Fourier series representations of the logarithms of the Euler gamma function and the Barnes multiple gamma functions. Donal F.

Size: px
Start display at page:

Download "Fourier series representations of the logarithms of the Euler gamma function and the Barnes multiple gamma functions. Donal F."

Transcription

1 Fourier erie repreeio of he logrihm of he Euler gmm fucio d he Bre muliple gmm fucio Dol F. Coo dcoo@bopeworld.com 5 Mrch 9 Abrc Kummer Fourier erie for log Γ ( ) i well ow, hvig bee dicovered i 847. I hi pper we develop correpodig Fourier erie for logrihm of he Bre double gmm fucio (d he mehod my be eily eeded o he higher order muliple gmm fucio). Some pplicio of hee Fourier erie re eplored.. Iroducio We recll he He ideiy for he Hurwiz ze fucio [7] which hold for ll C ecep = ( ) (.) ς (,) = + = ( + ) d wih hi become (.) ς (, ) = ( ) ( + ) + = We hve he well-ow Hurwiz formul for he Fourier epio of he Hurwiz ze fucio ς (, ) repored i Tichmrh reie [38, p.37] co i (.3) ς (,) = Γ( )i + co ( ) ( ) where Re ( ) < d <. I, Boudjelh [] howed h hi formul lo pplie i he regio Re ( ) <. I my be oed h whe = hi reduce o Riem fuciol equio for ς ( ). Leig we my wrie (.3) (.4) co i ς (, ) = Γ ( ) co + i ( ) ( )

2 co[ / ] = Γ( ) ( ) which i vlid for (σ <, < ; < σ, < ) The derivio of (.3) h bee implified by Zhg d Willim [4].. Kummer Fourier erie repreeio of he gmm fucio Muliplyig (.4) by, we ee h (.) (.) co[ / ] f(,) = ς (,) = Γ ( + ) ( ) = ( ) ( + ) + = Differeiio of (.) reul i (.3) p p f (,) = ()( + )log( + ) p + = d we hve he priculr vlue = (.4) p p f (,) = ( )( + )log( + ) p = + = = We lo hve from (.) (.5) ( / )i[ / ] co[ / ]log( ) f(, ) = Γ ( + ) Γ ( + ) ( ) ( ) + Γ ( + ) co[ / ] ( ) d hu f(,) () co i log( ) i = +Γ = = = =

3 We oe he fmilir rigoomeric erie how i Crlw boo [3, p.4] (elemery derivio re lo coied i [8]) (.6) (.7) co log(i ) = ( < < ) i = ( < < ) Uig hee ideiie reul i i log( ) f(, ) = log(i ) + [ γ log( )] = d we he hve ( ) ( + )log( + ) + = i log( ) = log(i ) + [ γ log( )] We howed i [4] h (.8) log Γ ( ) = ( ) ( + )log( + ) + + log( ) + = d we herefore obi Kummer Fourier erie [9] for he log gmm fucio (which, becue we relied o (.6) d (.7), i oly vlid for < < ) (.9) log log Γ ( ) = log + [ γ + log( )] + i i Referece o (.6) d (.7) cofirm h (.9) i properly decribed Fourier erie epio for log Γ( ). I 985 Berd [9] gve elemery proof of hi Fourier erie epio, which w origilly derived by Kummer i 847. The erie immediely give rie o he fmilir reul (.) log Γ = log 3

4 I my be oed h i i o poible o differeie (.9) becue, i eily ee, he reulig ifiie erie i diverge. Nowihdig hi, rigoomeric epio (which i o Fourier erie) ei for he digmm fucio ψ ( ) how i (8.7) below. Alerively, differeiig (.) give u log( + ) (.) ( ) ς (, ) + ς(, ) = ( ) ( ) = + = + d evluio = produce (.) ς (, ) = ς(, ) + ( ) ( + )log( + ) + = We hve he well ow reliohip bewee he Hurwiz ze fucio d he Beroulli polyomil B ( ) (for emple, ee Apool boo [5, pp ]) (.3) (, ) B () m+ ς m = m + for m N o d i my be oed h hi ideiy my lo be deduced from (.) becue we hve how i [9] (.4) Bm+ () = ( )( + ) + = m+ I priculr, from (.3) we hve ς (, ) = B ( ) = From (.) we he ee h (.5) ς (, ) = + ( ) ( + )log( + ) + = d, comprig hi wih (.8), we hve herefore deduced Lerch ideiy [9] (.6) ς (, ) = log Γ( ) log( ) 4

5 Sice ς (,) = ς () = log( ) hi my be epreed ς (, ) ς () = log Γ ( ) Lerch eblihed he bove reliohip bewee he gmm fucio d he Hurwiz ze fucio i 894 (oher derivio re coied i, for emple, Berd pper [9] d [4]). A oed by Berd [9] we hve wih i (.9) (.7) log log Γ( ) = log [ γ + log( )] + i i d hu ddig (.9) d (.7) ogeher we ee h log Γ ( ) + log Γ( ) = log i which i imply Euler reflecio formul for he gmm fucio (.8) Γ() Γ( ) = i Differeiig (.8) reul i ψ ( ) = ( ) log( + ) + ( ) + = + = d, ice ( ) = δ, =, we ee h [4] (.9) ψ ( ) = ( ) log( + ) + = Thi reul w lo recely obied i differe wy by Guiller d Sodow [4]. Differeiig (.9) give u (.) ( ) ψ () = + = ( + ) 5

6 d, ee from (.), hi i equl o ς (, ). ( ) ( Sice i / = i 3 / ), leig = /4 d = 3/4 repecively i (.9) d ddig he wo equio ogeher, we obi 3 log Γ + log Γ = log + log 4 4 which of coure my lo be eily obied from Euler reflecio formul (.8) for he gmm fucio (or, lerively, from Legedre duplicio formul for he gmm fucio [36, p.7]). Noig h i ( / ) = i ( 5 / ) uforuely doe o i u becue = 5/4 fll ouide of he regio of vlidiy of Kummer formul (.9). 3. A pplicio of Prevl heorem Applyig Prevl heorem [8, p.338] o he Fourier erie (.9) we hve (3.) log ς () log Γ( ) log [ γ + log( )] d i = = or equivlely we hve he i compoe iegrl log Γ ( ) d+ log d+ [ γ + log( )] d 4 i log Γ ( )log d+ [ γ + log( )] log i i d ς ( ) [ γ + log( )] log Γ ( ) d = I order o deermie ur. log Γ( ) d we ow evlue he l five of hee iegrl i 6

7 Secod iegrl We hve log d = (log log i ) d i = log log log id+ log id The Log-Sie iegrl L ( ) θ re defied for by (3.) θ L ( θ ) = log i d d hee iegrl hve bee coidered by my uhor, icludig Beumer [], Lewi [3], Boro d Moll [, p.45] d Srivv d Choi [36, p.8]. From [3] we hve for emple (3.3) L ( ) = log i d = (3.4) 3 L 3( ) = log i d = Wih he ubiuio = we ee h log i d = log i [ ] d wih he ubiuio = y we hve d hece log[ i] d = log[ i ] d y dy 7

8 [ d ] [ ] log i = log i d= Thi give u he well-ow iegrl (ee lo (5.) below) (3.5) log i d= log Similrly we hve d d d log i = log [ i ] = log [ i ] d we he ee from (3.4) h (3.6) log [ i ] We hve d = [ ] log i d = log id+ log log id+ log d herefore uig (3.6) we hve (3.7) log i d= + log Thi i he problem publihed by Brememp [] i 957. Alerively, we could lo pply Prevl heorem o (.6) d obi log (i ) d = = Applyig Prevl heorem o (.7) reul i d = = 8

9 I i eily ee h d = d we herefore obi Euler formul for ς () = 6 Thi mehod could lo be pplied o he fifh d ih iegrl. To coclude hi pr we hve log d = (log log i ) d i = log log log id+ log id = log + log log + + log = log ( ) + Third iegrl The hird iegrl i rher bic bu, geerliio, we oe [5, p.76] + (!) () = ( ) B d B ( )! d hu d = Fourh iegrl We howed i equio (6.3) of [8] h 9

10 (3.8) [ ] i( ) Si( ) log Γ ( + ) log i( ) d= = ς () 4 where Si() i he ie iegrl fucio defied by [3, p.878] d [, p.3] i Si( ) = d, Si () = We hve he well-ow iegrl from Fourier erie lyi i = d d herefore defiig i( ) = Si( ) we hve i i i i( ) = d d = d I equio (6.7j) of [8] i w lo how h Si( ) (3.9) log A = 4 where A i he Gliher-Kieli co Therefore we hve log A = ς ( ) (3.) [ ] I i eily ee h log Γ ( + )log i( ) d= log A ς() 4 4 [ ] ( )( log Γ ( + )log i( ) d= log + log Γ ( ) log + logi( )) d

11 = log log d+ log log Γ ( d ) + log logi( d ) + log Γ( )logi( d ) = log + log log( ) + log logi( d ) + log Γ( )logi( d ) where we hve ued Rbe iegrl log Γ ( d ) = log( ) which my lo be obied direcly from Aleeiewy heorem (4.8) below. Uig (.6) we hve co log logi( d ) = log log d log d log log co d = where we hve umed h i i vlid o ierchge he order of iegrio d ummio. Le u ow coider he iegrl u i i log.co d = log d u u We hve i lim log i = lim log = Therefore we ge u i u log u i log.co d = d u

12 u i u logu i = d d hece we ge u i u log u Si( u) log.co d= Priculr ce re follow u i ulog u Si( u) log.co d= Si( ) log.co d= Hece we hve (3.) Si( ) log logi( ) d= log + = = log A + log 4 Therefore we obi (3.) log Γ ( )logi( ) d= log log( ) 4 which w previouly deermied by Epio d Moll [] i very differe mer. We could lo hve employed he geerlied Prevl heorem [8, p.343] f( ) g( ) d α ( α bβ) = + + o evlue (3.) by uiliig he ow Fourier erie for he wo compoe of he iegrd. Fifh iegrl We ee h

13 log d = log d B ( ) log i i + d d hi i priculr ce of iegrl oed by Epio d Moll [] (3.3) (3.4) B ()logi d + = ( ) ( )! ς (+ ) B ()logi d = ( ) Very elemery proof of he bove iegrl re give i [8] where we ued he bic ideiy b (3.5) p( )co( α /) d b = p( )iαd which, how i [8], i vlid for wide cl of uibly behved fucio. Specificlly we require h p( ) i wice coiuouly differeible fucio. I hould be oed h i he bove formul we require eiher (i) boh i( / ) d co( / ) hve o zero i [ b, ] or (ii) if eiher i( / ) or co( / ) i equl o zero he p() mu lo be zero. Codiio (i) i equivle o he requireme h i h o zero i [ b, ]. We he hve log i d = I fc hi c be how much more direcly by uig he ubiuio = / he oig h he iegrd of he reulig iegrl i odd fucio. d Thi give u he fifh iegrl log d = i Sih iegrl We oe h 3

14 Γ d = B Γ log ( ) ( ) log ( ) d which i priculr ce of iegrl oed by Epio d Moll [] (3.6) (3.7) B ς ( ) B ( )log Γ ( ) d = log( ) γ ς ( ) + ( ) ( )! ς (+ ) B ()log Γ () d = = ς ( ) ( ) d we herefore obi ς () log Γ ( ) d = log( ) γ ς () Uig (4.5) we hve ς () = log( ) + γ + ς ( ) ς () d hu (3.8) log Γ ( ) d = ς ( ) = log A The bove collecio of he bove five iegrl ow eble u o evlue he fir iegrl. Fir iegrl Uig he bove we deermie h (3.9) () γ γ γ ς () ς log Γ ( ) d = + + log( ) + log ( ) [ + log( )] which Epio d Moll [] lo howed, dmiedly wih much le effor. 4. Fourier erie repreeio of he Bre double gmm fucio We hve from (.5) i he ce where = 4

15 f(, ) log( ) i co = + = = = co log 3 co + γ = = From (.3) we oe h f (, ) = ( ) ( + ) log( + ) = + = The Bre double gmm fucio Γ ( ) / G ( ) = defied, ier li, by [36, p.5] (4.) G ( + ) = ( ) ep ( γ + + ) ep + = d i i eily ee h G () =. I w lo how i [4] h he Bre double gmm fucio could be epreed he logrihmic erie (4.) + log G( + ) = ( ) ( + ) log( + ) + log Γ ( ) + B ( ) + ς ( ) = 4 where B ( ) re he Beroulli polyomil. We herefore hve he rigoomeric erie (4.3) i 3 co log G( + ) = + log( ) + γ 4 co log + + log Γ ( ) + B ( ) ( ) 4 + ς which my be epreed Fourier erie by oig h [4, p.338] (ee lo (7.9) d (7.9b) below) co B () = ice 5

16 (4.4) (4.4b) co B = N, N =,,... N () N + ( ) ( )! N ( ) i B = N +, N =,,,... N + N + () ( ) ( )! N + ( ) To obi pure Fourier erie for log G( + ) i would lo be ecery o deermie he Fourier erie epio for log Γ ( ) uig Kummer ideiy (.9). Wih = i (4.3) we hve ice G() = G() Γ () = () = log( ) + +ς ( ) (4.5) ς ( γ ) which my lo be eily derived by differeiig he fuciol equio for he Riem ze fucio (ee for emple [9]). Sice lim[ log Γ ( )] = lim[ log Γ ( + ) log ] =, i my be oed h equio (4.3) lo pplie whe = d hi lo reul i (4.5). Leig = / i (4.3) give u 3 ( ) ( ) log log G(3/ ) log( ) log ( ) γ = ς The lerig Riem ze fucio i defied by ( ) ς () = + d i i eily ee h ς () = = = ( ) (+ ), (Re () > ) + ( ) = = ς (), (Re ) > ; ) ( We he hve ( ) = ς () = 6

17 Differeiig give u ς () = ( )() ς ς ς ς = + () ( ) () ()log d hu ( ) log ς () = = () + ()log ς ς We he obi 3 log G(3/ ) = log( ) + γ + ς () + log + log + ς ( ) Uig (4.5) hi become (4.6) 3 log G(3/ ) = log + log + ς ( ) 4 4 Sice [36, p.5] G( + ) = G( ) Γ( ) we ee h [36, p.6] (4.7) 3 log G(/ ) = log log + ς ( ) 4 4 origilly deermied by Bre [7] i 899. Uig (.6) d iegrig (.9) reul i i log Γ ( ) d = log + + log [ γ + log( )][ B ( ) B ()] 4 log log co + 7

18 d comprig hi wih (4.3) we ge log Γ ( d ) = log( ) [ γ + log( )][ B( ) B()] 3 co log G( + ) + log( ) γ + = + log Γ ( ) + B ( ) + ς ( ) + log 4 Uig (4.5) d ome lgebr, we obi Aleeiewy heorem [36, p.3], furher derivio of which i coied i equio (4.3.85) of [4] (4.8) log Γ ( d ) = ( ) + log( ) log G( + ) + log Γ( ) I imilr wy, oe could iegre (4.) o obi he iegrl log G( + ) d. 5. The Goper/Vrdi fuciol equio Wih (5.) = i (.) we obi ς = ς = (, ) (, ) ( ) ( ) log( ) Therefore, uig (.7) we ee h ς = (, ) B ( ) ( ) ( ) log( ) 4 = d ubiuig (4.) we obi (5.) log G( + ) log Γ ( ) = ς ( ) ς (, ) Thi fuciol equio w derived by Vrdi i 988 d lo by Goper i 997 (ee Admchi pper [3]). Leig i (5.) give u log G( ) ( ) log Γ( ) = ς ( ) ς (, ) 8

19 Noig h l og G( ) = log G( ) + log Γ( ) we obi (5.3) log G( ) + log Γ( ) = ς ( ) ς (, ) Leig i (4.3) give u i 3 co log G( ) = + log( ) + γ 4 d hece we hve co log + + ( )log Γ( ) + ( ) ( ) 4 B + ς G( + ) i log = + log[ Γ( ) Γ( )] + [ B ( ) B ( )] G( ) 4 Uig he well-ow propery of he Beroulli polyomil [36, p.6] we he hve B ( ) = ( ) B ( ) G( + ) i (5.4) log = + log[ Γ( ) Γ( )] G( ) = Thi my be wrie log G( + ) log Γ( ) [log G( ) + log Γ( )] = i = d uig he Goper/Vrdi ideiie (5.) d (5.4) we ee h i = (5.5) ς (, ) ς (, ) previouly oed by Admchi []. Uig (.6) we my wrie (5.4) = G( + ) log = log(i ) d + log logi( ) G( ) 9

20 which give u (5.6) G( + ) i log = log + log(i ) G( ) d d uig iegrio by pr, we ee h hi i equivle o he followig iegrl formul origilly foud by Kieli [36, p.3] i 86 (5.7) G( + ) log = log( ) co G( ) d (which i recorded eercie i Whier d Wo [39, p.64]). Thi my lo be wrie for < (5.8) co d= ς (, ) ς (, ) + log( i ) which w lo derived i equio (4.3.58) i [4] by differe mehod. Iegrio by pr reul i cod= logi logid d we obi (5.9) log(i ) d = [ ς (, ) ς (, )] Wih = / i (5.9) we redicover Euler iegrl (5.) log i d= log From (4.3) d (4.4) we hve

21 i co log G( + ) log Γ( ) ς ( ) = + ( log( ) + γ ) 4 co log + d (5.) herefore give u he Fourier erie for ς (, ) (5.) i co colog ς (, ) = ( log( ) + γ ) 4 which w derived i differe wy i equio (4.4.9i) of [7]. Thi my of coure lo be obied more direcly ju by differeiig (.3). Referece hould lo be mde o he pper by Koym d Kurow, Kummer formul for he muliple gmm fucio [9] where hey how by differe mehod h (which re vlid for < < ) (5.) log log( ) + γ co log Γ ( ) = co * i 4 = + + ( ) log Γ ( ) (5.3) log log( ) + γ 3 i log Γ ( ) = i * co 3 * * + log + 3 Γ( ) ( ) log Γ ( ) 8 * Γ( ) where Γ ( ) =. I hould however be oed h he muliple gmm fucio Γ * ( ) coidered by Koym d Kurow [9] re o he me hoe rdiiolly employed by Bre [7], Admchi [3] ec. 6. Fourier erie for he lerig Hurwiz ze fucio I Boudjelh [] lo developed he followig Hurwiz ype formul for he lerig Hurwiz ze fucio ς (, ) which he defied for σ >, < by

22 (6.) ( ) e ς (,) = Γ () e + d where, uul, σ = Re( ). Whe = we hve for σ >, ς (,) = ς ( ) [36, p.3]. Boudjelh formul i (6.) ς co(+ ) i(+ ) (,) = Γ( ) i + co (+ ) (+ ) d hold uder he me codiio (.3) bove, mely: (6.3) (σ <, < ; < σ, < ) Thi my be wrie (6.4) ς (,) = Γ( ) co[ / (+ ) ] ( + ) The oio η (, ) i frequely ued ied of ς (, ). Guiller d Sodow [4] proved h for ll comple vlue of d comple z uch h Re ( z) < ½ z ( ) (6.5) ( z) Φ ( z,, ) = ( ) z = + where (6.6) Wih Φ ( z,, ) he Hurwiz-Lerch ze fucio Φ ( z,, ) defied by [36, p.] z = we obi Φ (,,) z = z ( + ) ( ) (6.7) Φ (,, ) = + = ( + ) which w deermied i differe mer i equio (4.4.79) i [6]. Wih = we hve

23 ( ) (6.8) + = ( + ) = + ( ) ( ) = = ς () ( + ) which i he He/Sodow ideiy (ee [7] d [34]). We oe h d e e ( ) = ze z ( + ) ( + ) y u Γ( ) e d = e u du = ( + ) ( + ) d we herefore hve he iegrl repreeio [36, p.] (6.9) ( ) e Φ (,,) z = Γ () e z d Comprig (6.), (6.5) d (6.9) we deduce h ( ) ( ) (6.) Φ (,, ) = = ς (, ) = + ( + ) = ( + ) I pper h hi formul rie he reul of pplyig he Euler erie rformio [8, p.44]. Willim d Zhg [4] lo coidered he lerig Hurwiz ze fucio i 993 (bu heir pper w o refereced by Boudjelh []).Willim d Zhg defied J(,) by ( ) J(,) = ( + ) d hey repored h for σ < co(+ ) i(+ ) (,) = Γ( ) i + co (+ ) (+ ) J (which i here reproduced fer ierig fcor of which pper o be miig i equio (.7) d (3.4) of heir pper [4]). There pper o be ome cofuio i equio (.7) of [4] which e h i i vlid for σ < where equio (3.3) of he me pper e h he requiie codiio i σ <. 3

24 Upo eprio of erm ccordig o he priy of we ee h for σ > ( ) = ( + ) ( + ) (+ ) + = ( + /) ( + ( + )/) d we herefore ee h ς (, ) i reled o he Hurwiz ze fucio by he formul (6.) ς (,) + = ς, ς, He d Pric [5] howed i 96 h he Hurwiz ze fucio could be wrie (6.) ς(, ) = ς(,) ς, + d, by lyic coiuio, hi hold for ll. Wih = / hi become (6.3) + ς, = ς(, ) ς, d hece we hve for σ > (6.4) ς (,) ς(,) ς, + = d (6.5) ς = ς ς (,), (,) Sice ς (, ) c be coiued lyiclly o he whole comple ple ecep for imple pole =, ς (, ) c be coiued lyiclly o become eire fucio d (6.), (6.4) d (6.5) herefore hold i he whole comple ple. We ow muliply (c) by ς = ς ς ( ) (, ) ( ), ( ) (, ) 4

25 d e he limi o obi (6.6) ice lim[( ) ς (, )] = lim[( ) ς (, )] =. I hould be oed h we co uomiclly ubiue = i he formul ς () = ( )() ς becue h equio i oly vlid for Re ( ) > (ecludig = ). Foruely, Hrdy [38, p.6] gve he followig fuciol equio for he lerig ze fucio (6.7) ( ) ς ( ) = Γ ( )i( /) ς( + ) = Γ( )i( /) ς ( + ) d i i hi equio h eble u o eque ς () = ς (). A c be ee from Ayoub pper [6], hi i preciely he fuciol equio for he ze fucio which w fir pouled by Euler my yer before Riem. We hve ς = ς i( / ) () ()lim Uig L Hôpil rule reul i co( / ) = () lim = ς ς () log log We oe h ς ς () = lim[( ) ( )] = lim ( ) ς ( ) = lim lim[( ) ς ( )] 5

26 d uig L Hôpil rule gi give u = log We he hve he well-ow reul ς () = I i iereig o oe h ubiuig (.3) i (6.) give u ς co co ( + ) i i ( + ) (,) = Γ( )i + co ( ) ( ) [ ( ) ]co [ ( ) ]i = Γ( ) i + co ( ) ( ) co(+ ) i(+ ) = Γ( ) i + co (+ ) (+ ) d we hve herefore recovered (6.) i rher righforwrd mer. Leig i (6.) give u ς co(+ ) i(+ ) (, ) = Γ ( ) co + i (+ ) (+ ) d uig (6.) hi i equl o = ( ) ( ) + = + The Euler polyomil E ( ) m my be epreed by (6.8) Em() = ( )( ) = + m (which my be cored wih equio (.4)) d hece we obi he well-ow Fourier erie [4] 6

27 (6.9) (6.9b) m m+ + ( ) Em( ) = m+ ( ) 4( m)! i( ) + m m + ( ) Em ( ) = m ( ) 4(m )! co( ) + 7. Some rigoomeric erie The followig ideiie re recorded by He [6, pp. 3 & 44] for Re ( ) < < (7.) > d (7.b) i( + y) ( ) = coec( ) co y ς, co y+ ς, Γ( ) co( + y) ( ) = coec( ) i y+ ς, i y ς, Γ( ) d we my oe h he ecod ideiy my be obied by differeiig he fir oe wih repec o. y Noe h deil ler. N i he fir ideiy, coec( ) ; hi poi i coidered i more Leig (7.) (7.b) y = d we obi i( ) ( ) = coec( )co ς, ς, Γ( ) co( ) ( ) coec( = )i ς, + ς, Γ( ) or equivlely (7.3) i( ) ( ) = coec ς, ς, 4 Γ( ) 7

28 (7.3b) co( ) ( ) = ec ς, + ς, 4 Γ( ) Leig d p = d he ddig he bove wo equio immediely reul i he well-ow Hurwiz formul for he Fourier epio of he Riem ze fucio ς ( p, ) p co p i (7.4) ς ( p, ) = Γ( p) i + co p p ( ) ( ) where Re ( p ) < d <. Boudjelh [] howed h hi formul lo pplie i he regio Re ( p ) <. I my be oed h whe = hi reduce o Riem fuciol equio for ς ( p). Leig = p we my wrie hi (7.5) co i ς (, ) = Γ ( ) co + i ( ) ( ) Thi my lo be wrie [36, p.89] (7.6) Γ() i i ς (, ) = e L (, ) e L(, ) + ( ) where he periodic (or Lerch) ze fucio L (, ) i defied by e L (, ) = i We ow coider he equio (7.3) i he ce where i poiive ieger N > : we ee h (7.7) (7.7b) N i( ) ( ) N = coec ς N, ς N, N 4( N )! N co( ) ( ) N = ec ς N, ς N, N + 4( N )! Uig he fmilir ideiy [5, p.64] for BN (, ) () ς N = N N (which i lo derived i (7.) below) 8

29 we herefore hve ς N, ς N, = BN BN N I pig we oe h lim Nς ( N, ) = = lim B ( ) N N N Uig he well-ow formul for he Beroulli polyomil [36, p.6] we ge for N B ( ) = ( ) B ( ) N ς N, ς N, ( ) B = N N I imilr mer we ee h for N,, N N N ( ) + ς + ς = N N B Accordigly he bove equio (7.7) my be wrie (7.8) (7.8b) N i( ) ( ) N N = coec ( ) B N N 4 N! N co( ) ( ) N N + = ec ( ) B N N 4 N! Leig N N + d = i (7.8) he give u he well-ow Fourier erie for he odd Beroulli polyomil [4, p.338] (7.9) i B = N +, N =,,,... N + N + () ( ) ( )! N + ( ) d leig N N d = i (7.8b) give u he correpodig erie for he eve Beroulli polyomil (7.9b) co B = N, N =,,... N () N + ( ) ( )! N ( ) 9

30 Referrig o (7.7) we ee h we hve ideermie form whe N N we ep bc o (7.3) d hece i( ) ( ) = coec ς, ς, 4 Γ( ) d coider he limi N. Uig L Hôpil rule we ee h ς, ς, + lim coec ς, ς, lim = co N N ς N, ς = N, + d we herefore obi (7.) N i( ) ( ) ς N, ς = N, N (N )! Applyig he me limiig procedure o (7.3b) give u (7.b) N co( ) N ( ) ( ) ς N, ς = N, N + ( N)! + Wih N = i (7.b) we obi co( ) = ς, + ς, d uig Lerch ideiy (.6) hi become = log Γ + log Γ log( ) Employig Euler reflecio formul we obi = log i log d we hereby obi he fmilir Fourier erie [3, p.4] 3

31 co( ) log i = Wih N = i (7.8) we ee h ( ) = i( ) The Clue fucio Cl ( ) re defied by [36, p.5] N i Cl ( ) = N N co Cl ( ) = N + N + d uig (7.) we hve hereby derived Admchi reul [] (N )! Cl N ( ) = N N, N, ) ( ) (7.) ς ( ) ς ( ( N)! ( ) Cl N ( ),, N + = N + N ) ( ) N (7.b) ς ( ) ς ( which were lo obied i equio (4.3.67) i [4] by eirely differe mehod. We recll He formul [7] for he Hurwiz ze fucio which i vlid for ll C ecep for = ( ) ( ) ς (, u) = ( u ) = + = + d wih hi my be wrie ς (, u) = ( ) ( u+ ) + = I i how i equio (A.3) of [9] h m Bm ( ) = ( ) ( + ) + = m 3

32 A differe proof, uig he Hurwiz-Lerch ze fucio, w recely give by Guiller d Sodow [4]. They lo oed h = d we herefore hve ( ) ( + ) m = for > m =,,,... Bm ( ) = ( ) ( + ) + = m Uig he He ideiy hi immediely give u he well-ow reul (7.) Bm (, ) ( ς m = ) m which we ued bove. Wih p = i (7.3) we ge q i( p/ q) ( ) p p = coec ς, ς, 4 Γ( ) q q d from (..) we hve q p p jp j ς, ς, = 4 Γ( )( q) co i ς, q q j= q q p p jp j ς, ς, 4 ( )( ) i i ς, q q = Γ q q q j= q We he ee h i( p/ q) jp j = i ς, q q q j= q d hi geerlie he formul previouly give by Srivv d Tumur [37]. Leig = d y = i (7.) give u 3

33 i(+ ) ( ) = coec( ) co ς, co + ς, Γ( ) ( ) ( ) 9. Some coecio wih he ie d coie iegrl I pig, we meio h here ei oher rigoomeric epio for ψ ( ),log Γ ( ), logg( + ), ς (, ) ec. Thee re e ou below (furher deil re coied i [8]). (8.) ψ ( ) = log + [co( ) Ci( ) + i( ) i( )] which pper i Nörlud boo [33, p.8]. (8.) log Γ ( ) = log( ) + log + [i( ) Ci( ) co( ) i( )] Cl ( ) log Γ( ) log G( + ) = log (8.3) ( ) [ co( ) Ci( ) + i( ) Si( ) ] + ς ( ) Elizlde [] repored i 985 h for > (8.4) ς (, ) = ς (, )log [co( ) ( ) i( ) ( )] Ci i = where Si() i he ie iegrl fucio defied by [3, p.878] d [, p.3] i Si( ) = d, Si () = We hve he well-ow iegrl from Fourier erie lyi 33

34 i = d d herefore defiig i( ) = Si( ) we hve i i i i( ) = d d = d The coie iegrl Ci( ) i defied i [3, p.878] d [, p.3] co ( ) Ci( ) = γ + log + d = γ + log + ( )! (where, i he fil pr, we hve imply ubiued he Mcluri erie for he iegrd). We lo hve co Ci( ) = d d hi more clerly how he coecio wih i( ). Ci( ) i frequely deiged ci( ) i oher wor uch [3]. We recll he well-ow ideiy (8.5) γ = lim log + = I i iereig o oe h Sodow [35] h dicovered imilr lerig erie (8.6) 4 + log = lim ( ) log + = + ( ) + = ( ) log + = = 34

35 4 = log log = log where, i he l lie, we hve employed (4.4.) from [6]. Sodow formul my lo be obied from Lerch rigoomeric erie epio for he digmm fucio for < < (ee for emple Growll pper [, p.5] d Niele boo [3, p.4]) (8.7) + ψ ( ) i+ co + ( γ + log ) i= i(+ ).log Leig = / we obi + ψ (/ ) + γ + log = ( ) log d, ice [36, p.] ψ (/ ) = γ log, equio (8.6) follow uomiclly. We my lo wrie (8.7) (8.8) i(+ ) + ψ ( ) + co + ( γ + log ) =.log i The bove formul ugge h iegrio my be fruiful employig he iegrl i he ble [3, p.63] i(+ ) i d = + i = p The iegrl ψ ( ) my lo produce iereig reul. Oe could lo employ he ubiuio i (8.7) + y ( y ) log = dy ylog y bu hi h o bee eplored i y deph. 35

36 REFERENCES [] M. Abrmowiz d I.A. Segu (Ed.), Hdboo of Mhemicl Fucio wih Formul, Grph d Mhemicl Tble. Dover, New Yor, 97. hp:// [] V.S.Admchi, A Cl of Logrihmic Iegrl. Proceedig of he 997 Ieriol Sympoium o Symbolic d Algebric Compuio. ACM, Acdemic Pre, -8,. hp://www-.c.cmu.edu/~dmchi/ricle/log.hm [3] V.S.Admchi, Coribuio o he Theory of he Bre Fucio. Compuer Phyic Commuicio, 3. hp://www-.c.cmu.edu/~dmchi/ricle/bre.pdf [4] T.M. Apool, Mhemicl Alyi, Secod Ed., Addio-Weley Publihig Compy, Melo Pr (Clifori), Lodo d Do Mill (Orio), 974. [5] T.M. Apool, Iroducio o Alyic Number Theory. Spriger-Verlg, New Yor, Heidelberg d Berli, 976. [6] R. Ayoub, Euler d he Ze Fucio. Amer. Mh. Mohly, 8, 67-86, 974. [7] E.W. Bre, The heory of he G-fucio. Qur. J. Mh.3, 64-34, 899. [8] R.G. Brle, The Eleme of Rel Alyi. d Ed.Joh Wiley & So Ic, New Yor, 976. [9] B.C. Berd, The Gmm Fucio d he Hurwiz Ze Fucio. Amer. Mh. Mohly, 9,6-3, 985. [] M.G. Beumer, Some pecil iegrl. Amer. Mh. Mohly, 68, , 96. [] G. Boro d V.H. Moll, Irreiible Iegrl: Symbolic, Alyi d Eperime i he Evluio of Iegrl. Cmbridge Uiveriy Pre, 4. [] M.T. Boudjelh, A proof h eed Hurwiz formul io he criicl rip. Applied Mhemic Leer, 4 () [3] H.S. Crlw, Iroducio o he heory of Fourier Serie d Iegrl. Third Ed. Dover Publicio Ic, 93. [4] D.F. Coo, Some erie d iegrl ivolvig he Riem ze fucio, biomil coefficie d he hrmoic umber. Volume II(), 7. rxiv:7.43 [pdf] 36

37 [5] D.F. Coo, Some erie d iegrl ivolvig he Riem ze fucio, biomil coefficie d he hrmoic umber. Volume II(b), 7. rxiv:7.44 [pdf] [6] D.F. Coo, Some erie d iegrl ivolvig he Riem ze fucio, biomil coefficie d he hrmoic umber. Volume III, 7. rxiv:7.45 [pdf] [7] D.F. Coo, Some erie d iegrl ivolvig he Riem ze fucio, biomil coefficie d he hrmoic umber. Volume IV, 7. rxiv:7.48 [pdf] [8] D.F. Coo, Some erie d iegrl ivolvig he Riem ze fucio, biomil coefficie d he hrmoic umber. Volume V, 7. rxiv:7.447 [pdf] [9] D.F. Coo, Some erie d iegrl ivolvig he Riem ze fucio, biomil coefficie d he hrmoic umber. Volume VI, 7. rxiv:7.43 [pdf] [] E. Elizlde, Derivive of he geerlied Riem ze fucio ς (, zq) z =. J. Phy. A Mh. Ge. (985) [] O. Epio d V.H. Moll, O ome iegrl ivolvig he Hurwiz ze fucio: Pr I. The Rmuj Jourl, 6,5-88,. hp://riv.org/b/mh.ca/78 hp:// [] T.H. Growll, The gmm fucio i iegrl clculu. Al of Mh.,, 35-4, 98. [3] I.S. Grdhey d I.M. Ryzhi, Tble of Iegrl, Serie d Produc. Sih Ed., Acdemic Pre,. Err for Sih Ediio hp:// [4] J. Guiller d J. Sodow, Double iegrl d ifiie produc for ome clicl co vi lyic coiuio of Lerch' rcede.5. Rmuj Jourl 6 (8) 47-7.mh.NT/5639 [b, p, pdf, oher] [5] E.R. He d M.L. Pric, Some Relio d Vlue for he Geerlized cccccriem Ze Fucio. Mh. Compu., Vol. 6, No. 79. (96), pp [6] E.R. He, A ble of erie d produc. ooo bbbbbpreice-hll, Eglewood Cliff, NJ,

38 [7] H. He, Ei Summierugverfhre für Die Riemche ς - Reihe. Mh. Z.3, , 93. hp://dz-rv.ub.ui-goeige.de/ub/digbib/loder?h=view&did=d3956&p=46 [8] K. Kopp, Theory d Applicio of Ifiie Serie. Secod Eglih Ed.Dover Publicio Ic, New Yor, 99. [9] S. Koym d N. Kurow, Kummer formul for he muliple gmm fucio. Preeed he coferece o Ze d Trce Formul i Oiw, November,. [3] E.E. Kummer, Beirg zur Theorie der Fucio J. Reie Agew. Mh., 35, -4, 847. hp:// [3] L. Lewi, o he evluio of log-ie iegrl. The Mh. Gzee, Vol. 4, No. 34, 5-8, 958. v e v dv Γ ( ) =. [3] N. Niele, Die Gmmfuio. Chele Publihig Compy, Bro d New Yor, 965. [33] N.E. Nörlud, Vorleuge über Differezerechug.Chele, 954. hp://dz-rv.ub.ui-goeige.de/cche/browe/auhormhemicmoogrph,worcoiedn.hml [34] J. Sodow, Alyic Coiuio of Riem Ze Fucio d Vlue Negive Ieger vi Euler Trformio of Serie. Proc. Amer. Mh. Soc.,,4-44, 994. hp://home.erhli.e/~jodow/id5.hml [35] J. Sodow, Double Iegrl for Euler' Co d log(4 / ) d Alog of Hdjico' Formul. Amer. Mh. Mohly,, 6-65, 5. mh.ca/48 [b, pdf] [36] H.M. Srivv d J. Choi, Serie Aocied wih he Ze d Reled Fucio. Kluwer Acdemic Publiher, Dordrech, he Neherld,. [37] H.M. Srivv d H. Tumur. A ceri cl of rpidly coverge erie repreeio for ς ( + ). J. Compu. Appl. Mh. 8 () [38] E.C. Tichmrh, The Ze-Fucio of Riem. Oford Uiveriy (Clredo) Pre, Oford, Lodo d New Yor, 95; Secod Ed. (Revied by D.R. Heh- Brow), 986. [39] E.T. Whier d G.N. Wo, A Coure of Moder Alyi: A 38

39 Iroducio o he Geerl Theory of Ifiie Procee d of Alyic Fucio; Wih Accou of he Pricipl Trcedel Fucio. Fourh Ed., Cmbridge Uiveriy Pre, Cmbridge, Lodo d New Yor, 963. [4] K.S. Willim d N.-Y. Zhg, Specil vlue of he Lerch ze fucio d he evluio of ceri iegrl. Proc. Amer. Mh. Soc., 9(), (993), hp://mh.crleo.c/~willim/pper/pdf/8.pdf [4] N.-Y. Zhg d K.S. Willim, Some reul o he geerlized Sielje co. Alyi 4, 47-6 (994). Dol F. Coo Elmhur Dudle Rod Mfield Ke TN 7HD dcoo@bopeworld.com 39

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO

More information

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead)

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead) Week 8 Lecure 3: Problems 49, 5 Fourier lysis Coursewre pp 6-7 (do look Frech very cofusig look i he Coursewre ised) Fourier lysis ivolves ddig wves d heir hrmoics, so i would hve urlly followed fer he

More information

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions Reserch Ivey: Ieriol Jourl Of Egieerig Ad Sciece Vol., Issue (April 3), Pp 8- Iss(e): 78-47, Iss(p):39-6483, Www.Reserchivey.Com Exisece Of Soluios For Nolier Frciol Differeil Equio Wih Iegrl Boudry Codiios,

More information

NOTES ON BERNOULLI NUMBERS AND EULER S SUMMATION FORMULA. B r = [m = 0] r

NOTES ON BERNOULLI NUMBERS AND EULER S SUMMATION FORMULA. B r = [m = 0] r NOTES ON BERNOULLI NUMBERS AND EULER S SUMMATION FORMULA MARK WILDON. Beroulli umbers.. Defiiio. We defie he Beroulli umbers B m for m by m ( m + ( B r [m ] r r Beroulli umbers re med fer Joh Beroulli

More information

An arithmetic interpretation of generalized Li s criterion

An arithmetic interpretation of generalized Li s criterion A riheic ierpreio o geerlized Li crierio Sergey K. Sekkii Lboroire de Phyique de l Mière Vive IPSB Ecole Polyechique Fédérle de Lue BSP H 5 Lue Swizerld E-il : Serguei.Sekki@epl.ch Recely we hve eblihed

More information

ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION

ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION N.S. BARNETT, S.S. DRAGOMIR, AND G. HANNA Absrc. I his pper we poi ou pproximio for he Fourier rsform for fucios

More information

Special Functions. Leon M. Hall. Professor of Mathematics University of Missouri-Rolla. Copyright c 1995 by Leon M. Hall. All rights reserved.

Special Functions. Leon M. Hall. Professor of Mathematics University of Missouri-Rolla. Copyright c 1995 by Leon M. Hall. All rights reserved. Specil Fucios Leo M. Hll Professor of Mhemics Uiversiy of Missouri-Roll Copyrigh c 995 y Leo M. Hll. All righs reserved. Chper 5. Orhogol Fucios 5.. Geerig Fucios Cosider fucio f of wo vriles, ( x,), d

More information

S.E. Sem. III [EXTC] Applied Mathematics - III

S.E. Sem. III [EXTC] Applied Mathematics - III S.E. Sem. III [EXTC] Applied Mhemic - III Time : 3 Hr.] Prelim Pper Soluio [Mrk : 8 Q.() Fid Lplce rform of e 3 co. [5] A.: L{co }, L{ co } d ( ) d () L{ co } y F.S.T. 3 ( 3) Le co 3 Q.() Prove h : f (

More information

New proofs of the duplication and multiplication formulae for the gamma and the Barnes double gamma functions. Donal F. Connon

New proofs of the duplication and multiplication formulae for the gamma and the Barnes double gamma functions. Donal F. Connon New proof of the duplicatio ad multiplicatio formulae for the gamma ad the Bare double gamma fuctio Abtract Doal F. Coo dcoo@btopeworld.com 6 March 9 New proof of the duplicatio formulae for the gamma

More information

An Extension of Hermite Polynomials

An Extension of Hermite Polynomials I J Coemp Mh Scieces, Vol 9, 014, o 10, 455-459 HIKARI Ld, wwwm-hikricom hp://dxdoiorg/101988/ijcms0144663 A Exesio of Hermie Polyomils Ghulm Frid Globl Isiue Lhore New Grde Tow, Lhore, Pkis G M Hbibullh

More information

F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics

F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics F.Y. Diplom : Sem. II [CE/CR/CS] Applied Mhemics Prelim Quesio Pper Soluio Q. Aemp y FIVE of he followig : [0] Q. () Defie Eve d odd fucios. [] As.: A fucio f() is sid o e eve fucio if f() f() A fucio

More information

On computing two special cases of Gauss hypergeometric function

On computing two special cases of Gauss hypergeometric function O comuig wo secil cses of Guss hyergeomeric fucio Mohmmd Msjed-Jmei Wolfrm Koef b * Derme of Mhemics K.N.Toosi Uiversiy of Techology P.O.Bo 65-68 Tehr Ir E-mil: mmjmei@u.c.ir mmjmei@yhoo.com b* Isiue of

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k =

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k = wwwskshieduciocom BINOMIAL HEOREM OBJEIVE PROBLEMS he coefficies of, i e esio of k e equl he k /7 If e coefficie of, d ems i e i AP, e e vlue of is he coefficies i e,, 7 ems i e esio of e i AP he 7 7 em

More information

LOCUS 1. Definite Integration CONCEPT NOTES. 01. Basic Properties. 02. More Properties. 03. Integration as Limit of a Sum

LOCUS 1. Definite Integration CONCEPT NOTES. 01. Basic Properties. 02. More Properties. 03. Integration as Limit of a Sum LOCUS Defiie egrio CONCEPT NOTES. Bsic Properies. More Properies. egrio s Limi of Sum LOCUS Defiie egrio As eplied i he chper iled egrio Bsics, he fudmel heorem of clculus ells us h o evlue he re uder

More information

Extension of Hardy Inequality on Weighted Sequence Spaces

Extension of Hardy Inequality on Weighted Sequence Spaces Jourl of Scieces Islic Reublic of Ir 20(2): 59-66 (2009) Uiversiy of ehr ISS 06-04 h://sciecesucir Eesio of Hrdy Iequliy o Weighed Sequece Sces R Lshriour d D Foroui 2 Dere of Mheics Fculy of Mheics Uiversiy

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1 Samplig Example Le x = cos( 4π)cos( π). The fudameal frequecy of cos 4π fudameal frequecy of cos π is Hz. The ( f ) = ( / ) δ ( f 7) + δ ( f + 7) / δ ( f ) + δ ( f + ). ( f ) = ( / 4) δ ( f 8) + δ ( f

More information

arxiv: v1 [math.nt] 13 Dec 2010

arxiv: v1 [math.nt] 13 Dec 2010 WZ-PROOFS OF DIVERGENT RAMANUJAN-TYPE SERIES arxiv:0.68v [mah.nt] Dec 00 JESÚS GUILLERA Abrac. We prove ome diverge Ramauja-ype erie for /π /π applyig a Bare-iegral raegy of he WZ-mehod.. Wilf-Zeilberger

More information

Integration and Differentiation

Integration and Differentiation ome Clculus bckgroud ou should be fmilir wih, or review, for Mh 404 I will be, for he mos pr, ssumed ou hve our figerips he bsics of (mulivrible) fucios, clculus, d elemer differeil equios If here hs bee

More information

Theoretical Physics Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter Q Notes. Laplace Transforms. Q1. The Laplace Transform.

Theoretical Physics Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter Q Notes. Laplace Transforms. Q1. The Laplace Transform. Theoreical Phyic Prof. Ruiz, UNC Aheville, docorphy o YouTue Chaper Q Noe. Laplace Traform Q1. The Laplace Traform. Pierre-Simo Laplace (1749-187) Courey School of Mhemic ad Siic Uiveriy of S. Adrew, Scolad

More information

HOMEWORK 6 - INTEGRATION. READING: Read the following parts from the Calculus Biographies that I have given (online supplement of our textbook):

HOMEWORK 6 - INTEGRATION. READING: Read the following parts from the Calculus Biographies that I have given (online supplement of our textbook): MAT 3 CALCULUS I 5.. Dokuz Eylül Uiversiy Fculy of Sciece Deprme of Mhemics Isrucors: Egi Mermu d Cell Cem Srıoğlu HOMEWORK 6 - INTEGRATION web: hp://kisi.deu.edu.r/egi.mermu/ Tebook: Uiversiy Clculus,

More information

Supplement: Gauss-Jordan Reduction

Supplement: Gauss-Jordan Reduction Suppleme: Guss-Jord Reducio. Coefficie mri d ugmeed mri: The coefficie mri derived from sysem of lier equios m m m m is m m m A O d he ugmeed mri derived from he ove sysem of lier equios is [ ] m m m m

More information

ON BILATERAL GENERATING FUNCTIONS INVOLVING MODIFIED JACOBI POLYNOMIALS

ON BILATERAL GENERATING FUNCTIONS INVOLVING MODIFIED JACOBI POLYNOMIALS Jourl of Sciece d Ars Yer 4 No 227-6 24 ORIINAL AER ON BILATERAL ENERATIN FUNCTIONS INVOLVIN MODIFIED JACOBI OLYNOMIALS CHANDRA SEKHAR BERA Muscri received: 424; Acceed er: 3524; ublished olie: 3624 Absrc

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecure 9, Sae Space Repreeaio Emam Fahy Deparme of Elecrical ad Corol Egieerig email: emfmz@aa.edu hp://www.aa.edu/cv.php?dip_ui=346&er=6855 Trafer Fucio Limiaio TF = O/P I/P ZIC

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

Reinforcement Learning

Reinforcement Learning Reiforceme Corol lerig Corol polices h choose opiml cios Q lerig Covergece Chper 13 Reiforceme 1 Corol Cosider lerig o choose cios, e.g., Robo lerig o dock o bery chrger o choose cios o opimize fcory oupu

More information

Functions, Limit, And Continuity

Functions, Limit, And Continuity Fucios, Limi d coiuiy of fucio Fucios, Limi, Ad Coiuiy. Defiiio of fucio A fucio is rule of correspodece h ssocies wih ech ojec i oe se clled f from secod se. The se of ll vlues so oied is he domi, sigle

More information

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3 The Cumulive Disribuio Fucio (cd) ONE RANDOM VARIABLE cd is deied s he probbiliy o he eve { x}: F ( ) [ ] x P x x - Applies o discree s well s coiuous RV. Exmple: hree osses o coi x 8 3 x 8 8 F 3 3 7 x

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

Chapter #2 EEE Subsea Control and Communication Systems

Chapter #2 EEE Subsea Control and Communication Systems EEE 87 Chpter # EEE 87 Sube Cotrol d Commuictio Sytem Trfer fuctio Pole loctio d -ple Time domi chrcteritic Extr pole d zero Chpter /8 EEE 87 Trfer fuctio Lplce Trform Ued oly o LTI ytem Differetil expreio

More information

On Absolute Indexed Riesz Summability of Orthogonal Series

On Absolute Indexed Riesz Summability of Orthogonal Series Ieriol Jourl of Couiol d Alied Mheics. ISSN 89-4966 Volue 3 Nuer (8). 55-6 eserch Idi Pulicios h:www.riulicio.co O Asolue Ideed iesz Suiliy of Orhogol Series L. D. Je S. K. Piry *. K. Ji 3 d. Sl 4 eserch

More information

UNIT 1: ANALYTICAL METHODS FOR ENGINEERS

UNIT 1: ANALYTICAL METHODS FOR ENGINEERS UNIT : ANALYTICAL METHODS FOR ENGINEERS Ui code: A// QCF Level: Credi vale: OUTCOME TUTORIAL SERIES Ui coe Be able o aalyse ad model egieerig siaios ad solve problems sig algebraic mehods Algebraic mehods:

More information

NATURAL TRANSFORM AND SOLUTION OF INTEGRAL EQUATIONS FOR DISTRIBUTION SPACES

NATURAL TRANSFORM AND SOLUTION OF INTEGRAL EQUATIONS FOR DISTRIBUTION SPACES Americ J o Mhemic d Sciece Vol 3 o - Jry 4 Copyrih Mid Reder Plicio ISS o: 5-3 ATURAL TRASFORM AD SOLUTIO OF ITERAL EQUATIOS FOR DISTRIBUTIO SPACES Deh Looker d P Berji Deprme o Mhemic Fcly o Sciece J

More information

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c)

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c) per I. Le α 7 d β 7. The α d β re he roos o he equio, such h α α, β β, --- α β d αβ. For, α β For, α β α β αβ 66 The seme is rue or,. ssume Cosider, α β d α β y deiiio α α α α β or some posiive ieer.

More information

t to be equivalent in the sense of measurement if for all functions gt () with compact support, they integrate in the same way, i.e.

t to be equivalent in the sense of measurement if for all functions gt () with compact support, they integrate in the same way, i.e. Cocoure 8 Lecure #5 I oy lecure we begi o re he iuio of lier h orer ODE wih icoiuou /or oiffereible ipu The meho we ll evelop (Lplce Trform) will be pplicble o oher ype of ipu, bu i epecilly relev whe

More information

Section 8 Convolution and Deconvolution

Section 8 Convolution and Deconvolution APPLICATIONS IN SIGNAL PROCESSING Secio 8 Covoluio ad Decovoluio This docume illusraes several echiques for carryig ou covoluio ad decovoluio i Mahcad. There are several operaors available for hese fucios:

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review Secion P Noe Pge Secion P Preclculu nd Trigonomer Review ALGEBRA AND PRECALCULUS Eponen Lw: Emple: 8 Emple: Emple: Emple: b b Emple: 9 EXAMPLE: Simplif: nd wrie wi poiive eponen Fir I will flip e frcion

More information

Transient Solution of the M/M/C 1 Queue with Additional C 2 Servers for Longer Queues and Balking

Transient Solution of the M/M/C 1 Queue with Additional C 2 Servers for Longer Queues and Balking Jourl of Mhemics d Sisics 4 (): 2-25, 28 ISSN 549-3644 28 Sciece ublicios Trsie Soluio of he M/M/C Queue wih Addiiol C 2 Servers for Loger Queues d Blkig R. O. Al-Seedy, A. A. El-Sherbiy,,2 S. A. EL-Shehwy

More information

CONTROL SYSTEMS. Chapter 3 : Time Response Analysis. [GATE EE 1991 IIT-Madras : 2 Mark]

CONTROL SYSTEMS. Chapter 3 : Time Response Analysis. [GATE EE 1991 IIT-Madras : 2 Mark] CONTROL SYSTEMS Chper 3 : Time Repoe lyi GTE Objecive & Numericl Type Soluio Queio 4 [GTE EC 99 IIT-Mdr : Mrk] uiy feedbck corol yem h he ope loop rfer fucio. 4( ) G () ( ) If he ipu o he yem i ui rmp,

More information

arxiv:math/ v1 [math.fa] 1 Feb 1994

arxiv:math/ v1 [math.fa] 1 Feb 1994 arxiv:mah/944v [mah.fa] Feb 994 ON THE EMBEDDING OF -CONCAVE ORLICZ SPACES INTO L Care Schü Abrac. I [K S ] i wa how ha Ave ( i a π(i) ) π i equivale o a Orlicz orm whoe Orlicz fucio i -cocave. Here we

More information

ON PRODUCT SUMMABILITY OF FOURIER SERIES USING MATRIX EULER METHOD

ON PRODUCT SUMMABILITY OF FOURIER SERIES USING MATRIX EULER METHOD Ieriol Jourl o Advces i Egieerig & Techology Mrch IJAET ISSN: 3-963 N PRDUCT SUMMABILITY F FURIER SERIES USING MATRIX EULER METHD BPPdhy Bii Mlli 3 UMisr d 4 Mhedr Misr Depre o Mheics Rold Isiue o Techology

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

Forced Oscillation of Nonlinear Impulsive Hyperbolic Partial Differential Equation with Several Delays

Forced Oscillation of Nonlinear Impulsive Hyperbolic Partial Differential Equation with Several Delays Jourl of Applied Mhemics d Physics, 5, 3, 49-55 Published Olie November 5 i SciRes hp://wwwscirporg/ourl/mp hp://dxdoiorg/436/mp5375 Forced Oscillio of Nolier Impulsive Hyperbolic Pril Differeil Equio

More information

UNIT #5 SEQUENCES AND SERIES COMMON CORE ALGEBRA II

UNIT #5 SEQUENCES AND SERIES COMMON CORE ALGEBRA II Awer Key Nme: Dte: UNIT # SEQUENCES AND SERIES COMMON CORE ALGEBRA II Prt I Quetio. For equece defied by f? () () 08 6 6 f d f f, which of the followig i the vlue of f f f f f f 0 6 6 08 (). I the viul

More information

Math 2414 Homework Set 7 Solutions 10 Points

Math 2414 Homework Set 7 Solutions 10 Points Mah Homework Se 7 Soluios 0 Pois #. ( ps) Firs verify ha we ca use he iegral es. The erms are clearly posiive (he epoeial is always posiive ad + is posiive if >, which i is i his case). For decreasig we

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

e x x s 1 dx ( 1) n n!(n + s) + e s n n n=1 n!n s Γ(s) = lim

e x x s 1 dx ( 1) n n!(n + s) + e s n n n=1 n!n s Γ(s) = lim Lecure 3 Impora Special FucioMATH-GA 45. Complex Variable The Euler gamma fucio The Euler gamma fucio i ofe ju called he gamma fucio. I i oe of he mo impora ad ubiquiou pecial fucio i mahemaic, wih applicaio

More information

The Trigonometric Representation of Complex Type Number System

The Trigonometric Representation of Complex Type Number System Ieriol Jourl of Scieific d Reserch Pulicios Volume 7 Issue Ocoer 7 587 ISSN 5-353 The Trigoomeric Represeio of Complex Type Numer Sysem ThymhyPio Jude Nvih Deprme of Mhemics Eser Uiversiy Sri Lk Asrc-

More information

Power Series Solutions to Generalized Abel Integral Equations

Power Series Solutions to Generalized Abel Integral Equations Itertiol Jourl of Mthemtics d Computtiol Sciece Vol., No. 5, 5, pp. 5-54 http://www.isciece.org/jourl/ijmcs Power Series Solutios to Geerlized Abel Itegrl Equtios Rufi Abdulli * Deprtmet of Physics d Mthemtics,

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017 Deparme of Ecoomic The Ohio Sae Uiveriy Ecoomic 8723 Macroecoomic Theory Problem Se 3 Skech of Soluio Profeor Sajay Chugh Sprig 27 Taylor Saggered Nomial Price-Seig Model There are wo group of moopoliically-compeiive

More information

L-functions and Class Numbers

L-functions and Class Numbers L-fucios ad Class Numbers Sude Number Theory Semiar S. M.-C. 4 Sepember 05 We follow Romyar Sharifi s Noes o Iwasawa Theory, wih some help from Neukirch s Algebraic Number Theory. L-fucios of Dirichle

More information

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions. Segi Rhm, Mohmd Rfi (2014) Iegrl rform mehod for olvig frciol dymic equio o ime cle. Abrc d Applied Alyi, 2014 (2014). pp. 1-10. ISSN 1085-3375 Acce from he Uiveriy of Noighm repoiory: hp://epri.oighm.c.uk/27710/1/iegrl%20rform%20mehod%20for

More information

Solutions to selected problems from the midterm exam Math 222 Winter 2015

Solutions to selected problems from the midterm exam Math 222 Winter 2015 Soluios o seleced problems from he miderm eam Mah Wier 5. Derive he Maclauri series for he followig fucios. (cf. Pracice Problem 4 log( + (a L( d. Soluio: We have he Maclauri series log( + + 3 3 4 4 +...,

More information

1999 by CRC Press LLC

1999 by CRC Press LLC Poulri A. D. The Melli Trform The Hdboo of Formul d Tble for Sigl Proceig. Ed. Alexder D. Poulri Boc Rto: CRC Pre LLC,999 999 by CRC Pre LLC 8 The Melli Trform 8. The Melli Trform 8. Propertie of Melli

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

Abel Resummation, Regularization, Renormalization & Infinite Series

Abel Resummation, Regularization, Renormalization & Infinite Series Prespcetime Jourl August 3 Volume 4 Issue 7 pp. 68-689 Moret, J. J. G., Abel Resummtio, Regulriztio, Reormliztio & Ifiite Series Abel Resummtio, Regulriztio, Reormliztio & Ifiite Series 68 Article Jose

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

The analysis of the method on the one variable function s limit Ke Wu

The analysis of the method on the one variable function s limit Ke Wu Ieraioal Coferece o Advaces i Mechaical Egieerig ad Idusrial Iformaics (AMEII 5) The aalysis of he mehod o he oe variable fucio s i Ke Wu Deparme of Mahemaics ad Saisics Zaozhuag Uiversiy Zaozhuag 776

More information

Double Sums of Binomial Coefficients

Double Sums of Binomial Coefficients Itertiol Mthemticl Forum, 3, 008, o. 3, 50-5 Double Sums of Biomil Coefficiets Athoy Sofo School of Computer Sciece d Mthemtics Victori Uiversity, PO Box 448 Melboure, VIC 800, Austrli thoy.sofo@vu.edu.u

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

ECE 350 Matlab-Based Project #3

ECE 350 Matlab-Based Project #3 ECE 350 Malab-Based Projec #3 Due Dae: Nov. 26, 2008 Read he aached Malab uorial ad read he help files abou fucio i, subs, sem, bar, sum, aa2. he wrie a sigle Malab M file o complee he followig ask for

More information

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation Mching Inpu: undireced grph G = (V, E). Biprie Mching Inpu: undireced, biprie grph G = (, E).. Mching Ern Myr, Hrld äcke Biprie Mching Inpu: undireced, biprie grph G = (, E). Mflow Formulion Inpu: undireced,

More information

Hadamard matrices from the Multiplication Table of the Finite Fields

Hadamard matrices from the Multiplication Table of the Finite Fields adamard marice from he Muliplicaio Table of he Fiie Field 신민호 송홍엽 노종선 * Iroducio adamard mari biary m-equece New Corucio Coe Theorem. Corucio wih caoical bai Theorem. Corucio wih ay bai Remark adamard

More information

Review for the Midterm Exam.

Review for the Midterm Exam. Review for he iderm Exm Rememer! Gross re e re Vriles suh s,, /, p / p, r, d R re gross res 2 You should kow he disiio ewee he fesile se d he udge se, d kow how o derive hem The Fesile Se Wihou goverme

More information

Types Ideals on IS-Algebras

Types Ideals on IS-Algebras Ieraioal Joural of Maheaical Aalyi Vol. 07 o. 3 635-646 IARI Ld www.-hikari.co hp://doi.org/0.988/ija.07.7466 Type Ideal o IS-Algebra Sudu Najah Jabir Faculy of Educaio ufa Uiveriy Iraq Copyrigh 07 Sudu

More information

Coefficient Inequalities for Certain Subclasses. of Analytic Functions

Coefficient Inequalities for Certain Subclasses. of Analytic Functions I. Jourl o Mh. Alysis, Vol., 00, o. 6, 77-78 Coeiie Iequliies or Ceri Sulsses o Alyi Fuios T. Rm Reddy d * R.. Shrm Deprme o Mhemis, Kkiy Uiversiy Wrgl 506009, Adhr Prdesh, Idi reddyr@yhoo.om, *rshrm_005@yhoo.o.i

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

The Eigen Function of Linear Systems

The Eigen Function of Linear Systems 1/25/211 The Eige Fucio of Liear Sysems.doc 1/7 The Eige Fucio of Liear Sysems Recall ha ha we ca express (expad) a ime-limied sigal wih a weighed summaio of basis fucios: v ( ) a ψ ( ) = where v ( ) =

More information

[Nachlass] of the Theory of the Arithmetic-Geometric Mean and the Modulus Function.

[Nachlass] of the Theory of the Arithmetic-Geometric Mean and the Modulus Function. [Nchlss] of he Theory of he Arihmeic-Geomeric Me d he Modulus Fucio Defiiio d Covergece of he Algorihm [III 6] Le d e wo posiive rel mgiudes d le From hem we form he wo sequeces: i such wy h y wo correspodig

More information

Extended Fermi-Dirac and Bose-Einstein functions with applications to the family of zeta functions

Extended Fermi-Dirac and Bose-Einstein functions with applications to the family of zeta functions Eeded Fermi-Dirac ad Boe-Eiei fucio wih applicaio o he family of zea fucio by M. Alam Chaudhry*, Aghar Qadir** ad Aifa Taaddiq** * Deparme of Mahemaic ad Saiic Kig Fahd Uiveriy of Peroleum ad Mieral Dhahra

More information

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002 ME 31 Kiemaic ad Dyamic o Machie S. Lamber Wier 6.. Forced Vibraio wih Dampig Coider ow he cae o orced vibraio wih dampig. Recall ha he goverig diereial equaio i: m && c& k F() ad ha we will aume ha he

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

CHAPTER 2 Quadratic diophantine equations with two unknowns

CHAPTER 2 Quadratic diophantine equations with two unknowns CHAPTER - QUADRATIC DIOPHANTINE EQUATIONS WITH TWO UNKNOWNS 3 CHAPTER Quadraic diophaie equaio wih wo ukow Thi chaper coi of hree ecio. I ecio (A), o rivial iegral oluio of he biar quadraic diophaie equaio

More information

SUMMATION OF INFINITE SERIES REVISITED

SUMMATION OF INFINITE SERIES REVISITED SUMMATION OF INFINITE SERIES REVISITED I several aricles over he las decade o his web page we have show how o sum cerai iiie series icludig he geomeric series. We wa here o eed his discussio o he geeral

More information

Chapter #5 EEE Control Systems

Chapter #5 EEE Control Systems Sprig EEE Chpter #5 EEE Cotrol Sytem Deig Bed o Root Locu Chpter / Sprig EEE Deig Bed Root Locu Led Cotrol (equivlet to PD cotrol) Ued whe the tedy tte propertie of the ytem re ok but there i poor performce,

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

The Inverse of Power Series and the Partial Bell Polynomials

The Inverse of Power Series and the Partial Bell Polynomials 1 2 3 47 6 23 11 Joural of Ieger Sequece Vol 15 2012 Aricle 1237 The Ivere of Power Serie ad he Parial Bell Polyomial Miloud Mihoubi 1 ad Rachida Mahdid 1 Faculy of Mahemaic Uiveriy of Sciece ad Techology

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

Local Fractional Kernel Transform in Fractal Space and Its Applications

Local Fractional Kernel Transform in Fractal Space and Its Applications From he SelecedWorks of Xio-J Yg 22 Locl Frciol Kerel Trsform i Frcl Spce d Is Applicios Yg Xioj Aville : hps://works.epress.com/yg_ioj/3/ Advces i Compuiol Mhemics d is Applicios 86 Vol. No. 2 22 Copyrigh

More information

A new approach to Kudryashov s method for solving some nonlinear physical models

A new approach to Kudryashov s method for solving some nonlinear physical models Ieriol Jourl of Physicl Scieces Vol. 7() pp. 860-866 0 My 0 Avilble olie hp://www.cdeicourls.org/ijps DOI: 0.897/IJPS.07 ISS 99-90 0 Acdeic Jourls Full Legh Reserch Pper A ew pproch o Kudryshov s ehod

More information

DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR

DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR Bllei UASVM, Horilre 65(/008 pissn 1843-554; eissn 1843-5394 DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR Crii C. MERCE Uiveriy of Agrilrl iee d Veeriry Mediie Clj-Npo,

More information

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral Usig Lii's Ideiy o Approimae he Prime Couig Fucio wih he Logarihmic Iegral Naha McKezie /26/2 aha@icecreambreafas.com Summary:This paper will show ha summig Lii's ideiy from 2 o ad arragig erms i a cerai

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

Research Article Positive Solutions for a Second-Order p-laplacian Boundary Value Problem with Impulsive Effects and Two Parameters

Research Article Positive Solutions for a Second-Order p-laplacian Boundary Value Problem with Impulsive Effects and Two Parameters Hidwi Pulihig Corporio Arc d Applied Alyi Volume 24, Aricle ID 534787, 4 pge hp://dx.doi.org/.55/24/534787 Reerch Aricle Poiive Soluio for Secod-Order p-lplci Boudry Vlue Prolem wih Impulive Effec d Two

More information

Positive and negative solutions of a boundary value problem for a

Positive and negative solutions of a boundary value problem for a Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference

More information

EE757 Numerical Techniques in Electromagnetics Lecture 9

EE757 Numerical Techniques in Electromagnetics Lecture 9 EE757 uericl Techiques i Elecroeics Lecure 9 EE757 06 Dr. Mohed Bkr Diereil Equios Vs. Ierl Equios Ierl equios ke severl ors e.. b K d b K d Mos diereil equios c be epressed s ierl equios e.. b F d d /

More information

Derivation of the Metal-Semiconductor Junction Current

Derivation of the Metal-Semiconductor Junction Current .4.4. Derivio of e Mel-Seiouor uio Curre.4.4.1.Derivio of e iffuio urre We r fro e epreio for e ol urre e iegre i over e wi of e epleio regio: q( µ + D (.4.11 wi be rewrie b uig -/ uliplig bo ie of e equio

More information

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University ELEC 37 LECTURE NOTES, WEE 6 Dr mir G ghdm Cocordi Uiverity Prt of thee ote re dpted from the mteril i the followig referece: Moder Cotrol Sytem by Richrd C Dorf d Robert H Bihop, Pretice Hll Feedbck Cotrol

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Mah PracTes Be sure o review Lab (ad all labs) There are los of good quesios o i a) Sae he Mea Value Theorem ad draw a graph ha illusraes b) Name a impora heorem where he Mea Value Theorem was used i he

More information

f t f a f x dx By Lin McMullin f x dx= f b f a. 2

f t f a f x dx By Lin McMullin f x dx= f b f a. 2 Accumulion: Thoughs On () By Lin McMullin f f f d = + The gols of he AP* Clculus progrm include he semen, Sudens should undersnd he definie inegrl s he ne ccumulion of chnge. 1 The Topicl Ouline includes

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information