The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

Size: px
Start display at page:

Download "The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions."

Transcription

1 Segi Rhm, Mohmd Rfi (2014) Iegrl rform mehod for olvig frciol dymic equio o ime cle. Abrc d Applied Alyi, 2014 (2014). pp ISSN Acce from he Uiveriy of Noighm repoiory: hp://epri.oighm.c.uk/27710/1/iegrl%20rform%20mehod%20for %20frciol%20dymic%20equio.pdf Copyrigh d reue: The Noighm epri ervice mke hi work by reercher of he Uiveriy of Noighm vilble ope cce uder he followig codiio. Thi ricle i mde vilble uder he Creive Commo Aribuio licece d my be reued ccordig o he codiio of he licece. For more deil ee: hp://creivecommo.org/licee/by/2.5/ A oe o verio: The verio preeed here my differ from he publihed verio or from he verio of record. If you wih o cie hi iem you re dvied o coul he publiher verio. Plee ee he repoiory url bove for deil o cceig he publihed verio d oe h cce my require ubcripio. For more iformio, plee coc epri@oighm.c.uk

2 Abrc d Applied Alyi, Aricle ID , 10 pge hp://dx.doi.org/ /2014/ Reerch Aricle Iegrl Trform Mehod for Solvig Frciol Dymic Equio o Time Scle Mohmd Rfi Segi Rhm School of Applied Mhemic, The Uiveriy of Noighm Mlyi Cmpu, Jl Brog, Semeyih, Selgor, Mlyi Correpodece hould be ddreed o Mohmd Rfi Segi Rhm; mohd.rfi@oighm.edu.my Received 23 April 2014; Acceped 6 Augu 2014; Publihed 31 Augu 2014 Acdemic Edior: H Elyeb Copyrigh 2014 Mohmd Rfi Segi Rhm. Thi i ope cce ricle diribued uder he Creive Commo Aribuio Licee, which permi urericed ue, diribuio, d reproducio i y medium, provided he origil work i properly cied. We iroduce bl ype Lplce rform d Sumudu rform o geerl ime cle. We iveige he properie d he pplicbiliy of hee iegrl rform d heir efficiecy i olvig frciol dymic equio o ime cle. 1. Iroducio I i kow h he mehod coeced o he employme of iegrl rform re very ueful i mhemicl lyi. Thoe mehod re uccefully pplied o olve differeil d iegrl equio, o udy pecil fucio, d o compue iegrl. Oe of he more widely ued iegrl rform i he Lplce rform defied by he followig formul: L F(z) f () e z d, z C. (1) 0 The fucio F of complex vrible i clled he Lplce rform of he fucio f. Wugl[1] iroducedew iegrl rform clled Sumudu rform defied by he followig formul: S {f} (u) 1 u f (u) e /u d, u ( τ 1,τ 2 ), (2) 0 d pplied o he oluio of ordiry differeil equio i he corol egieerig problem (ee lo [2]). I ppered like he modificio of he Lplce rform. The Sumudu rform rivl he Lplce rform i problem olvig. I mi dvge i he fc h i my be ued o olve problem wihou reorig o ew frequecy domi, becue i preerve cle d ui properie. The heory of ime cle clculu w iiied by Hilger [3](eelo[4]). Thi heory i ool h uifie he heorie ofcoiuouddicreeimeyem.iiubjecofrece udie i my differe field i which dymic proce c be decribed wih coiuou d dicree model. For he deiled iformio o heory of ime cle clculu, we refer o [5, 6]. The del Lplce rform o rbirry ime cle (T) i iroduced by Boher d Peero i [7](eelo [8]) by he followig formul: L {x}(z) : x () e z (σ (), 0 )Δ, z D {x}, (3) 0 where D{x} coi of ll complex umber z Cfor which he improper iegrl exi d for which 1+μ()z0for ll T.Iimilrfhio,Agwel.i[9]iroducehe Sumudu rform o rbirry ime cle T,byhefollowig formul: S {x}(z) : 1 z x () e σ (1/z) (, 0)Δ, (4) 0 for z D{x}, whered{x} coi of ll complex umber z Cforwhich he improper iegrl exi d for which 1+μ()/z 0 for ll T. NoehifT R (for rel lyi), (3) (1) d(4) (2) 0 0.Iheceof T Z (for dicree lyi), we hve Z {x}(z+1) L {x}(z), (5) z+1 where Z{x}(z) 0 x()z i he clicl Z-rform, which will be ued o olve higher order lier forwrd

3 2 Abrc d Applied Alyi differece equio (ee [7]). Similrly, formul (3)clo be exeded o oher priculr dicree eig uch T q Z, q > 1 (which h impor pplicio i quum heory), T hz (i h-clculu) (ee [10]), d lo T T 0 (q,h) (i (q, h)-clculu) (ee [11]). Likewie, he del Sumudu rform o ime cle o oly c be pplied o ordiry differeil equio whe T R d o forwrd differece equio whe T hz(h>0)bu lo c be pplied for q-differece equio whe T q Z d o differe ype of ime cle like T hzd T T ; for he pce of he hrmoic umber, ee [9]. Coiuou frciol clculu i field of mhemic udyhgrowouofherdiioldefiiioofhe clculu iegrl d derivive operor. Frciol differeiio h plyed impor role i vriou re rgig from mechic o imge proceig. Their fudmel reul hve bee urveyed, for exmple, i he moogrph [12, 13]. O he oher hd, dicree frciol clculu i very ew re for ciei. Foudio of hi heory were formuled i pioeerig work by Agrwl [14] ddíz d Oler [15, 16], where bic pproch, defiiio, d properie of he heory of frciol um d differece were repored (ee lo [17, 18]). Recely, erie of pper coiuig hi reerch h ppered (ee e.g., [19 26] d he referece cied herei). The exeio of bic oio of frciol clculu o oher dicree eig w performed i [27, 28]. I hee pper, he uhor ofe preferred he power fucio oio bed o he ime cle heory, which eily expoe imilriie mog he reul i q-clculu, h-clculu, (q, h)- clculu, d he coiuou ce. However, hi oio w employed oly formlly, ice here w o geerl ime cle defiiio of he power fucio d herefore he chieved reul could o be geerlized o oher ime cle. O hi ccou, ome ide regrdig fudmel properie which hould be me by power fucio o ime cle were oulied i [29]. I [30], he uhor iroduced frciol derivive d iegrl o ime cle vi he geerlized Lplce rform. However, hi pproch uffer by ome echicl difficulie, coeced o he ivere Lplce rform (ee [8]). Recely, i [31, 32](eelo[33]), he uhor idepedely uggeed xiomic defiiio of power fucio o rbirry ime cle. The im of hi pper i o iroduce he bl ype Lplce rform d Sumudu rform, heir properie, d pplicbiliy d i efficiecy i olvig frciol dymic equio o rbirry ime cle. Of coure, i i poible o coider lo he del ype Lplce d Sumudu rform (3) d (4), repecively; however, he bl verio eem be more uible for frciol clculu oulied, for exmple, i [27, 28, 34]. Thi pper i orgized follow. I Secio 2, we recll bic of he ime cle heory d he foudio of frciol clculu o ime cle. Secio 3 i devoed o bl Lplce rform, i properie, covoluio heorem, d exmple of oluio of frciol dymic equio o ime cle i erm of Mig-Leffler fucio. Filly, i Secio4, we iroduce bl Sumudu rform d i properie o rbirry ime cle. A cloe reliohip bewee bl Sumudu rform d bl Lplce rform d everl impor reul were obied. Thi ecio eded up wih olvig ome frciol dymic equio wih bl Sumudu rform mehod. 2. Prelimirie AimecleT i rbirry oempy cloed ube of he rel umber R. The mo well-kow exmple re T R, Z, dq Z : {q : Z} {0},whereq > 1.LeT hve righ-cered miimum m d defie T κ : T {m}; oherwie, e T κ T. If, b T wih <b, we deoe by [, b] T he cloed iervl [, b] T. The bckwrd jump operor ρ:t T i defied by ρ () : up { T :<}, (6) d he bckwrd griie fucio ] : T κ [0,) i defied by ]() : ρ(). For deil d dvceme o ime cle, ee he moogrph [3, 5, 7, 35 37]. For f : T R d T κ, he bl-derivive (briefly, he -derivive) [21] off, deoed by f (), i he umber (provided i exi) wih he propery h, give y ε>0, here exi eighborhood U of uch h f(ρ()) f() f () (ρ () ) ε ρ () U. (7) For T R, f () f ()) i he uul derivive; for T Z, he -derivive i he bckwrd differece operor, f () f() f( 1) f(). Afuciof:T C i lef-dee coiuou or ldcoiuou provided i i coiuou lef-dee poi i T d i righ-ided limi exi (fiie) righ-dee poi i T. IfT R, hef i ld-coiuou if d oly if f i coiuou. The e of ld-coiuou fucio f:t C will be deoed by C ld (T, C) d he e of fucio f:t C h re -differeible d whoe derivive re ld-coiuou i deoed by C 1 ld (T, C). I i kow from [5]hiff C ld (T, C), he here exi fuciofuch h F () f(). I hi ce, we defie he Cuchy iegrl by b f () F (b) F(), for, b T. (8) Le [, b] T d f C ld (T, C).IfT R,he b b f () f () d, (9) where he righ-hd ide iegrl i he Riem iegrl from clculu d if T Z,he b b f () f (). (10) +1

4 Abrc d Applied Alyi 3 For f, g C ld (T, C) d, b T, he iegrio by pr formul i give by b f(ρ())g () [f ()()] b b f () g (). (11) Afuciof C ld (T, C) i clled ]-regreive if 1 ]f 0o T κ d poiively ]-regreiveifiirelvlued d 1 ]f > 0 o T κ.theeof]-regreive fucio d he e of poiively ]-regreive fucio re deoed by R ] (T, C) d R + ] (T, C), repecively,dr ] (T, C) i defied imilrly. For impliciy, we deoe by c R ] (T, C) he e of complex ]-regreive co d, imilrly, we defie he e c R + ] (T, C) d cr ] (T, C). Le f C ld (T, C). The he bl expoeil fucio e f (, ) idefiedobeheuiqueoluioofhefollowig iiil vlue problem: x fx o T κ, x () 1 for ome fixed T.Leh>0;e (12) C h : {z C :z 1 h }, Z h : {z C : π h < Im (z) π (13) h }, d C 0 : Z 0 : C. Forh > 0,heHilgerrelprd imgiry pr of complex umber re give by R h (z) : 1 (1 1 hz ), (14) h I h (z) : 1 Arg (1 hz), (15) h repecively, where Arg deoe he priciple rgume fucio; h i, Arg : C ( π,π] R,dleR 0 (z) : R(z) d I 0 (z) : I(z). For y fixed complex umber z, hehilger rel pr R h (z) i odecreig fucio of h [0,)(ee [38]). For h 0, we defie he ]-cylider rformio ξ h : C h Z b by ξ h (z) : { z, h 0, { 1 { h Log (1 hz), h > 0 (16) for z C h. The, he bl expoeil fucio c lo be wrie i he followig form: e f (, ) : exp { ξ ](τ) (f (τ)) τ} for, T. (17) I i kow h he bl expoeil fucio e f (, ) i ricly poiive o T, providedf R + ] (T, C) (ee Theorem 3.18 [6]). For f, g R ] (T, C), he]-circul plu d he ]- circle miu re defied by f ] g:f+g ]fg, f ] g: f g 1 ]g, (18) repecively. For furher deil o bl expoeil fucio, we refer o [5]. We recll he oio of Tylor moomil iroduced i [39](eelo[7]). Thee moomil ĥ : T T C, N 0, re defied recurively follow: d, give ĥ for N 0,wehve ĥ 0 (, ) 1, T (19) ĥ +1 (, ) ĥ (τ, ) τ, T. (20) Exmple 1. For he ce T R,wehve ĥ (, ) ( )k, k!, R. (21) For he ce T Z,wehve ĥ (, ) ( )()! j0 ( j),, Z, (22)! where () ( + 1)( + 2) ( + 1). For he ime cle T q Z for ome q>1,wehve q k ĥ (, ),, k qz. (23) j0 qj Lemm 2 (bl Cuchy formul [37]). Le Z +,, b T, d le f:t C be -iegrble o T : [, b] T.If T, he f () ĥ (, ρ (τ)) f (τ) τ. (24) The formul (24) i corer oe i he iroducio of he bl frciol iegrl α f() for α>0.however, i require reoble d url exeio of dicree yem of moomil (ĥ, N 0 ) o coiuou yem (ĥα,α R + ).However,heclculioofĥ for > 1 i difficul k which eem o be werble oly i ome priculr ce (ee Exmple 1). Recely, [31, 32] idepedely uggeed quie imilr xiomic defiiio of ime cle power fucio. I [40], he uhor hve coidered he power fucio d eeil of frciol clculu o ioled ime cle. The defiiio below follow from [31]. Defiiio 3. Le, T d α, β > 1. Theimecle power fucio ĥα(, ) re defied fmily of oegive fucio ifyig (i) ĥα(, ρ(τ))ĥβ(τ, ) τ ĥα+β+1(, ) for ; (ii) ĥ0(, ) 1 for ; (iii) ĥα(, ) 0 for α (0, 1). Furher, we hve he followig.

5 4 Abrc d Applied Alyi Defiiio 4. Le α 0, β>0,d, b T. Theforf C ld ([, b] T, C) oe defie he followig. (i) The frciol iegrl of order α>0wih he lower limi ( α f) () : ĥ α 1 (, ρ (τ)) f (τ) τ (25) d for α0oe pu ( 0 f)() f(). (ii) The Riem-Liouville frciol derivive of order β>0wih lower limi ( β f) () : [ (m β) f] m (), [σ (),b] T, (26) where m[β]+1. (iii) The Cpuo frciol derivive C γ f() (γ > 0) o [σ(), b] T i defied vi he Riem-Liouville frciol derivive by where m[γ]+1. C γ f () : ( (m γ) f m ) (), (27) 3. Nbl Lplce Trform Noe h below we ume h z c R ] ;he( ] z) c R ] d herefore e ] z(, 0 ) i well defied o T. Fromowowe ume h T i ubouded bove. The followig heorem i cocerig he ympoic ure of he bl expoeil fucio. To hi ed, we defie he miiml griie fucio ] : T [0,) by ] () : if τ [,) T ] (τ) for T, (28) d for h 0d λ R, we defie C h (λ) : {z C h : R h (z) >λ}. (29) Theorem 5 (decy of he bl expoeil fucio). Le T, λ c R + ] ([, ) T, C). (30) The, for y z C ] ()(λ),wehvehefollowigproperie: (i) e λ ] z(, ) e λ ] R ] ) for ll [,) ()(z)(, T, (ii) lim e λ ] R ] (, ) 0, ()(z) (iii) lim e λ ] z(, ) 0. Proof. The proof i imilr o Theorem 3.4 of [38]. Defiiio 6 (expoeil order). Le T. A fucio f C ld (T, C) h expoeil order α o [, ) T,if (i) α c R + ] ([, ) T, C), (ii) here exi K>0,uchh f() K e α (, ) for ll [,) T. Lemm 7. Le T d f C ld ([, ) T, C) be fucio of expoeil order α.the, lim f () e ] z (, ) 0, (31) where z C ] ()(α). Proof. I follow h f () e ] z (, ) K e α (, ) e z (, ) K e α z (, ) (32) for ll [, ) T d ome K>0.ByTheorem 5(iii) d leig i (32), we ge (31). Thi complee he proof. Defiiio 8. Le f C ld (T, C) be fucio. The, he - Lplce rform L {f}( ) bou he poi T of he fucio f i defied by L : e ] z (ρ (),)f() for z D ] {f}, (33) where D ] {f} coi of ll complex umber z R ] (T, C) for which he improper iegrl exi. Theorem 9. Le f C ld ([, ) T, C) be of expoeil order α.the,he -Lplce rform L {f}( ) exi o C ] ()(α) d coverge boluely. Proof. The proof i imilr o Theorem 5.1 i [38]. Theorem 10 (lieriy of he rform). Le f 1,f 2 C ld ([, ) T, C) be of expoeil order α 1,α 2,repecively. The, for y c 1,c 2 R,wehve L {c 1 f 1 +c 2 f 2 } (z) c 1 L {f 1 } (z) +c 2 L {f 2 } (z) (34) for ll z C ] ()(mx{α 1,α 2 }). Proof. The proof follow from he lieriy propery of he - iegrl (ee Theorem 8.47(i) i [5]). Theorem 11 (rform of derivive). Le f C ld ([, ) T, C) be fucio of expoeil order α.the,oeh L {f } (z) z F (z) f(), (35) for ll z C ] ()(α),where F deoe L {f}. Proof. By uig iegrio by pr formul (11), we ge L {f } (z) e ] z (ρ (),)f () [ e ] z(, )f()] +z e ] z (ρ (),)f() f() +z F (z), for ll z C ] ()(α).thicompleeheproof. By iducio, we hve he followig reul. (36)

6 Abrc d Applied Alyi 5 Corollry 12. Le f C ld ([, ) T, C) be fucio of expoeil order α.the for y N,oe h L {f } (z) z F (z) z k 1 f k () (37) for ll z C ] ()(α). Defiiio 13 (ee [41]). For give f:[ 0,) T oluio of he hifig problem C, he u (, ρ ()) u (, ),, T, 0, (38) u(, 0 )f(), T, 0 i deoed by f diclledhehif(ordely)off. I hi ecio, we will ume h he problem (38)h uiqueoluio f for give iiil fucio f d h he fucio f, g, d he complex umber z re uch h he operio fulfilled re vlid. Defiiio 14 (ee [41]). For give fucio f, g : T C, heir covoluio f gi defied by f () g() f(,ρ(τ))g(τ) τ,, T, (39) where f i he hif of f iroduced i Defiiio 8. We e he followig reul wihou proof, ice he proofofhemreimilrohoei[6]. Theorem 15. The covoluio i ociive; h i, (f g) hf (g h). (40) Theorem 16. If f i -differeible, he (f g) f g+f() g (41) d if g i bl-differeible, he (f g) f g +fg(). (42) Corollry 17. The followig formul hold: f(, ρ (τ)) τ f (τ) τ. (43) Theorem 18 (covoluio heorem). Suppoe f, g : T R re loclly -iegrble fucio o T d heir covoluio f gi defied by (39).The, L {f g} (z) L L {g} (z), z D ] {f} D ] {g}. (44) Le Φ α () ĥα 1(, ).The,bymeofcovoluio,he bl operor i Defiiio4 c be reed ( α f) () Φ α () f(), ( β f) () (Φ m β () f()), m [β]+1, ( C γ f) () Φ m γ () f m, m [γ]+1. (45) I i kow [5, 7]h,forllk N 0 d z D ], 0 L {ĥk (, 0 )} (z) 1. (46) zk+1 I geerl, we hve Theorem 19. For α>0d z D ], hold. L {ĥα (, )} (z) 1 z α+1 (47) Proof. Fir, we wrie Defiiio 3(i) i covoluio form; h i, ĥ α (, ρ (τ)) ĥβ (τ, ) τ ĥα (, ) ĥβ (, ). (48) The, obviouly ĥ α (, ) ĥβ (, ) ĥα+β+1 (, ). (49) We how h (47) ifie he Lplce rform of (49). Le β 0. Tkig Lplce rform o he lef-hd ide followed by pplyig covoluio heorem (39)yield L {ĥα (, ) ĥ0 (, )} ( 1 z α+1 )(1 z ) 1. (50) zα+2 Bu, from he righ ide of (50), we hve 1 z α+2 1 z (α+1)+1 L {ĥα+1 (, )} (z). (51) Hece he reul follow from (50)d(51). Thi complee he proof. From (45), kowig L {Φ α } (z) L {ĥα 1 (, )} (z) 1, (52) zα we hve (by kig ) he followig reul. Theorem 20. For α>0, L { α f} (z) z α F (z). (53) For he Riem-Liouville frciol derivive derivive (26), we hve he followig reul. Theorem 21. For β>0d m[β]+1, L { β f} (z) z β m 1 F (z) Proof. Wrie (26) z m k 1 [ (m β) f] k (). (54) ( β f) () g m (), where g () ( (m β) f) (). (55)

7 6 Abrc d Applied Alyi From (53), we hve G (z) z (m β) F (z). (56) Thu, by (37) d(56), we hve L { β f} (z) L {g m } (z) z m m 1 G (z) z β m 1 F (z) z m k 1 g k () z m k 1 [ (m β) f] k (). (57) The Lplce rform (54)i equivle o he followig oe: L { β f} (z) z β F (z) l j1 z j 1 ( β j f) (), l 1<β l. (58) The bl Lplce rform of Cpuo frciol derivive of order α i give follow. Theorem 22. For α>0d m[α]+1, L { C α f} (z) z α m 1 F (z) Proof. Wrie (27) z α k 1 f k (). (59) ( C α f) () ( (m α) g) (), where g () f m (). (60) By followig (53)d(37), we ge L { C α f} (z) L { (m α) g} (z) z (m α) G (z) z (m α) [z m m 1 F (z) z α m 1 F (z) z α k 1 f k (). z m k 1 f k ()] (61) Now, le u coider he geerlized Mig-Leffler fucio o ime cle (ee [28, 42]). Defiiio 23. Le α, β, λ R d, T. The ime cle Mig-Leffler fucio, E,λ α,β (), i defied by he followig erie expio: α,β () λ k ĥ αk+β 1 (, ). (62) E,λ I he followig heorem, we give he Lplce rform of geerlized Mig-Leffler fucio o ime cle. Theorem 24. For α, β, λ R d, T,iholdh provided λ/z α <1. L z β α,β ()} (z) 1 λz α, (63) Proof. By uig Theorem 10 d he relio (47), we obi L α,β ()} (z) L { λ k ĥ αk+β 1 (, )} λ k L {ĥαk+β 1 (, )} z 1 kα+β z {1 + λ β z λ k z β 1 λz α, α + λ2 + } z2α λ z α <1. (64) Exmple 25. Coider he followig iiil vlue problem: ( α y) () λy() f(), [σ (),b] T, (65) ( α j y) () b j, (b j R;j1,2,...,[α]). (66) By kig Lplce rform of boh ide of (65) duig (58), we ge z α L {y} (z) j1 L, L {y} (z) j1 z j 1 ( α j y) () λ L {y} (z) z α 1 λz α z j 1 ( α j z α y) () + 1 λz α L j1 b j L α,α j+1 ()} (z) + L α,α ()} (z) L j1 b j L α,α j+1 ()} (z) + L α,α () f()}. (67)

8 Abrc d Applied Alyi 7 Thu, we hve y () j1 j1 b j E,λ α,α j+1 b j E,λ α,α j+1 () + () +E,λ α,α () f() E ρ(τ),λ α,α () f (τ) τ. (68) The bove exmple coicide wih he ce T R (ee [43]). Now, we coider he Cuchy problem for dymic equio wih he bl ype Cpuo frciol derivive. Exmple 26. Coider he followig iiil vlue problem: ( C α y) () λy() f(), [σ (),b] T, (69) y j () c j, (c j R;j0,1,2,...,). (70) By kig Lplce rform of boh ide of (69) duig (59), we ge z α L {y} (z) j0 L, L {y} (z) j0 z α j 1 y j () λ L {y} (z) z α 1 λz α c j z α j 1 z α + 1 λz α L j0 c j L α,j+1 ()} (z) + L α,α ()} (z) L j0 Thu, we hve y () c j L α,j+1 ()} (z) + L α,α () f()}. j0 j0 c j E,λ α,j+1 c j E,λ α,j+1 () + () +E,λ α,α () f() E ρ(τ),λ α,α () f (τ) τ. (71) (72) The l exmple clerly coicide wih he rel couer pr; ee [43]. 4. Nbl Sumudu Trform I [9],heuhoriroduceddudiedhe(del)Sumudu rform o ime cle. My impor reul were produced d pplied o dymic equio o ime cle. I hi ecio, we will coider he bl Sumudu rform. Mo of he reul were coed from [9, 44, 45]wihouproof iceheirproofreimilr. Defiiio 27. Le f C ld (T, C) be fucio. The, he -Sumudu rform S {f}( ) bou he he poi T of he fucio f i defied by S : 1 (73) z e ] (1/z) (ρ (),)f() for z D {f}, where D{f} coi of ll complex umber z R ] (T, C) for which he improper iegrl exi. Le u defie he e C h (λ) : {z C h : R h ( 1 ) > λ}. (74) z We oice h, followig Lemm 7,iff C ld ([, ) T, C) i fucio of expoeil order α,he lim f () e ] (1/z) (, ) 0, (75) where z C h (α).hece,wehvehefollowig. Theorem 28. Le f C ld ([, ) T, C) be of expoeil order α. The,he -Sumudu rform S {f}( ) exi o C ] ()(α) d coverge boluely. I he pecil ce T N {, + 1, + 2,...}, R fixed (ee [44]), we hve S 1 ( z 1 k 1 z z ) f (+k) (76) k1 for ech z C \ {0, 1} for which he erie coverge. The followig heorem e he cloe reliohip bewee bl Sumudu rform d bl Lplce rform. Theorem 29. Le f C ld ([, ) T, C) be fucio. The S 1 z L {f} ( 1 z ) 1 z F( 1 ). (77) z The followig heorem c be eily verified uig iducio. Theorem 30. Le f C ld ([, ) T, C) be of expoeil order α.the, S {f } (z) 1 z S where z C ] ()(α). 1 f z k k (), (78) The followig heorem pree he bl-sumudu rformio of covoluio of wo fucio o ime cle.

9 8 Abrc d Applied Alyi Theorem 31. Le f, g C ld ([, ) T, C).The S {f g} (z) z[ 0 S 0 S {g} (z)]. (79) Proof. The proof i direc coequece of relio (77)d Theorem 18. Now, we coider he -Sumudu rform o ime cle frciol clculu. We begi wih -Sumudu rform of power fucio o T. Theorem 32. Le T.Forα> 1,oeh S {ĥα (, )} (z) z α. (80) Proof. Uig Theorem 28 d he reul (41), we hve S {ĥα (, )} (z) 1 z L {ĥα (, ) f} ( 1 z ) Thi complee he proof. 1 z ( 1 (1/z) α+1 ) z α. (81) I priculr, ĥ0(, ) 1 d hece he -Sumudu rform of f() 1 i give follow. Corollry 33. The -Sumudu rform of f(x) 1 i give by S {1}(z) S {ĥ0 (, )} (z) z 0 1. (82) I he followig heorem, we give he Sumudu rform of geerlized Mig-Leffler fucio o ime cle. Theorem 34. For α, β, λ R d, T,iholdh S α,β ()} (z) zβ 1 1 λz α, (83) provided λz α <1. Proof. Uig he relio (77)d he reul(63), we ge S α,β ()} (z) 1 z L α,β ()}(1 z ) 1 z ( (1/z) β 1 λ(1/z) α ) zβ 1 1 λz α, λzα <1. (84) The bl Sumudu rform of frciol iegrl d frciol derivive re follow. Theorem 35. (i) For α>0, S { α f} (z) z α S. (85) (ii) For β>0d m[β]+1, S { β f} (z) 1 m 1 1 z β S z [ m k (m β) f] (iii) For γ>0d m[γ]+1, S { C γ f} (z) 1 m 1 z γ S 1 k f zγ k (). (86) k (). (87) Proof. The proof o ech pr follow immediely fer pplyig (77) d he repecive Lplce rform (53), (54), d (59). A i he ce of Lplce rform (ee relio (58)), he -Sumudu rformi Theorem 35(ii) i equivle o S { β f} (z) 1 1 z β S z j ( β j f) (), l j1 l 1<β l. (88) I he followig exmple we will illure he ue of he -Sumudu rform by pplyig i o olve iiil vlue problem. Exmple 36. Coider he followig iiil vlue problem: ( α y) () λy() f(), T, 0<α 1, (89) ( α 1 y) () y 0, y 0 R. (90) We begi by kig he -Sumudu rform of boh ide of (89). By uig Theorem 35(ii) for 0<α 1,wege z α S {y} (z) z 1 (1 α) y () λs {y} (z) S. Hece, S {y} (z) z 1 z α λ α 1 1 y () + z α λ S ( zα 1 Thu, we hve zα 1 1 λz α )y 0 +z( 1 λz α ) S y 0 S α,α 1 ()} (z) +z{ S α,α 1 ()} (z) S } y 0 S α,α 1 ()} (z) + S { α,α 1 ()} (z) {f}(z)}. (91) (92) y () y 0 E,λ α,α 1 () +E,λ α,α 1 () f(). (93)

10 Abrc d Applied Alyi 9 Exmple 37. Coider he followig Cpuo ype iiil vlue problem: ( C α y) () λy() f(), ( T,<α<, N,λ R), (94) y k () b k,,1,2,...,. (95) By kig he -Sumudu rform of boh ide of (94)d uig Theorem 35(iii), we ge 1 z α S {y} (z) S, S {y} (z) 1 y zα k k () λs {y} (z) z α b 1 λz α k z + z α α k 1 λz α S b k z k 1 λz α + b k S α,k+1 z α 1 λz α S ()} (z) +z( S α,α ()} (z) S ) Thu, we hve b k S α,k+1 ()} (z) + S α,α () f()}. (96) y () b k E,λ α,k+1 () +E,λ α,α () f(). (97) I priculr, whe 0<α<1, heiiilvlueproblem C α y () λy() f(), T, y () b 0, y 0 R h oluio of he followig form: (98) y () b 0 E,λ α,1 () +E,λ α,α () f(). (99) Exmple 38. Coider he followig Cpuo ype iiil vlue problem: ( C α y) () f(), T, 0<α 1, (100) y () y 0, y 0 R. (101) By kig he -Sumudu rform of boh ide of (100)d uig Theorem 35(iii) for 0<α 1,we ge z α S {y} (z) z α y () S. (102) Hece, S {y} (z) y 0 +z α S Thu, we hve y 0 S {ĥ0 (, )} (z) +z S {ĥα 1 (, )} (z) S. y () y 0 + ĥα 1 (, ) f() y 0 + α f (). (103) (104) Remrk 39. Followig Theorem 29 d he exmple o olvig frciol dymic equio, oe c coclude h () if he oluio of frciol dymic equio exi by -Sumudud rform, he he oluio exi by -Lplce rform, d vie ver; (b) if he oluio of frciol dymic equio exi by -Sumudud rform, he he oluio exi by Sumudu d Lplce rform (here T R). Coflic of Iere The uhor declre h here i o coflic of iere regrdig he publicio of hi pper. Ackowledgme The uhor i very greful o he referee for heir helpful uggeio. Referece [1] G. K. Wugl, Sumudu rform: ew iegrl rform o olve differeil equio d corol egieerig problem, Ieriol Jourl of Mhemicl Educio i Sciece d Techology,vol.24,o.1,pp.35 43,1993. [2] Q. D. Kbeh d F. B. M. Belgcem, Applicio of he Sumudu rform o frciol differeil equio, Nolier Sudie,vol.18,o.1,pp ,2011. [3] S. Hilger, Alyi o meure chi uified pproch o coiuou d dicree clculu, Reul i Mhemic, vol. 18,o.1-2,pp.18 56,1990. [4] S. Hilger, Specil fucio, Lplce d Fourier rform o meure chi, Dymic Syem d Applicio, vol.8,o. 3-4, pp , [5] M. Boher d A. Peero, Dymic Equio o Time Scle: A Iroducio Wih Applicio, Birkhäuer, Boo, M, USA, [6] M. Boher d A. Peero, Ed., Advce i Dymic Equio o Time Scle, Birkhäuer, Boo, M, USA, [7] M. Boher d A. Peero, Lplce rform d Z- rform: uificio d exeio, Mehod d Applicio of Alyi,vol.9,o.1,pp ,2002. [8]J.M.Dvi,I.A.Grvge,B.J.Jcko,R.J.MrkII,d A. A. Rmo, The Lplce rform o ime cle reviied, Jourl of Mhemicl Alyi d Applicio,vol.332,o. 2, pp , 2007.

11 10 Abrc d Applied Alyi [9] H. A. Agw, F. M. Ali, d A. Kiliçm, A ew iegrl rform o ime cle d i pplicio, Advce i Differece Equio,vol.2012,ricle60,2012. [10] M. Boher d G. S. Gueiov, The h-laplce d q-laplce rform, Jourl of Mhemicl Alyi d Applicio, vol. 365, o. 1, pp , [11] M. R. Segi Rhm, The (q, h)-lplce rform o dicree ime cle, Compuer & Mhemic wih Applicio, vol. 62,o.1,pp ,2011. [12] K. S. Miller d B. Ro, A Iroducio o he Frciol clculu d Frciol Differeil Equio, JohWiley& So,NewYork,NY,USA,1993. [13] I. Podluby, Frciol Differeil equio, Acdemic Pre, S Diego, Clif, USA, [14] R. P. Agrwl, Ceri frciol q-iegrl d q-derivive, vol. 66, pp , [15] J. B. Díz d T. J. Oler, Differece of frciol order, Mhemic of Compuio,vol.28,pp ,1974. [16] T. J. Oler, Frciol derivive d Leibiz rule, The Americ Mhemicl Mohly,vol.78,o.6,pp ,1971. [17] H. L. Gry d N. F. Zhg, O ew defiiio of he frciol differece, Mhemic of Compuio,vol.50,o. 182, pp , [18] K. S. Miller d B. Ro, Frciol differece clculu, i Proceedig of he Ieriol Sympoium o Uivle Fucio, Frciol Clculu d Their Applicio, Elli Horwood Serie i Mhemic & I Applicio, pp , Niho Uiveriy, Koriym, Jp, My [19] T. Abdeljwd d D. Bleu, Frciol differece d iegrio by pr, Jourl of Compuiol Alyi d Applicio, vol. 13, o. 3, pp , [20] T. Abdeljwd, O Riem d Cpuo frciol differece, Compuer & Mhemic wih Applicio,vol.62,o. 3, pp , [21] T. Abdeljwd, O Del d Nbl Cpuo frciol differece d dul ideiie, Dicree Dymic i Nure d Sociey,vol.2013,AricleID406910,12pge,2013. [22] F. M. Aici d P. W. Eloe, A rform mehod i dicree frciol clculu, Ieriol Jourl of Differece Equio, vol. 2, o. 2, pp , [23] F. M. Aici d P. W. Eloe, Iiil vlue problem i dicree frciol clculu, Proceedig of he Americ Mhemicl Sociey,vol.137,o.3,pp ,2009. [24] F. M. Aici d P. W. Eloe, Dicree frciol clculu wih he bl operor, Elecroic Jourl of Quliive Theory of Differeil Equio, o. 3, pp. 1 12, [25] J. Hei, Z. McCrhy, N. Gwick, B. McKi, d K. Speer, Lplce rform for he bl-differece operor, Pmeric Mhemicl Jourl, vol.21,o.3,pp.79 97, [26] A. Ngi, O ceri frciol q-differece d i eige fucio, JourlofNolierMhemiclPhyic,vol.10,pp , [27] J. Čermák d L. Nechvál, O (q, h)-logue of frciol clculu, Jourl of Nolier Mhemicl Phyic,vol.17,o. 1,pp.51 68,2010. [28] J. Čermák, T. Kiel, d L. Nechvál, Dicree Mig-Leffler fucio i lier frciol differece equio, Abrc d Applied Alyi, vol. 2011, Aricle ID , 21 pge, [29] G. A. Aiou, Foudio of bl frciol clculu o ime cle d iequliie, Compuer & Mhemic wih Applicio,vol.59,o.12,pp ,2010. [30] N.R.O.Bo,D.Mozyrk,dD.F.M.Torre, Frciol derivive d iegrl o ime cle vi he ivere geerlized Lplce rform, Ieriol Jourl of Mhemic d Compuio,vol.11,o.J11,pp.1 9,2011. [31] T. Kiel, Bic of quiive heory of lier frciol differece equio [Ph.D. hei], Bro Uiveriy of Techology, [32] P. A. Willim, Uifyig frciol clculu wih ime cle [Ph.D. hei], Uiveriy of Melboure, [33] P. A. Willim, Frciol clculu o ime cle wih Tylor' heorem, Frciol Clculu d Applied Alyi, vol.15,o. 4, pp , [34] J. Čermák, T. Kiel, d L. Nechvál, Sbiliy regio for lier frciol differeil yem d heir dicreizio, Applied Mhemic d Compuio, vol.219,o.12,pp , [35] R. P. Agrwl d M. Boher, Bic clculu o ime cle d ome of i pplicio, Reul i Mhemic,vol.35,o.1-2, pp. 3 22, [36] M. Boher d G. Gueiov, Riem d lebegue iegrio, i Advce i Dymic Equio o Time Scle, Birkhuer, Boo, M, USA, [37]A.CbddD.R.Vivero, ExpreioofheLebegue iegrl o ime cle uul Lebegue iegrl: pplicio o he clculu of -iderivive, Mhemicl d Compuer Modellig,vol.43,o.1-2,pp ,2006. [38]M.Boher,G.S.Gueiov,dK.Bk, Properieofhe Lplce rform o ime cle wih rbirry griie, Iegrl Trform d Specil Fucio, vol.22,o.11,pp , [39] D. R. Adero, Tylor polyomil for bl dymic equio o ime cle, Pmeric Mhemicl Jourl, vol. 12, o. 4, pp , [40] T. Kiel, Power fucio d eeil of frciol clculu o ioled ime cle, Advce i Differece Equio, vol. 2013, ricle 259, [41] M. Boher d G. S. Gueiov, The covoluio o ime cle, Abrc d Applied Alyi, vol.2007,aricleid 58373, 24 pge, [42] M. R. S. Rhm, Geerlized Tylor formul d Mig- Leffler fucio o rbirry ime cle wih pplicio, Submied. [43] A. A. Kilb, H. M. Srivv, d J. J. Trujillo, Theory d Applicio of Frciol Differeil Equio, Elevier, [44] F. Jrd d K. Tş, O Sumudu rform mehod i dicree frciol clculu, Abrc d Applied Alyi, vol.2012, Aricle ID , 16 pge, [45] F. Jrd d K. Tş, O Sumudu rform mehod i dicree frciol clculu, Abrc d Applied Alyi, vol.2012, Aricle ID , 16 pge, 2012.

12 Advce i Operio Reerch Advce i Deciio Sciece Jourl of Applied Mhemic Algebr Jourl of Probbiliy d Siic The Scieific World Jourl Ieriol Jourl of Differeil Equio Submi your mucrip Ieriol Jourl of Advce i Combioric Mhemicl Phyic Jourl of Complex Alyi Ieriol Jourl of Mhemic d Mhemicl Sciece Mhemicl Problem i Egieerig Jourl of Mhemic Dicree Mhemic Jourl of Dicree Dymic i Nure d Sociey Jourl of Fucio Spce Abrc d Applied Alyi Ieriol Jourl of Jourl of Sochic Alyi Opimizio

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO

More information

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions Reserch Ivey: Ieriol Jourl Of Egieerig Ad Sciece Vol., Issue (April 3), Pp 8- Iss(e): 78-47, Iss(p):39-6483, Www.Reserchivey.Com Exisece Of Soluios For Nolier Frciol Differeil Equio Wih Iegrl Boudry Codiios,

More information

ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION

ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION N.S. BARNETT, S.S. DRAGOMIR, AND G. HANNA Absrc. I his pper we poi ou pproximio for he Fourier rsform for fucios

More information

Research Article Positive Solutions for a Second-Order p-laplacian Boundary Value Problem with Impulsive Effects and Two Parameters

Research Article Positive Solutions for a Second-Order p-laplacian Boundary Value Problem with Impulsive Effects and Two Parameters Hidwi Pulihig Corporio Arc d Applied Alyi Volume 24, Aricle ID 534787, 4 pge hp://dx.doi.org/.55/24/534787 Reerch Aricle Poiive Soluio for Secod-Order p-lplci Boudry Vlue Prolem wih Impulive Effec d Two

More information

Forced Oscillation of Nonlinear Impulsive Hyperbolic Partial Differential Equation with Several Delays

Forced Oscillation of Nonlinear Impulsive Hyperbolic Partial Differential Equation with Several Delays Jourl of Applied Mhemics d Physics, 5, 3, 49-55 Published Olie November 5 i SciRes hp://wwwscirporg/ourl/mp hp://dxdoiorg/436/mp5375 Forced Oscillio of Nolier Impulsive Hyperbolic Pril Differeil Equio

More information

An Extension of Hermite Polynomials

An Extension of Hermite Polynomials I J Coemp Mh Scieces, Vol 9, 014, o 10, 455-459 HIKARI Ld, wwwm-hikricom hp://dxdoiorg/101988/ijcms0144663 A Exesio of Hermie Polyomils Ghulm Frid Globl Isiue Lhore New Grde Tow, Lhore, Pkis G M Hbibullh

More information

Local Fractional Kernel Transform in Fractal Space and Its Applications

Local Fractional Kernel Transform in Fractal Space and Its Applications From he SelecedWorks of Xio-J Yg 22 Locl Frciol Kerel Trsform i Frcl Spce d Is Applicios Yg Xioj Aville : hps://works.epress.com/yg_ioj/3/ Advces i Compuiol Mhemics d is Applicios 86 Vol. No. 2 22 Copyrigh

More information

HOMEWORK 6 - INTEGRATION. READING: Read the following parts from the Calculus Biographies that I have given (online supplement of our textbook):

HOMEWORK 6 - INTEGRATION. READING: Read the following parts from the Calculus Biographies that I have given (online supplement of our textbook): MAT 3 CALCULUS I 5.. Dokuz Eylül Uiversiy Fculy of Sciece Deprme of Mhemics Isrucors: Egi Mermu d Cell Cem Srıoğlu HOMEWORK 6 - INTEGRATION web: hp://kisi.deu.edu.r/egi.mermu/ Tebook: Uiversiy Clculus,

More information

ON SOME FRACTIONAL PARABOLIC EQUATIONS DRIVEN BY FRACTIONAL GAUSSIAN NOISE

ON SOME FRACTIONAL PARABOLIC EQUATIONS DRIVEN BY FRACTIONAL GAUSSIAN NOISE IJRRAS 6 3) Februry www.rppress.com/volumes/vol6issue3/ijrras_6_3_.pdf ON SOME FRACIONAL ARABOLIC EQUAIONS RIVEN BY FRACIONAL GAUSSIAN NOISE Mhmoud M. El-Bori & hiri El-Sid El-Ndi Fculy of Sciece Alexdri

More information

NATURAL TRANSFORM AND SOLUTION OF INTEGRAL EQUATIONS FOR DISTRIBUTION SPACES

NATURAL TRANSFORM AND SOLUTION OF INTEGRAL EQUATIONS FOR DISTRIBUTION SPACES Americ J o Mhemic d Sciece Vol 3 o - Jry 4 Copyrih Mid Reder Plicio ISS o: 5-3 ATURAL TRASFORM AD SOLUTIO OF ITERAL EQUATIOS FOR DISTRIBUTIO SPACES Deh Looker d P Berji Deprme o Mhemic Fcly o Sciece J

More information

Research Article The General Solution of Differential Equations with Caputo-Hadamard Fractional Derivatives and Noninstantaneous Impulses

Research Article The General Solution of Differential Equations with Caputo-Hadamard Fractional Derivatives and Noninstantaneous Impulses Hindwi Advnce in Mhemicl Phyic Volume 207, Aricle ID 309473, pge hp://doi.org/0.55/207/309473 Reerch Aricle The Generl Soluion of Differenil Equion wih Cpuo-Hdmrd Frcionl Derivive nd Noninnneou Impule

More information

Types Ideals on IS-Algebras

Types Ideals on IS-Algebras Ieraioal Joural of Maheaical Aalyi Vol. 07 o. 3 635-646 IARI Ld www.-hikari.co hp://doi.org/0.988/ija.07.7466 Type Ideal o IS-Algebra Sudu Najah Jabir Faculy of Educaio ufa Uiveriy Iraq Copyrigh 07 Sudu

More information

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead)

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead) Week 8 Lecure 3: Problems 49, 5 Fourier lysis Coursewre pp 6-7 (do look Frech very cofusig look i he Coursewre ised) Fourier lysis ivolves ddig wves d heir hrmoics, so i would hve urlly followed fer he

More information

Boundary Value Problems of Conformable. Fractional Differential Equation with Impulses

Boundary Value Problems of Conformable. Fractional Differential Equation with Impulses Applied Meicl Scieces Vol 2 28 o 8 377-397 HIKARI Ld www-irico ps://doiorg/2988/s28823 Boudry Vlue Probles of Coforble Frciol Differeil Equio wi Ipulses Arisr Tgvree Ci Tipryoo d Apisi Ppogpu Depre of

More information

S.E. Sem. III [EXTC] Applied Mathematics - III

S.E. Sem. III [EXTC] Applied Mathematics - III S.E. Sem. III [EXTC] Applied Mhemic - III Time : 3 Hr.] Prelim Pper Soluio [Mrk : 8 Q.() Fid Lplce rform of e 3 co. [5] A.: L{co }, L{ co } d ( ) d () L{ co } y F.S.T. 3 ( 3) Le co 3 Q.() Prove h : f (

More information

Special Functions. Leon M. Hall. Professor of Mathematics University of Missouri-Rolla. Copyright c 1995 by Leon M. Hall. All rights reserved.

Special Functions. Leon M. Hall. Professor of Mathematics University of Missouri-Rolla. Copyright c 1995 by Leon M. Hall. All rights reserved. Specil Fucios Leo M. Hll Professor of Mhemics Uiversiy of Missouri-Roll Copyrigh c 995 y Leo M. Hll. All righs reserved. Chper 5. Orhogol Fucios 5.. Geerig Fucios Cosider fucio f of wo vriles, ( x,), d

More information

Fractional Fourier Series with Applications

Fractional Fourier Series with Applications Aeric Jourl o Couiol d Alied Mheics 4, 4(6): 87-9 DOI: 593/jjc446 Frciol Fourier Series wih Alicios Abu Hd I, Khlil R * Uiversiy o Jord, Jord Absrc I his er, we iroduce coorble rciol Fourier series We

More information

Elzaki transform and the decomposition method for nonlinear fractional partial differential equations

Elzaki transform and the decomposition method for nonlinear fractional partial differential equations I. J. Ope Proble Cop. Mh. Vol. 9 No. Deceber ISSN 998-; Copyrigh ICSRS Publicio.i-cr.org lzi ror d he decopoiio ehod or olier rciol pril diereil equio Djelloul ZIN Depre o Phyic Uieriy o Hib Bebouli Pole

More information

The Trigonometric Representation of Complex Type Number System

The Trigonometric Representation of Complex Type Number System Ieriol Jourl of Scieific d Reserch Pulicios Volume 7 Issue Ocoer 7 587 ISSN 5-353 The Trigoomeric Represeio of Complex Type Numer Sysem ThymhyPio Jude Nvih Deprme of Mhemics Eser Uiversiy Sri Lk Asrc-

More information

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3 The Cumulive Disribuio Fucio (cd) ONE RANDOM VARIABLE cd is deied s he probbiliy o he eve { x}: F ( ) [ ] x P x x - Applies o discree s well s coiuous RV. Exmple: hree osses o coi x 8 3 x 8 8 F 3 3 7 x

More information

Theoretical Physics Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter Q Notes. Laplace Transforms. Q1. The Laplace Transform.

Theoretical Physics Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter Q Notes. Laplace Transforms. Q1. The Laplace Transform. Theoreical Phyic Prof. Ruiz, UNC Aheville, docorphy o YouTue Chaper Q Noe. Laplace Traform Q1. The Laplace Traform. Pierre-Simo Laplace (1749-187) Courey School of Mhemic ad Siic Uiveriy of S. Adrew, Scolad

More information

Transient Solution of the M/M/C 1 Queue with Additional C 2 Servers for Longer Queues and Balking

Transient Solution of the M/M/C 1 Queue with Additional C 2 Servers for Longer Queues and Balking Jourl of Mhemics d Sisics 4 (): 2-25, 28 ISSN 549-3644 28 Sciece ublicios Trsie Soluio of he M/M/C Queue wih Addiiol C 2 Servers for Loger Queues d Blkig R. O. Al-Seedy, A. A. El-Sherbiy,,2 S. A. EL-Shehwy

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

Fourier series representations of the logarithms of the Euler gamma function and the Barnes multiple gamma functions. Donal F.

Fourier series representations of the logarithms of the Euler gamma function and the Barnes multiple gamma functions. Donal F. Fourier erie repreeio of he logrihm of he Euler gmm fucio d he Bre muliple gmm fucio Dol F. Coo dcoo@bopeworld.com 5 Mrch 9 Abrc Kummer Fourier erie for log Γ ( ) i well ow, hvig bee dicovered i 847. I

More information

An arithmetic interpretation of generalized Li s criterion

An arithmetic interpretation of generalized Li s criterion A riheic ierpreio o geerlized Li crierio Sergey K. Sekkii Lboroire de Phyique de l Mière Vive IPSB Ecole Polyechique Fédérle de Lue BSP H 5 Lue Swizerld E-il : Serguei.Sekki@epl.ch Recely we hve eblihed

More information

t to be equivalent in the sense of measurement if for all functions gt () with compact support, they integrate in the same way, i.e.

t to be equivalent in the sense of measurement if for all functions gt () with compact support, they integrate in the same way, i.e. Cocoure 8 Lecure #5 I oy lecure we begi o re he iuio of lier h orer ODE wih icoiuou /or oiffereible ipu The meho we ll evelop (Lplce Trform) will be pplicble o oher ype of ipu, bu i epecilly relev whe

More information

NOTES ON BERNOULLI NUMBERS AND EULER S SUMMATION FORMULA. B r = [m = 0] r

NOTES ON BERNOULLI NUMBERS AND EULER S SUMMATION FORMULA. B r = [m = 0] r NOTES ON BERNOULLI NUMBERS AND EULER S SUMMATION FORMULA MARK WILDON. Beroulli umbers.. Defiiio. We defie he Beroulli umbers B m for m by m ( m + ( B r [m ] r r Beroulli umbers re med fer Joh Beroulli

More information

Reinforcement Learning

Reinforcement Learning Reiforceme Corol lerig Corol polices h choose opiml cios Q lerig Covergece Chper 13 Reiforceme 1 Corol Cosider lerig o choose cios, e.g., Robo lerig o dock o bery chrger o choose cios o opimize fcory oupu

More information

Integration and Differentiation

Integration and Differentiation ome Clculus bckgroud ou should be fmilir wih, or review, for Mh 404 I will be, for he mos pr, ssumed ou hve our figerips he bsics of (mulivrible) fucios, clculus, d elemer differeil equios If here hs bee

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

Positive and negative solutions of a boundary value problem for a

Positive and negative solutions of a boundary value problem for a Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference

More information

F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics

F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics F.Y. Diplom : Sem. II [CE/CR/CS] Applied Mhemics Prelim Quesio Pper Soluio Q. Aemp y FIVE of he followig : [0] Q. () Defie Eve d odd fucios. [] As.: A fucio f() is sid o e eve fucio if f() f() A fucio

More information

A new approach to Kudryashov s method for solving some nonlinear physical models

A new approach to Kudryashov s method for solving some nonlinear physical models Ieriol Jourl of Physicl Scieces Vol. 7() pp. 860-866 0 My 0 Avilble olie hp://www.cdeicourls.org/ijps DOI: 0.897/IJPS.07 ISS 99-90 0 Acdeic Jourls Full Legh Reserch Pper A ew pproch o Kudryshov s ehod

More information

CONTROL SYSTEMS. Chapter 3 : Time Response Analysis. [GATE EE 1991 IIT-Madras : 2 Mark]

CONTROL SYSTEMS. Chapter 3 : Time Response Analysis. [GATE EE 1991 IIT-Madras : 2 Mark] CONTROL SYSTEMS Chper 3 : Time Repoe lyi GTE Objecive & Numericl Type Soluio Queio 4 [GTE EC 99 IIT-Mdr : Mrk] uiy feedbck corol yem h he ope loop rfer fucio. 4( ) G () ( ) If he ipu o he yem i ui rmp,

More information

ON BILATERAL GENERATING FUNCTIONS INVOLVING MODIFIED JACOBI POLYNOMIALS

ON BILATERAL GENERATING FUNCTIONS INVOLVING MODIFIED JACOBI POLYNOMIALS Jourl of Sciece d Ars Yer 4 No 227-6 24 ORIINAL AER ON BILATERAL ENERATIN FUNCTIONS INVOLVIN MODIFIED JACOBI OLYNOMIALS CHANDRA SEKHAR BERA Muscri received: 424; Acceed er: 3524; ublished olie: 3624 Absrc

More information

The Inverse of Power Series and the Partial Bell Polynomials

The Inverse of Power Series and the Partial Bell Polynomials 1 2 3 47 6 23 11 Joural of Ieger Sequece Vol 15 2012 Aricle 1237 The Ivere of Power Serie ad he Parial Bell Polyomial Miloud Mihoubi 1 ad Rachida Mahdid 1 Faculy of Mahemaic Uiveriy of Sciece ad Techology

More information

LOCUS 1. Definite Integration CONCEPT NOTES. 01. Basic Properties. 02. More Properties. 03. Integration as Limit of a Sum

LOCUS 1. Definite Integration CONCEPT NOTES. 01. Basic Properties. 02. More Properties. 03. Integration as Limit of a Sum LOCUS Defiie egrio CONCEPT NOTES. Bsic Properies. More Properies. egrio s Limi of Sum LOCUS Defiie egrio As eplied i he chper iled egrio Bsics, he fudmel heorem of clculus ells us h o evlue he re uder

More information

VARIATIONAL ITERATION METHOD (VIM) FOR SOLVING PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS

VARIATIONAL ITERATION METHOD (VIM) FOR SOLVING PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS Jourl of Theoreicl d Applied Iformio Techology h Jue 16. Vol.88. No. 5-16 JATIT & LLS. All righs reserved. ISSN: 199-8645 www.ji.org E-ISSN: 1817-195 VARIATIONAL ITERATION ETHOD VI FOR SOLVING PARTIAL

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

International Journal of Computer Sciences and Engineering. Research Paper Volume-6, Issue-1 E-ISSN:

International Journal of Computer Sciences and Engineering. Research Paper Volume-6, Issue-1 E-ISSN: Ieriol Jourl of Compuer Scieces d Egieerig Ope ccess Reserch Pper Volume-6, Issue- E-ISSN: 47-69 pplicios of he boodh Trsform d he Homoopy Perurbio Mehod o he Nolier Oscillors P.K. Ber *, S.K. Ds, P. Ber

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

arxiv:math/ v1 [math.fa] 1 Feb 1994

arxiv:math/ v1 [math.fa] 1 Feb 1994 arxiv:mah/944v [mah.fa] Feb 994 ON THE EMBEDDING OF -CONCAVE ORLICZ SPACES INTO L Care Schü Abrac. I [K S ] i wa how ha Ave ( i a π(i) ) π i equivale o a Orlicz orm whoe Orlicz fucio i -cocave. Here we

More information

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k =

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k = wwwskshieduciocom BINOMIAL HEOREM OBJEIVE PROBLEMS he coefficies of, i e esio of k e equl he k /7 If e coefficie of, d ems i e i AP, e e vlue of is he coefficies i e,, 7 ems i e esio of e i AP he 7 7 em

More information

Fractional Order EOQ Model with Linear Trend of Time-Dependent Demand

Fractional Order EOQ Model with Linear Trend of Time-Dependent Demand I.J. Iellige Sysems d Applicios, 5,, -5 Published Olie Februry 5 i MES (hp://.mecs-press.org/ OI:.585/ijis.5..6 Frciol Order EOQ Model ih Lier red o ime-epede emd Asim Kumr s, p Kumr Roy eprme o Applied

More information

Common Fixed Point Theorem in Intuitionistic Fuzzy Metric Space via Compatible Mappings of Type (K)

Common Fixed Point Theorem in Intuitionistic Fuzzy Metric Space via Compatible Mappings of Type (K) Ieraioal Joural of ahemaics Treds ad Techology (IJTT) Volume 35 umber 4- July 016 Commo Fixed Poi Theorem i Iuiioisic Fuzzy eric Sace via Comaible aigs of Tye (K) Dr. Ramaa Reddy Assisa Professor De. of

More information

CONTROL SYSTEMS. Chapter 3 : Time Response Analysis

CONTROL SYSTEMS. Chapter 3 : Time Response Analysis CONTROL SYSTEMS Chper 3 : Time Repoe Alyi GATE Objecive & Numericl Type Soluio Queio 4 [Prcice Book] [GATE EC 99 IIT-Mdr : Mrk] A uiy feedbck corol yem h he ope loop rfer fucio. 4( ) G () ( ) If he ipu

More information

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form Joural of Applied Mahemaics Volume 03, Aricle ID 47585, 7 pages hp://dx.doi.org/0.55/03/47585 Research Aricle A Geeralized Noliear Sum-Differece Iequaliy of Produc Form YogZhou Qi ad Wu-Sheg Wag School

More information

Experiment 6: Fourier Series

Experiment 6: Fourier Series Fourier Series Experime 6: Fourier Series Theory A Fourier series is ifiie sum of hrmoic fucios (sies d cosies) wih every erm i he series hvig frequecy which is iegrl muliple of some pricipl frequecy d

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017 Deparme of Ecoomic The Ohio Sae Uiveriy Ecoomic 8723 Macroecoomic Theory Problem Se 3 Skech of Soluio Profeor Sajay Chugh Sprig 27 Taylor Saggered Nomial Price-Seig Model There are wo group of moopoliically-compeiive

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

. Since P-U I= P+ (p-l)} Aap Since pn for every GF(pn) we have A pn A Therefore. As As. A,Ap. (Zp,+,.) ON FUNDAMENTAL SETS OVER A FINITE FIELD

. Since P-U I= P+ (p-l)} Aap Since pn for every GF(pn) we have A pn A Therefore. As As. A,Ap. (Zp,+,.) ON FUNDAMENTAL SETS OVER A FINITE FIELD Ie J Mh & Mh Sci Vol 8 No 2 (1985) 373-388 373 ON FUNDAMENTAL SETS OVER A FINITE FIELD YOUSEF ABBAS d JOSEH J LIANG Dee of Mheic Uiveiy of Souh Floid T, Floid 33620 USA (Received Mch 3, 1983) ABSTRACT

More information

Citation Abstract and Applied Analysis, 2013, v. 2013, article no

Citation Abstract and Applied Analysis, 2013, v. 2013, article no Tile An Opil-Type Inequliy in Time Scle Auhor() Cheung, WS; Li, Q Ciion Arc nd Applied Anlyi, 13, v. 13, ricle no. 53483 Iued De 13 URL hp://hdl.hndle.ne/17/181673 Righ Thi work i licened under Creive

More information

On Absolute Indexed Riesz Summability of Orthogonal Series

On Absolute Indexed Riesz Summability of Orthogonal Series Ieriol Jourl of Couiol d Alied Mheics. ISSN 89-4966 Volue 3 Nuer (8). 55-6 eserch Idi Pulicios h:www.riulicio.co O Asolue Ideed iesz Suiliy of Orhogol Series L. D. Je S. K. Piry *. K. Ji 3 d. Sl 4 eserch

More information

Two Implicit Runge-Kutta Methods for Stochastic Differential Equation

Two Implicit Runge-Kutta Methods for Stochastic Differential Equation Alied Mahemaic, 0, 3, 03-08 h://dx.doi.org/0.436/am.0.306 Publihed Olie Ocober 0 (h://www.scirp.org/oural/am) wo mlici Ruge-Kua Mehod for Sochaic Differeial quaio Fuwe Lu, Zhiyog Wag * Dearme of Mahemaic,

More information

Extension of Hardy Inequality on Weighted Sequence Spaces

Extension of Hardy Inequality on Weighted Sequence Spaces Jourl of Scieces Islic Reublic of Ir 20(2): 59-66 (2009) Uiversiy of ehr ISS 06-04 h://sciecesucir Eesio of Hrdy Iequliy o Weighed Sequece Sces R Lshriour d D Foroui 2 Dere of Mheics Fculy of Mheics Uiversiy

More information

Hadamard matrices from the Multiplication Table of the Finite Fields

Hadamard matrices from the Multiplication Table of the Finite Fields adamard marice from he Muliplicaio Table of he Fiie Field 신민호 송홍엽 노종선 * Iroducio adamard mari biary m-equece New Corucio Coe Theorem. Corucio wih caoical bai Theorem. Corucio wih ay bai Remark adamard

More information

arxiv: v1 [math.nt] 13 Dec 2010

arxiv: v1 [math.nt] 13 Dec 2010 WZ-PROOFS OF DIVERGENT RAMANUJAN-TYPE SERIES arxiv:0.68v [mah.nt] Dec 00 JESÚS GUILLERA Abrac. We prove ome diverge Ramauja-ype erie for /π /π applyig a Bare-iegral raegy of he WZ-mehod.. Wilf-Zeilberger

More information

graph of unit step function t

graph of unit step function t .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"

More information

Functions, Limit, And Continuity

Functions, Limit, And Continuity Fucios, Limi d coiuiy of fucio Fucios, Limi, Ad Coiuiy. Defiiio of fucio A fucio is rule of correspodece h ssocies wih ech ojec i oe se clled f from secod se. The se of ll vlues so oied is he domi, sigle

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

Degree of Approximation of Conjugate of Signals (Functions) by Lower Triangular Matrix Operator

Degree of Approximation of Conjugate of Signals (Functions) by Lower Triangular Matrix Operator Alied Mhemics 2 2 448-452 doi:.4236/m.2.2226 Pulished Olie Decemer 2 (h://www.scirp.org/jourl/m) Degree of Aroimio of Cojuge of Sigls (Fucios) y Lower Trigulr Mri Oeror Asrc Vishu Nry Mishr Huzoor H. Kh

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

Dynamic h-index: the Hirsch index in function of time

Dynamic h-index: the Hirsch index in function of time Dyamic h-idex: he Hirsch idex i fucio of ime by L. Egghe Uiversiei Hassel (UHassel), Campus Diepebeek, Agoralaa, B-3590 Diepebeek, Belgium ad Uiversiei Awerpe (UA), Campus Drie Eike, Uiversieisplei, B-260

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

CHAPTER 2 Quadratic diophantine equations with two unknowns

CHAPTER 2 Quadratic diophantine equations with two unknowns CHAPTER - QUADRATIC DIOPHANTINE EQUATIONS WITH TWO UNKNOWNS 3 CHAPTER Quadraic diophaie equaio wih wo ukow Thi chaper coi of hree ecio. I ecio (A), o rivial iegral oluio of he biar quadraic diophaie equaio

More information

All the Laplace Transform you will encounter has the following form: Rational function X(s)

All the Laplace Transform you will encounter has the following form: Rational function X(s) EE G Note: Chpter Itructor: Cheug Pge - - Iverio of Rtiol Fuctio All the Lplce Trform you will ecouter h the followig form: m m m m e τ 0...... Rtiol fuctio Dely Why? Rtiol fuctio come out turlly from

More information

S n. = n. Sum of first n terms of an A. P is

S n. = n. Sum of first n terms of an A. P is PROGREION I his secio we discuss hree impora series amely ) Arihmeic Progressio (A.P), ) Geomeric Progressio (G.P), ad 3) Harmoic Progressio (H.P) Which are very widely used i biological scieces ad humaiies.

More information

DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR

DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR Bllei UASVM, Horilre 65(/008 pissn 1843-554; eissn 1843-5394 DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR Crii C. MERCE Uiveriy of Agrilrl iee d Veeriry Mediie Clj-Npo,

More information

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation Mching Inpu: undireced grph G = (V, E). Biprie Mching Inpu: undireced, biprie grph G = (, E).. Mching Ern Myr, Hrld äcke Biprie Mching Inpu: undireced, biprie grph G = (, E). Mflow Formulion Inpu: undireced,

More information

Variational Iteration Method for Solving Differential Equations with Piecewise Constant Arguments

Variational Iteration Method for Solving Differential Equations with Piecewise Constant Arguments I.J. Egieerig ad Maufacurig, 1,, 36-43 Publihed Olie April 1 i MECS (hp://www.mec-pre.e) DOI: 1.5815/ijem.1..6 Available olie a hp://www.mec-pre.e/ijem Variaioal Ieraio Mehod for Solvig Differeial Equaio

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

ON PRODUCT SUMMABILITY OF FOURIER SERIES USING MATRIX EULER METHOD

ON PRODUCT SUMMABILITY OF FOURIER SERIES USING MATRIX EULER METHOD Ieriol Jourl o Advces i Egieerig & Techology Mrch IJAET ISSN: 3-963 N PRDUCT SUMMABILITY F FURIER SERIES USING MATRIX EULER METHD BPPdhy Bii Mlli 3 UMisr d 4 Mhedr Misr Depre o Mheics Rold Isiue o Techology

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecure 9, Sae Space Repreeaio Emam Fahy Deparme of Elecrical ad Corol Egieerig email: emfmz@aa.edu hp://www.aa.edu/cv.php?dip_ui=346&er=6855 Trafer Fucio Limiaio TF = O/P I/P ZIC

More information

Coefficient Inequalities for Certain Subclasses. of Analytic Functions

Coefficient Inequalities for Certain Subclasses. of Analytic Functions I. Jourl o Mh. Alysis, Vol., 00, o. 6, 77-78 Coeiie Iequliies or Ceri Sulsses o Alyi Fuios T. Rm Reddy d * R.. Shrm Deprme o Mhemis, Kkiy Uiversiy Wrgl 506009, Adhr Prdesh, Idi reddyr@yhoo.om, *rshrm_005@yhoo.o.i

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

On New Prajapati-Shukla Functions And Polynomials

On New Prajapati-Shukla Functions And Polynomials Mhei Toy Vol.7De- 4-39 ISSN 976-38 O New Prji-Shul Fuio Polyoil J. C. Prji. K. Shul Dere of Mheil Siee Fuly of Tehology gieerig Chror Uiveriy of Siee Tehology Chg -388 4 Ii. Dere of lie Mhei Huiie S.V.Niol

More information

Research Article On Double Summability of Double Conjugate Fourier Series

Research Article On Double Summability of Double Conjugate Fourier Series Inernaional Journal of Mahemaic and Mahemaical Science Volume 22, Aricle ID 4592, 5 page doi:.55/22/4592 Reearch Aricle On Double Summabiliy of Double Conjugae Fourier Serie H. K. Nigam and Kuum Sharma

More information

On computing two special cases of Gauss hypergeometric function

On computing two special cases of Gauss hypergeometric function O comuig wo secil cses of Guss hyergeomeric fucio Mohmmd Msjed-Jmei Wolfrm Koef b * Derme of Mhemics K.N.Toosi Uiversiy of Techology P.O.Bo 65-68 Tehr Ir E-mil: mmjmei@u.c.ir mmjmei@yhoo.com b* Isiue of

More information

A Note on Random k-sat for Moderately Growing k

A Note on Random k-sat for Moderately Growing k A Noe o Radom k-sat for Moderaely Growig k Ju Liu LMIB ad School of Mahemaics ad Sysems Sciece, Beihag Uiversiy, Beijig, 100191, P.R. Chia juliu@smss.buaa.edu.c Zogsheg Gao LMIB ad School of Mahemaics

More information

Supplement: Gauss-Jordan Reduction

Supplement: Gauss-Jordan Reduction Suppleme: Guss-Jord Reducio. Coefficie mri d ugmeed mri: The coefficie mri derived from sysem of lier equios m m m m is m m m A O d he ugmeed mri derived from he ove sysem of lier equios is [ ] m m m m

More information

Linear Time Invariant Systems

Linear Time Invariant Systems 1 Liear Time Ivaria Sysems Oulie We will show ha he oupu equals he covoluio bewee he ipu ad he ui impulse respose: sysem for a discree-ime, for a coiuous-ime sysdem, y x h y x h 2 Discree Time LTI Sysems

More information

Chapter #2 EEE Subsea Control and Communication Systems

Chapter #2 EEE Subsea Control and Communication Systems EEE 87 Chpter # EEE 87 Sube Cotrol d Commuictio Sytem Trfer fuctio Pole loctio d -ple Time domi chrcteritic Extr pole d zero Chpter /8 EEE 87 Trfer fuctio Lplce Trform Ued oly o LTI ytem Differetil expreio

More information

Free Flapping Vibration of Rotating Inclined Euler Beams

Free Flapping Vibration of Rotating Inclined Euler Beams World cdemy of Sciece, Egieerig d Techology 56 009 Free Flppig Vibrio of Roig Iclied Euler Bems Chih-ig Hug, We-Yi i, d Kuo-Mo Hsio bsrc mehod bsed o he power series soluio is proposed o solve he url frequecy

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs America Joural of Compuaioal Mahemaics, 04, 4, 80-88 Published Olie Sepember 04 i SciRes. hp://www.scirp.org/joural/ajcm hp://dx.doi.org/0.436/ajcm.04.4404 Mea Square Coverge Fiie Differece Scheme for

More information

The Estimates of Diagonally Dominant Degree and Eigenvalue Inclusion Regions for the Schur Complement of Matrices

The Estimates of Diagonally Dominant Degree and Eigenvalue Inclusion Regions for the Schur Complement of Matrices dvces i Pure Mhemics 05 5 643-65 Pubished Oie ugus 05 i SciRes hp://wwwscirporg/jour/pm hp://dxdoiorg/0436/pm0550058 he Esimes of Digoy Domi Degree d Eigevue Icusio Regios for he Schur Compeme of Mrices

More information

Available online at J. Math. Comput. Sci. 4 (2014), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 4 (2014), No. 4, ISSN: Available olie a hp://sci.org J. Mah. Compu. Sci. 4 (2014), No. 4, 716-727 ISSN: 1927-5307 ON ITERATIVE TECHNIQUES FOR NUMERICAL SOLUTIONS OF LINEAR AND NONLINEAR DIFFERENTIAL EQUATIONS S.O. EDEKI *, A.A.

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

e x x s 1 dx ( 1) n n!(n + s) + e s n n n=1 n!n s Γ(s) = lim

e x x s 1 dx ( 1) n n!(n + s) + e s n n n=1 n!n s Γ(s) = lim Lecure 3 Impora Special FucioMATH-GA 45. Complex Variable The Euler gamma fucio The Euler gamma fucio i ofe ju called he gamma fucio. I i oe of he mo impora ad ubiquiou pecial fucio i mahemaic, wih applicaio

More information

BEST PATTERN OF MULTIPLE LINEAR REGRESSION

BEST PATTERN OF MULTIPLE LINEAR REGRESSION ERI COADA GERMAY GEERAL M.R. SEFAIK AIR FORCE ACADEMY ARMED FORCES ACADEMY ROMAIA SLOVAK REPUBLIC IERAIOAL COFERECE of SCIEIFIC PAPER AFASES Brov 6-8 M BES PAER OF MULIPLE LIEAR REGRESSIO Corel GABER PEROLEUM-GAS

More information