 5 8

49 Guss-Qudrture Method Gussi itegrl is give y: d ostt oeiiets Poits d, whih deie the vlue o the itegrd re ot ied s eore, ut there re priori distriuted rdomly withi <,>. Numeril Methods leture 5 9

50 50 Guss-Qudrture Method. 0 d d There re our ukows,,,. These re oud y ssumig tht the ormul gives et results or itegrtig geerl third order polyomil: Numeril Methods leture 5

51 5 Guss-Qudrture Method 0 0 d 0 d d d 0 0 Hee: The ormul would the give: Numeril Methods leture 5

52 5 Guss-Qudrture Method 0 0 Numeril Methods leture 5

53 5 Guss-Qudrture Method This gives us our equtios s ollows: we id tht the ove our simulteous olier equtios hve oly oe eptle solutio Numeril Methods leture 5

54 5 Guss-Qudrture Method d Hee: d Geerl -poit rules would pproimte the itegrl: Numeril Methods leture 5

55 Guss-Qudrture Method The oeiiets d rgumets or -poit Guss method re give withi the rge o <-,> : g d i i g i Coeiiets Futio rgumets Numeril Methods leture 5 55

56 Guss-Qudrture Method Coeiiets Futio rgumets Numeril Methods leture 5 56

57 So i the tle is give or: Guss-Qudrture Method g d d? The swer lies i tht y itegrl with limits o [, ] e overted ito itegrl with limits: [,] itegrls, how does oe solve Let, mt i, t ir t, t ollows tht: m Numeril Methods leture 5 57

58 58 Hee: t dt d Sustitutig our vlues o d d ito the itegrl gives us: dt t d Guss-Qudrture Method Numeril Methods leture 5

59 Emple 5: Guss-Qudrture Method Use two-poit Guss qudrture rule to pproimte the diste overed y roket rom t 8 s to t 0 s i the veloity is give y: 0000 v t 000 l 9. 8t t Use the Guss-Qudrture Mmethod to id the diste overed rom t 8 s to t 0 s Fid the true error. Numeril Methods leture 5 59

60 Guss-Qudrture Method First, hge the limits o itegrtio rom rom [8,0] to [-,] 0 t dt d 8 The weightig tors d utio rgumet vlues re : 9 d Numeril Methods leture 5 60

61 Guss-Qudrture Method The ormul is: 9 d m Numeril Methods leture 5 6

62 Guss-Qudrture Method Sie: l l Numeril Methods leture 5 6

63 Guss-Qudrture Method The solute true error: E t m The reltive error: t t 00% % Numeril Methods leture 5 6

Simpson s 1/3 rd Rule of Integration

Simpson s 1/3 rd Rule of Integration Simpso s 1/3 rd Rule o Itegrtio Mjor: All Egieerig Mjors Authors: Autr Kw, Chrlie Brker Trsormig Numericl Methods Eductio or STEM Udergrdutes 1/10/010 1 Simpso s 1/3 rd Rule o Itegrtio Wht is Itegrtio?

More information

Trapezoidal Rule of Integration

Trapezoidal Rule of Integration Trpezoidl Rule o Itegrtio Mjor: All Egieerig Mjors Authors: Autr Kw, Chrlie Brker Trsormig Numericl Methods Eductio or STEM Udergrdutes /0/200 Trpezoidl Rule o Itegrtio Wht is Itegrtio Itegrtio: The process

More information

Trapezoidal Rule of Integration

Trapezoidal Rule of Integration Trpezoidl Rule o Itegrtio Civil Egieerig Mjors Authors: Autr Kw, Chrlie Brker http://umericlmethods.eg.us.edu Trsormig Numericl Methods Eductio or STEM Udergrdutes /0/00 http://umericlmethods.eg.us.edu

More information

Numerical Integration

Numerical Integration Numericl tegrtio Newto-Cotes Numericl tegrtio Scheme Replce complicted uctio or tulted dt with some pproimtig uctio tht is esy to itegrte d d 3-7 Roerto Muscedere The itegrtio o some uctios c e very esy

More information

Interpolation. 1. What is interpolation?

Interpolation. 1. What is interpolation? Iterpoltio. Wht is iterpoltio? A uctio is ote give ol t discrete poits such s:.... How does oe id the vlue o t other vlue o? Well cotiuous uctio m e used to represet the + dt vlues with pssig through the

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

Gauss Quadrature Rule of Integration

Gauss Quadrature Rule of Integration Guss Qudrture Rule o Integrtion Mjor: All Engineering Mjors Authors: Autr Kw, Chrlie Brker http://numerilmethods.eng.us.edu Trnsorming Numeril Methods Edution or STEM Undergrdutes /0/00 http://numerilmethods.eng.us.edu

More information

Chapter Gauss Quadrature Rule of Integration

Chapter Gauss Quadrature Rule of Integration Chpter 7. Guss Qudrture Rule o Integrtion Ater reding this hpter, you should e le to:. derive the Guss qudrture method or integrtion nd e le to use it to solve prolems, nd. use Guss qudrture method to

More information

Numerical Differentiation and Integration

Numerical Differentiation and Integration Numerl Deretto d Itegrto Overvew Numerl Deretto Newto-Cotes Itegrto Formuls Trpezodl rule Smpso s Rules Guss Qudrture Cheyshev s ormul Numerl Deretto Forwrd te dvded deree Bkwrd te dvded deree Ceter te

More information

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Mathematically, integration is just finding the area under a curve from one point to another. It is b Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] CHAPTER VI Numerl Itegrto Tops - Rem sums - Trpezodl rule - Smpso s rule - Rrdso s etrpolto - Guss qudrture rule Mtemtlly, tegrto s just dg te re uder urve rom

More information

Closed Newton-Cotes Integration

Closed Newton-Cotes Integration Closed Newto-Cotes Itegrtio Jmes Keeslig This documet will discuss Newto-Cotes Itegrtio. Other methods of umericl itegrtio will be discussed i other posts. The other methods will iclude the Trpezoidl Rule,

More information

Riemann Integral Oct 31, such that

Riemann Integral Oct 31, such that Riem Itegrl Ot 31, 2007 Itegrtio of Step Futios A prtitio P of [, ] is olletio {x k } k=0 suh tht = x 0 < x 1 < < x 1 < x =. More suitly, prtitio is fiite suset of [, ] otiig d. It is helpful to thik of

More information

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral Defiite Itegrl Defiitio Itegrl. Riem Sum Let f e futio efie over the lose itervl with = < < < = e ritrr prtitio i suitervl. We lle the Riem Sum of the futio f over[, ] the sum of the form ( ξ ) S = f Δ

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

Topic 4 Fourier Series. Today

Topic 4 Fourier Series. Today Topic 4 Fourier Series Toy Wves with repetig uctios Sigl geertor Clssicl guitr Pio Ech istrumet is plyig sigle ote mile C 6Hz) st hrmoic hrmoic 3 r hrmoic 4 th hrmoic 6Hz 5Hz 783Hz 44Hz A sigle ote will

More information

Gauss Quadrature Rule of Integration

Gauss Quadrature Rule of Integration Guss Qudrture Rule o Integrtion Computer Engineering Mjors Authors: Autr Kw, Chrlie Brker http://numerilmethods.eng.us.edu Trnsorming Numeril Methods Edution or STEM Undergrdutes /0/00 http://numerilmethods.eng.us.edu

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2 MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS 6.9: Let f(x) { x 2 if x Q [, b], 0 if x (R \ Q) [, b], where > 0. Prove tht b. Solutio. Let P { x 0 < x 1 < < x b} be regulr prtitio

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) + MATH 04: INTRODUCTORY ANALYSIS SPRING 008/09 PROBLEM SET 0 SOLUTIONS Throughout this problem set, B[, b] will deote the set of ll rel-vlued futios bouded o [, b], C[, b] the set of ll rel-vlued futios

More information

Multiplicative Versions of Infinitesimal Calculus

Multiplicative Versions of Infinitesimal Calculus Multiplictive Versios o Iiitesiml Clculus Wht hppes whe you replce the summtio o stdrd itegrl clculus with multiplictio? Compre the revited deiitio o stdrd itegrl D å ( ) lim ( ) D i With ( ) lim ( ) D

More information

EXPONENTS AND LOGARITHMS

EXPONENTS AND LOGARITHMS 978--07-6- Mthemtis Stdrd Level for IB Diplom Eerpt EXPONENTS AND LOGARITHMS WHAT YOU NEED TO KNOW The rules of epoets: m = m+ m = m ( m ) = m m m = = () = The reltioship etwee epoets d rithms: = g where

More information

AP Calculus Notes: Unit 6 Definite Integrals. Syllabus Objective: 3.4 The student will approximate a definite integral using rectangles.

AP Calculus Notes: Unit 6 Definite Integrals. Syllabus Objective: 3.4 The student will approximate a definite integral using rectangles. AP Clculus Notes: Uit 6 Defiite Itegrls Sllus Ojective:.4 The studet will pproimte defiite itegrl usig rectgles. Recll: If cr is trvelig t costt rte (cruise cotrol), the its distce trveled is equl to rte

More information

the midpoint of the ith subinterval, and n is even for

the midpoint of the ith subinterval, and n is even for Mth4 Project I (TI 89) Nme: Riem Sums d Defiite Itegrls The re uder the grph of positive fuctio is give y the defiite itegrl of the fuctio. The defiite itegrl c e pproimted y the followig sums: Left Riem

More information

Fourier Series. Topic 4 Fourier Series. sin. sin. Fourier Series. Fourier Series. Fourier Series. sin. b n. a n. sin

Fourier Series. Topic 4 Fourier Series. sin. sin. Fourier Series. Fourier Series. Fourier Series. sin. b n. a n. sin Topic Fourier Series si Fourier Series Music is more th just pitch mplitue it s lso out timre. The richess o sou or ote prouce y musicl istrumet is escrie i terms o sum o umer o istict requecies clle hrmoics.

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

Math1242 Project I (TI 84) Name:

Math1242 Project I (TI 84) Name: Mth4 Project I (TI 84) Nme: Riem Sums d Defiite Itegrls The re uder the grph of positive fuctio is give y the defiite itegrl of the fuctio. The defiite itegrl c e pproimted y the followig sums: Left Riem

More information

12.2 The Definite Integrals (5.2)

12.2 The Definite Integrals (5.2) Course: Aelerted Egieerig Clulus I Istrutor: Mihel Medvisky. The Defiite Itegrls 5. Def: Let fx e defied o itervl [,]. Divide [,] ito suitervls of equl width Δx, so x, x + Δx, x + jδx, x. Let x j j e ritrry

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Numerical Integration - (4.3)

Numerical Integration - (4.3) Numericl Itegrtio - (.). Te Degree of Accurcy of Qudrture Formul: Te degree of ccurcy of qudrture formul Qf is te lrgest positive iteger suc tt x k dx Qx k, k,,,...,. Exmple fxdx 9 f f,,. Fid te degree

More information

1 Tangent Line Problem

1 Tangent Line Problem October 9, 018 MAT18 Week Justi Ko 1 Tget Lie Problem Questio: Give the grph of fuctio f, wht is the slope of the curve t the poit, f? Our strteg is to pproimte the slope b limit of sect lies betwee poits,

More information

AIEEE CBSE ENG A function f from the set of natural numbers to integers defined by

AIEEE CBSE ENG A function f from the set of natural numbers to integers defined by AIEEE CBSE ENG. A futio f from the set of turl umers to itegers defied y, whe is odd f (), whe is eve is (A) oe oe ut ot oto (B) oto ut ot oe oe (C) oe oe d oto oth (D) either oe oe or oto. Let z d z e

More information

Homework 2 solutions

Homework 2 solutions Sectio 2.1: Ex 1,3,6,11; AP 1 Sectio 2.2: Ex 3,4,9,12,14 Homework 2 solutios 1. Determie i ech uctio hs uique ixed poit o the speciied itervl. gx = 1 x 2 /4 o [0,1]. g x = -x/2, so g is cotiuous d decresig

More information

Calculus II Homework: The Integral Test and Estimation of Sums Page 1

Calculus II Homework: The Integral Test and Estimation of Sums Page 1 Clculus II Homework: The Itegrl Test d Estimtio of Sums Pge Questios Emple (The p series) Get upper d lower bouds o the sum for the p series i= /ip with p = 2 if the th prtil sum is used to estimte the

More information

Chapter 5. Integration

Chapter 5. Integration Chpter 5 Itegrtio Itrodutio The term "itegrtio" hs severl meigs It is usully met s the reverse proess to differetitio, ie fidig ti-derivtive to futio A ti-derivtive of futio f is futio F suh tht its derivtive

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

ECE 102 Engineering Computation

ECE 102 Engineering Computation ECE Egieerig Computtio Phillip Wog Mth Review Vetor Bsis Mtri Bsis System of Lier Equtios Summtio Symol is the symol for summtio. Emple: N k N... 9 k k k k k the, If e e e f e f k Vetor Bsis A vetor is

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4 58487 Dt Compressio Tehiques (Sprig 0) Moel Solutios for Exerise 4 If you hve y fee or orretios, plese ott jro.lo t s.helsii.fi.. Prolem: Let T = Σ = {,,, }. Eoe T usig ptive Huffm oig. Solutio: R 4 U

More information

Dynamics of Marine Biological Resources * * * REVIEW OF SOME MATHEMATICS * * *

Dynamics of Marine Biological Resources * * * REVIEW OF SOME MATHEMATICS * * * Dmis o Mrie Biologil Resores A FUNCTION * * * REVIEW OF SOME MATHEMATICS * * * z () z g(,) A tio is rle or orml whih estlishes reltioshi etwee deedet vrile (z) d oe or more ideedet vriles (,) sh tht there

More information

Numerical Methods in Geophysics: High-Order Operators

Numerical Methods in Geophysics: High-Order Operators : High-Order Opertors Why do we eed higher order opertors? Tylor Opertors Oe-sided opertors High-order Tylor Extrpoltio Ruge-Kutt Method Truted Fourier Opertors - Derivtive d Iterpoltio Aury o high-order

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

Project 3: Using Identities to Rewrite Expressions

Project 3: Using Identities to Rewrite Expressions MAT 5 Projet 3: Usig Idetities to Rewrite Expressios Wldis I lger, equtios tht desrie properties or ptters re ofte lled idetities. Idetities desrie expressio e repled with equl or equivlet expressio tht

More information

f ( x) ( ) dx =

f ( x) ( ) dx = Defiite Itegrls & Numeric Itegrtio Show ll work. Clcultor permitted o, 6,, d Multiple Choice. (Clcultor Permitted) If the midpoits of equl-width rectgles is used to pproximte the re eclosed etwee the x-xis

More information

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG. O C. PG.-3 #, 3b, 4, 5ce O C. PG.4 # Optios: Clculus O D PG.8 #, 3, 4, 5, 7 O E PG.3-33 #, 3, 4, 5 O F PG.36-37 #, 3 O G. PG.4 #c, 3c O G. PG.43 #, O H PG.49 #, 4, 5, 6, 7, 8, 9, 0 O I. PG.53-54 #5, 8

More information

Approximations of Definite Integrals

Approximations of Definite Integrals Approximtios of Defiite Itegrls So fr we hve relied o tiderivtives to evlute res uder curves, work doe by vrible force, volumes of revolutio, etc. More precisely, wheever we hve hd to evlute defiite itegrl

More information

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is SPH3UW Uit 7.5 Sell s Lw Pge 1 of 7 Notes Physis Tool ox Refrtio is the hge i diretio of wve due to hge i its speed. This is most ommoly see whe wve psses from oe medium to other. Idex of refrtio lso lled

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Numerical Integration by using Straight Line Interpolation Formula

Numerical Integration by using Straight Line Interpolation Formula Glol Jourl of Pure d Applied Mthemtics. ISSN 0973-1768 Volume 13, Numer 6 (2017), pp. 2123-2132 Reserch Idi Pulictios http://www.ripulictio.com Numericl Itegrtio y usig Stright Lie Iterpoltio Formul Mhesh

More information

( ) = A n + B ( ) + Bn

( ) = A n + B ( ) + Bn MATH 080 Test 3-SOLUTIONS Fll 04. Determie if the series is coverget or diverget. If it is coverget, fid its sum.. (7 poits) = + 3 + This is coverget geometric series where r = d

More information

y udv uv y v du 7.1 INTEGRATION BY PARTS

y udv uv y v du 7.1 INTEGRATION BY PARTS 7. INTEGRATION BY PARTS Ever differetitio rule hs correspodig itegrtio rule. For istce, the Substitutio Rule for itegrtio correspods to the Chi Rule for differetitio. The rule tht correspods to the Product

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cpter 7. Smpso s / Rule o Itegrto Ater redg ts pter, you sould e le to. derve te ormul or Smpso s / rule o tegrto,. use Smpso s / rule t to solve tegrls,. develop te ormul or multple-segmet Smpso s / rule

More information

1 Section 8.1: Sequences. 2 Section 8.2: Innite Series. 1.1 Limit Rules. 1.2 Common Sequence Limits. 2.1 Denition. 2.

1 Section 8.1: Sequences. 2 Section 8.2: Innite Series. 1.1 Limit Rules. 1.2 Common Sequence Limits. 2.1 Denition. 2. Clculus II d Alytic Geometry Sectio 8.: Sequeces. Limit Rules Give coverget sequeces f g; fb g with lim = A; lim b = B. Sum Rule: lim( + b ) = A + B, Dierece Rule: lim( b ) = A B, roduct Rule: lim b =

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

AP Calculus BC Formulas, Definitions, Concepts & Theorems to Know

AP Calculus BC Formulas, Definitions, Concepts & Theorems to Know P Clls BC Formls, Deiitios, Coepts & Theorems to Kow Deiitio o e : solte Vle: i 0 i 0 e lim Deiitio o Derivtive: h lim h0 h ltertive orm o De o Derivtive: lim Deiitio o Cotiity: is otios t i oly i lim

More information

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III.

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III. Assessmet Ceter Elemetry Alger Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

Waves in dielectric media. Waveguiding: χ (r ) Wave equation in linear non-dispersive homogenous and isotropic media

Waves in dielectric media. Waveguiding: χ (r ) Wave equation in linear non-dispersive homogenous and isotropic media Wves i dieletri medi d wveguides Setio 5. I this leture, we will osider the properties of wves whose propgtio is govered by both the diffrtio d ofiemet proesses. The wveguides re result of the ble betwee

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thoms Whithm ith Form Pure Mthemtis Uit lger Trigoometr Geometr lulus lger equees The ifiite sequee of umers U U U... U... is si to e () overget if U L fiite limit s () iverget to if U s Emple The sequee...

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

Homework 3 solutions

Homework 3 solutions Homework 3 solutios Sectio 2.2: Ex 3,4,5,9,12,14 Sectio 2.3: Ex 1,4; AP 1,2 20 poits. Grded 2.2, Ex 4,5, d 2.3, AP 1,2 Sectio 2.2 3. For ech uctio, id itervl [,] so tht d hve dieret sigs. x = e x 2 x -3

More information

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x Setio Notes Pge Prtil Frtio Deompositio Suppose we were sked to write the followig s sigle frtio: We would eed to get ommo deomitors: You will get: Distributig o top will give you: 8 This simplifies to:

More information

1.1 The FTC and Riemann Sums. An Application of Definite Integrals: Net Distance Travelled

1.1 The FTC and Riemann Sums. An Application of Definite Integrals: Net Distance Travelled mth 3 more o the fudmetl theorem of clculus The FTC d Riem Sums A Applictio of Defiite Itegrls: Net Distce Trvelled I the ext few sectios (d the ext few chpters) we will see severl importt pplictios of

More information

Pre-Calculus - Chapter 3 Sections Notes

Pre-Calculus - Chapter 3 Sections Notes Pre-Clculus - Chpter 3 Sectios 3.1-3.4- Notes Properties o Epoets (Review) 1. ( )( ) = + 2. ( ) =, (c) = 3. 0 = 1 4. - = 1/( ) 5. 6. c Epoetil Fuctios (Sectio 3.1) Deiitio o Epoetil Fuctios The uctio deied

More information

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x Chpter 6 Applictios Itegrtio Sectio 6. Regio Betwee Curves Recll: Theorem 5.3 (Cotiued) The Fudmetl Theorem of Clculus, Prt :,,, the If f is cotiuous t ever poit of [ ] d F is tiderivtive of f o [ ] (

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 0 FURTHER CALCULUS II. Sequeces d series. Rolle s theorem d me vlue theorems 3. Tlor s d Mcluri s theorems 4. L Hopitl

More information

Accuplacer Elementary Algebra Study Guide

Accuplacer Elementary Algebra Study Guide Testig Ceter Studet Suess Ceter Aupler Elemetry Alger Study Guide The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

5.3. The Definite Integral. Limits of Riemann Sums

5.3. The Definite Integral. Limits of Riemann Sums . The Defiite Itegrl 4. The Defiite Itegrl I Sectio. we ivestigted the limit of fiite sum for fuctio defied over closed itervl [, ] usig suitervls of equl width (or legth), s - d>. I this sectio we cosider

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

Chapter 2. LOGARITHMS

Chapter 2. LOGARITHMS Chpter. LOGARITHMS Dte: - 009 A. INTRODUCTION At the lst hpter, you hve studied bout Idies d Surds. Now you re omig to Logrithms. Logrithm is ivers of idies form. So Logrithms, Idies, d Surds hve strog

More information

REVIEW OF CHAPTER 5 MATH 114 (SECTION C1): ELEMENTARY CALCULUS

REVIEW OF CHAPTER 5 MATH 114 (SECTION C1): ELEMENTARY CALCULUS REVIEW OF CHAPTER 5 MATH 4 (SECTION C): EEMENTARY CACUUS.. Are.. Are d Estimtig with Fiite Sums Emple. Approimte the re of the shded regio R tht is lies ove the -is, elow the grph of =, d etwee the verticl

More information

Chapter 12-b Integral Calculus - Extra

Chapter 12-b Integral Calculus - Extra C - Itegrl Clulus Cpter - Itegrl Clulus - Etr Is Newto Toms Smpso BONUS Itroduto to Numerl Itegrto C - Itegrl Clulus Numerl Itegrto Ide s to do tegrl smll prts, lke te wy we preseted tegrto: summto. Numerl

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before 8.1 Arc Legth Wht is the legth of curve? How c we pproximte it? We could do it followig the ptter we ve used efore Use sequece of icresigly short segmets to pproximte the curve: As the segmets get smller

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1 Addedum Addedum Vetor Review Deprtmet of Computer Siee d Egieerig - Coordite Systems Right hded oordite system Addedum y z Deprtmet of Computer Siee d Egieerig - -3 Deprtmet of Computer Siee d Egieerig

More information

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation Algorithm Desig d Alsis Victor Admchi CS 5-45 Sprig 4 Lecture 3 J 7, 4 Cregie Mello Uiversit Outlie Fst Fourier Trsform ) Legedre s Iterpoltio ) Vdermode Mtri 3) Roots of Uit 4) Polomil Evlutio Guss (777

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

Area, Volume, Rotations, Newton s Method

Area, Volume, Rotations, Newton s Method Are, Volume, Rottio, Newto Method Are etwee curve d the i A ( ) d Are etwee curve d the y i A ( y) yd yc Are etwee curve A ( ) g( ) d where ( ) i the "top" d g( ) i the "ottom" yd Are etwee curve A ( y)

More information

lecture 24: Gaussian quadrature rules: fundamentals

lecture 24: Gaussian quadrature rules: fundamentals 133 lecture 24: Gussi qudrture rules: fudmetls 3.4 Gussi qudrture It is cler tht the trpezoid rule, b 2 f ()+ f (b), exctly itegrtes lier polyomils, but ot ll qudrtics. I fct, oe c show tht o qudrture

More information

lecture 22: Newton Cotes quadrature

lecture 22: Newton Cotes quadrature lecture : Newto Cotes qudrture f () 3. Newto Cotes qudrture You ecoutered the most bsic method for pproimtig itegrl whe you lered clculus: the Riem itegrl is motivted by pproimtig the re uder curve by

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

MAT641- Numerical Analysis (Master course) D. Samy MZIOU

MAT641- Numerical Analysis (Master course) D. Samy MZIOU Syllbus: MAT64- Numericl Alysis Mster course - - - D. Smy MZIOU Review: Clculus lier Algebr Numericl Alysis MATLAB sotwre will be used itesively i this course There will be regulr homewor ssigmets, usully

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

Add Maths Formulae List: Form 4 (Update 18/9/08)

Add Maths Formulae List: Form 4 (Update 18/9/08) Add Mths Formule List: Form 4 (Updte 8/9/08) 0 Fuctios Asolute Vlue Fuctio f ( ) f( ), if f( ) 0 f( ), if f( ) < 0 Iverse Fuctio If y f( ), the Rememer: Oject the vlue of Imge the vlue of y or f() f()

More information

The Basic Properties of the Integral

The Basic Properties of the Integral The Bsic Properties of the Itegrl Whe we compute the derivtive of complicted fuctio, like x + six, we usully use differetitio rules, like d [f(x)+g(x)] d f(x)+ d g(x), to reduce the computtio dx dx dx

More information

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions Qudrtic Equtios ALGEBRA Remider theorem: If f() is divided b( ), the remider is f(). Fctor theorem: If ( ) is fctor of f(), the f() = 0. Ivolutio d Evlutio ( + b) = + b + b ( b) = + b b ( + b) 3 = 3 +

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

AP Calculus AB AP Review

AP Calculus AB AP Review AP Clulus AB Chpters. Re limit vlues from grphsleft-h Limits Right H Limits Uerst tht f() vlues eist ut tht the limit t oes ot hve to.. Be le to ietify lel isotiuities from grphs. Do t forget out the 3-step

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information

[Q. Booklet Number]

[Q. Booklet Number] 6 [Q. Booklet Numer] KOLKATA WB- B-J J E E - 9 MATHEMATICS QUESTIONS & ANSWERS. If C is the reflecto of A (, ) i -is d B is the reflectio of C i y-is, the AB is As : Hits : A (,); C (, ) ; B (, ) y A (,

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

f(x) is a function of x and it is defined on the set R of real numbers. If then f(x) is continuous at x=x 0, where x 0 R.

f(x) is a function of x and it is defined on the set R of real numbers. If then f(x) is continuous at x=x 0, where x 0 R. MATHEMATICAL PRELIMINARIES Limit Cotiuity Coverget squece Series Dieretible uctios Itegrble uctios Summtio deiitio o itegrl Me vlue theorem Me vlue theorem or itegrls Tylor's theorem Computer represettio

More information

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why? AB CALCULUS: 5.3 Positio vs Distce Velocity vs. Speed Accelertio All the questios which follow refer to the grph t the right.. Whe is the prticle movig t costt speed?. Whe is the prticle movig to the right?

More information

UNISA NUMERICAL METHODS (COS 233-8) Solutions to October 2000 Final Exams

UNISA NUMERICAL METHODS (COS 233-8) Solutions to October 2000 Final Exams UNISA NUMERICAL METHODS COS -8 Solutios to October Fil Ems Questio Re: Tble 4. pge 47 o Gerld/Wetley [ d editio] Write dow te itertio scemes or i ii iii te bisectio metod; te metod o lse positio regul

More information