DCSP-5: Fourier Transform II

Size: px
Start display at page:

Download "DCSP-5: Fourier Transform II"

Transcription

1 DCSP-5: Fourier Transform II Jianfeng Feng Department of Computer Science Warwick Univ., UK

2 Assignment:2018 Q1: you should be able to do it after last week seminar Q2: need a bit reading (my lecture notes) Q3: standard Q4: standard

3 Assignment:2018 Q5: standard Q6: standard Q7: after today s lecture Q8: load jazz, load Tunejazz load NoiseJazz plot soundsc plot plot

4 Fourier Theorem This representation is quite general. In fact we have the following theorem due to Fourier. Any signal x(t) of period T can be represented as the sum of a set of cosinusoidal and sinusoidal waves of different frequencies

5 This week s summary Introduce FT in layman s language (today) Applications (tomorrow)

6 This week s summary Introduce FT in layman s language (today) Applications (tomorrow) You might find the world is different!

7 100m-for-medical-imaging-tech/

8 This week s summary Introduce FT in layman s language (today) Talk about continuous FT since it is clean and simple Come back to it on how to numerically calculate it later on Intuition Fourier theorem Examples Bandwidth

9 Intuition of FT Two dimensional space (all points) (a, b) = a (1,0) + b (0,1) Signal space (all functions of t) x (t) = a sin(ω t) + b sin (2 ω t)

10 Intuition of FT Two a point in it (a, b) = a (1,0) + b (0,1)

11 Intuition of FT Two a point in it (a, b) = a (1,0) + b (0,1) Signal = coef basis coef basis

12 Intuition of FT Two a point in it (a, b) = a (1,0) + b (0,1) x(t) =? Signal = coef basis coef basis

13 Intuition of FT Two a point in it (a, b) = a (1,0) + b (0,1) x(t) = a F1(t) +b F2(t) Signal = coef basis coef basis

14 Intuition of FT It is a branch of mathematics called functional analysis: treat each function as a point in a functional space It is the starting pointe of modern mathematics It is also the actual power of mathematics Branch space, Hilbert space etc.

15 Intuition of FT How to calculate these coefficients? o (a, b) = a (1,0) + b (0,1) Functional x (t) = a cos(ω t) + b cos (2 ω t) w = 2 pi /T

16 Intuition of FT 1. Coefficient is obtained via Inner product <(x, y), (m,n)> = xm+yn 2. All bases are orthogonal <(0, 1), (1,0)> = 0, (0,1) (1, 0) (a, b) = a (1,0) + b (0,1) Therefore <(a, b), (1,0)> = a <(1,0), (1,0)> + b <(0,1), (1,0)> = a <(a, b), (0,1)> = a <(1,0), (0,1)> + b <(0,1), (0,1)> = b

17 Intuition of FT Two dimensi coefficient is obtained via Inner product (a, b) = a (1,0) + b (0,1) <(a, b), (1,0)> = a <(1,0), (1,0)> + b <(0,1), (1,0)> = a Functional coefficient is obtained via inner product x (t) = a cos(ω t) + b cos (2 ω t) <x (t), cos(ω t) > = <a cos(ω t), cos(ω t) > + <b cos (2 ω t), cos(ω t) > = a (?) If cos(ω t) and cos(2 ω t) are orthogonal

18 Intuition of FT Two dimension orthogonal basis (a, b) = a (1,0) + b (0,1) Functional space basis x (t) = a cos(ω t) + b cos (2 ω t)

19 Intuition of FT It turns out that we can define the inner product in the signal space < x(t), y( t) >= 2 T T / 2 T / 2 x( t) y( t) dt < 2 cos( ωt ),cos(2ωt ) >= cos( ωt)cos(2ωt ) dt T T T

20 Intuition of FT Cos ( 2 p t) Cos ( 2*2 p t) Cos ( 2 p t) * Cos ( 2*2 p t) < 2 cos( ωt ),cos(2ωt ) >= cos( ωt)cos(2ωt ) dt T T T

21 Intuition of FT Cos ( 2 p t) Cos ( 2*2 p t) Cos ( 2 p t) * Cos ( 2*2 p t) { cos (n ω t ), n=1,2 } are orthogonal they form orthogonal bases

22 Intuition of FT It turns out that we can define the inner product in the signal space < cos( mωt),cos( nωt) In particular, we have >= 2 / T, n = 0, n m m x (t) = a cos(ω t) + b cos (2 ω t) a = <X(t), cos(ω t)> = b =? 2 T T /2 ò -T /2 x(t) cos( wt)dt

23 Intuition of FT X 1 X 6 ( ) X 2 X 3 x 4 X5 ( ) ( ) ( ) ( ) ( ) In an n-dim Euclidean space, we decompose any vector X in terms of orthogonal bases Coefficient is obtained by inner product between a basis and X We sometime call x i weight X = x 1 ( ) + x 2 ( ) + + x 6 ( )

24 Intuition of FT X(t) A 1 A 6. cos (ω t ) A 2 A 3 A 4 A5 x ( t) = A1 cos( ωt) + more

25 Intuition of FT X(t) A 1 A 6. cos (ω t ) A 2 A 3 A 4 A5 cos (2 ω t ) x t) = A cos( ωt) + A cos(2 t) + more ( 1 2 ω

26 Intuition of FT X(t) A 1 A 6. cos (ω t ) A 2 A 3 A 4 A5 cos (3 ω t ) cos (2 ω t ) x t) = A cos( ωt) + A cos(2ωt ) + A cos(3 t) + ( ω more

27 Intuition of FT X(t) A 1 A 6. cos (ω t ) A 2 A 3 A 4 A5 cos (3 ω t ) cos (4 ω t ) cos (2 ω t ) x t) = A cos( ωt) + A cos(2ωt ) + A cos(3ωt ) + A cos(4 t) + more ( ω

28 Intuition of FT X(t) A 1 A 6. cos (ω t ) A 2 A 3 A 4 0 cos (3 ω t ) cos (4 ω t ) cos (2 ω t ) x t) = A cos( ωt) + A cos(2ωt ) + A cos(3ωt ) + A cos(4 t) + more ( ω

29 Intuition of FT X(t) A 1 A 6 cos (ω t ) A 2 A 3 A 4 0 cos (3 ω t ) cos (4 ω t ) cos (2 ω t ) x t) = A cos( ω t) + A cos(2ωt ) + A cos(3ωt ) + A cos(4ωt) + A cos(6ω ) ( t

30 Intuition of FT X(t) A 1 A 6. cos (ω t ) A 2 A 3 A 4 0 cos (3 ω t ) cos (4 ω t ) cos (2 ω t ) In an n-dim Euclidean space, we decompose any vector X in terms of orthogonal bases Coefficient is obtained by inner product between a basis and X We sometime call x i weight

31 FT: Fourier Thm in terms of Sin and Cos simply a generalization of common knowledge of the Euclidean space { 1, cos (nωt), sin(nwt), n=1,2 } are orthogonal and complete they form orthogonal bases

32 FT: Fourier Thm in terms of Sin and Cos simply a generalization of common knowledge of the Euclidean space { 1, cos (nωt), sin(nwt), n=1,2 } are orthogonal and complete they form orthogonal bases

33 FT: Fourier Thm in terms of Sin and Cos simply a generalization of common knowledge of the Euclidean space { 1, cos (nωt), sin(nwt), n=1,2 } are orthogonal and complete they form orthogonal bases x(t) = A 0 + ì í î å n=1 A n cos(nwt)+ A 0 =<1, x(t) >= 1 T T /2 -T /2 B n sin(nwt) where A 0 is the d.c. term, and T is the period of the waveform. ò å n=1 x(t) dt A n =< cos(nwt), x(t) >= 2 T B n =< sin(nwt), x(t) >= 2 T w = 2p T T /2 ò -T /2 T /2 ò -T /2 x(t)cos(nwt)dt x(t)sin(nwt)dt

34 FT: Fourier Thm in terms of Sin and Cos simply a generalization of common knowledge of the Euclidean space { 1, cos (nωt), sin(nwt), n=1,2 } are orthogonal and complete they form orthogonal bases x(t) = A 0 + ì í î å n=1 A n cos(nwt)+ A 0 =<1, x(t) >= 1 T T /2 -T /2 B n sin(nwt) where A 0 is the d.c. term, and T is the period of the waveform. ò å n=1 x(t) dt A n =< cos(nwt), x(t) >= 2 T B n =< sin(nwt), x(t) >= 2 T w = 2p T T /2 ò -T /2 T /2 ò -T /2 x(t)cos(nwt)dt x(t)sin(nwt)dt

35 FT: Fourier Thm in terms of Sin and Cos simply a generalization of common knowledge of the Euclidean space { 1, cos (nωt), sin(nwt), n=1,2 } are orthogonal and complete they form orthogonal bases x(t) = A 0 + ì í î å n=1 A n cos(nwt)+ A 0 =<1, x(t) >= 1 T T /2 -T /2 B n sin(nwt) where A 0 is the d.c. term, and T is the period of the waveform. ò å n=1 x(t) dt A n =< cos(nwt), x(t) >= 2 T B n =< sin(nwt), x(t) >= 2 T w = 2p T T /2 ò -T /2 T /2 ò -T /2 x(t)cos(nwt)dt x(t)sin(nwt)dt

36 FT: Fourier Thm in terms of Sin and Cos simply a generalization of common knowledge of the Euclidean space { 1, cos (nωt), sin(nwt), n=1,2 } are orthogonal and complete they form orthogonal bases x(t) = A 0 + ì í î å n=1 A n cos(nwt)+ A 0 =<1, x(t) >= 1 T T /2 -T /2 B n sin(nwt) where A 0 is the d.c. term, and T is the period of the waveform. ò å n=1 x(t) dt A n =< cos(nwt), x(t) >= 2 T B n =< sin(nwt), x(t) >= 2 T w = 2p T T /2 ò -T /2 T /2 ò -T /2 x(t)cos(nwt)dt x(t)sin(nwt)dt

37 Example I x(t)=1, 0< t < p, 2p < t < 3p, 0 otherwise Hence x(t) is a signal with a period of 2p p 2p 3p 4p

38 Example I ì A 0 = 1 p ò dt = 1 2p 0 2 A n = 2 p í ò cos(nt)dt = 1 sin(np ) = 0, n =1, 2,... 2p 0 np B n = 2 p ò sin(nt)dt = 1 (1- cos(np )), n =1, 2,... î 2p np 0 Finally, we have x(t) = p [sin(t)+ 1 3 sin(3t)+ 1 5 sin(5t)+...]

39 Example I X(F) 2/p Frequency domain x(t) = p [sin(t)+ 1 3 sin(3t)+ 1 5 sin(5t)+...] The description of a signal in terms of its constituent frequencies is called its frequency (power) spectrum.

40 Example I X(F) 2/p = Time domain Frequency domain

41 Example I A periodic signal is uniquely determined by its coefficients {A n, B n }. If we truncated the series into finite term, the signal can be approximated by a finite sines as shown below (compression, MP3, MP4, JPG, ) one term Two terms Three terms Five terms

42 Example II (understanding music)

43 Example II a. Pure tone: Script1_1.m This confirms our earlier believe that it is a signal with a finite bandwidth (N-S sampling Thm)

44 Example II b. Different waveforms Script1_2.m This confirms our earlier believe that it is a signal without bandlimit (N-S sampling Thm)

45 Bandwidth can be properly defined Bandwidth is the difference between the upper and lower frequencies in a set of frequencies. It is typically measured in hertz

46 Bandwidth can be properly defined Power 0 B Frequency Bandwidth is the difference between the upper and lower frequencies in a continuous set of frequencies. It is typically measured in hertz

47 Example II C. Approximation (compression) Script1_3.m Without doing much, we can compress the original data now, as in Example I.

48

DCSP-2: Fourier Transform

DCSP-2: Fourier Transform DCSP-2: Fourier Transform Jianfeng Feng Department of Computer Science Warwick Univ., UK Jianfeng.feng@warwick.ac.uk http://www.dcs.warwick.ac.uk/~feng/dcsp.html Data transmission Channel characteristics,

More information

DCSP-3: Fourier Transform II

DCSP-3: Fourier Transform II DCSP-3: Fourier Transform II Jianfeng Feng Department of Computer Science Warwick Univ., UK Jianfeng.feng@warwick.ac.uk http://www.dcs.warwick.ac.uk/~feng/dcsp.html Fourier Theorem This representation

More information

Fourier Series. Spectral Analysis of Periodic Signals

Fourier Series. Spectral Analysis of Periodic Signals Fourier Series. Spectral Analysis of Periodic Signals he response of continuous-time linear invariant systems to the complex exponential with unitary magnitude response of a continuous-time LI system at

More information

Unstable Oscillations!

Unstable Oscillations! Unstable Oscillations X( t ) = [ A 0 + A( t ) ] sin( ω t + Φ 0 + Φ( t ) ) Amplitude modulation: A( t ) Phase modulation: Φ( t ) S(ω) S(ω) Special case: C(ω) Unstable oscillation has a broader periodogram

More information

Jianfeng Feng. DCSP-15: Wiener Filter and Kalman Filter* Department of Computer Science Warwick Univ.

Jianfeng Feng. DCSP-15: Wiener Filter and Kalman Filter* Department of Computer Science Warwick Univ. DCSP-15: Wiener Filter and Kalman Filter* Jianfeng Feng Department of Computer Science Warwick Univ., UK Jianfeng.feng@warwick.ac.uk http://www.dcs.warwick.ac.uk/~feng/dcsp.html Father of cybernetics Norbert

More information

The Fourier Transform (and more )

The Fourier Transform (and more ) The Fourier Transform (and more ) imrod Peleg ov. 5 Outline Introduce Fourier series and transforms Introduce Discrete Time Fourier Transforms, (DTFT) Introduce Discrete Fourier Transforms (DFT) Consider

More information

Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 :

Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 : Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 : X(t) = µ + Asin(ω 0 t)+ Δ δ ( t t 0 ) ±σ N =100 Δ =100 χ ( ω ) Raises the amplitude uniformly at all

More information

natural frequency of the spring/mass system is ω = k/m, and dividing the equation through by m gives

natural frequency of the spring/mass system is ω = k/m, and dividing the equation through by m gives 77 6. More on Fourier series 6.. Harmonic response. One of the main uses of Fourier series is to express periodic system responses to general periodic signals. For example, if we drive an undamped spring

More information

ESE 250: Digital Audio Basics. Week 4 February 5, The Frequency Domain. ESE Spring'13 DeHon, Kod, Kadric, Wilson-Shah

ESE 250: Digital Audio Basics. Week 4 February 5, The Frequency Domain. ESE Spring'13 DeHon, Kod, Kadric, Wilson-Shah ESE 250: Digital Audio Basics Week 4 February 5, 2013 The Frequency Domain 1 Course Map 2 Musical Representation With this compact notation Could communicate a sound to pianist Much more compact than 44KHz

More information

Assignment 3 Solutions

Assignment 3 Solutions Assignment Solutions Networks and systems August 8, 7. Consider an LTI system with transfer function H(jw) = input is sin(t + π 4 ), what is the output? +jw. If the Solution : C For an LTI system with

More information

THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3

THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3 THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3 Any periodic function f(t) can be written as a Fourier Series a 0 2 + a n cos( nωt) + b n sin n

More information

7. Find the Fourier transform of f (t)=2 cos(2π t)[u (t) u(t 1)]. 8. (a) Show that a periodic signal with exponential Fourier series f (t)= δ (ω nω 0

7. Find the Fourier transform of f (t)=2 cos(2π t)[u (t) u(t 1)]. 8. (a) Show that a periodic signal with exponential Fourier series f (t)= δ (ω nω 0 Fourier Transform Problems 1. Find the Fourier transform of the following signals: a) f 1 (t )=e 3 t sin(10 t)u (t) b) f 1 (t )=e 4 t cos(10 t)u (t) 2. Find the Fourier transform of the following signals:

More information

EE 435. Lecture 29. Data Converters. Linearity Measures Spectral Performance

EE 435. Lecture 29. Data Converters. Linearity Measures Spectral Performance EE 435 Lecture 9 Data Converters Linearity Measures Spectral Performance Linearity Measurements (testing) Consider ADC V IN (t) DUT X IOUT V REF Linearity testing often based upon code density testing

More information

Central to this is two linear transformations: the Fourier Transform and the Laplace Transform. Both will be considered in later lectures.

Central to this is two linear transformations: the Fourier Transform and the Laplace Transform. Both will be considered in later lectures. In this second lecture, I will be considering signals from the frequency perspective. This is a complementary view of signals, that in the frequency domain, and is fundamental to the subject of signal

More information

EE 435. Lecture 28. Data Converters Linearity INL/DNL Spectral Performance

EE 435. Lecture 28. Data Converters Linearity INL/DNL Spectral Performance EE 435 Lecture 8 Data Converters Linearity INL/DNL Spectral Performance Performance Characterization of Data Converters Static characteristics Resolution Least Significant Bit (LSB) Offset and Gain Errors

More information

EA2.3 - Electronics 2 1

EA2.3 - Electronics 2 1 In the previous lecture, I talked about the idea of complex frequency s, where s = σ + jω. Using such concept of complex frequency allows us to analyse signals and systems with better generality. In this

More information

Chapter 2. Signals. Static and Dynamic Characteristics of Signals. Signals classified as

Chapter 2. Signals. Static and Dynamic Characteristics of Signals. Signals classified as Chapter 2 Static and Dynamic Characteristics of Signals Signals Signals classified as. Analog continuous in time and takes on any magnitude in range of operations 2. Discrete Time measuring a continuous

More information

Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 :

Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 : Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 : ( ) ±σ X(t) = µ + Asin(ω 0 t)+ Δ δ t t 0 N =100 Δ =100 χ ( ω ) Raises the amplitude uniformly at all

More information

Notes on the Periodically Forced Harmonic Oscillator

Notes on the Periodically Forced Harmonic Oscillator Notes on the Periodically orced Harmonic Oscillator Warren Weckesser Math 38 - Differential Equations 1 The Periodically orced Harmonic Oscillator. By periodically forced harmonic oscillator, we mean the

More information

Fourier Series Tutorial

Fourier Series Tutorial Fourier Series Tutorial INTRODUCTION This document is designed to overview the theory behind the Fourier series and its alications. It introduces the Fourier series and then demonstrates its use with a

More information

CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation

CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 23, 2006 1 Exponentials The exponential is

More information

Periodicity. Discrete-Time Sinusoids. Continuous-time Sinusoids. Discrete-time Sinusoids

Periodicity. Discrete-Time Sinusoids. Continuous-time Sinusoids. Discrete-time Sinusoids Periodicity Professor Deepa Kundur Recall if a signal x(t) is periodic, then there exists a T > 0 such that x(t) = x(t + T ) University of Toronto If no T > 0 can be found, then x(t) is non-periodic. Professor

More information

Notes on Fourier Series and Integrals Fourier Series

Notes on Fourier Series and Integrals Fourier Series Notes on Fourier Series and Integrals Fourier Series et f(x) be a piecewise linear function on [, ] (This means that f(x) may possess a finite number of finite discontinuities on the interval). Then f(x)

More information

LOPE3202: Communication Systems 10/18/2017 2

LOPE3202: Communication Systems 10/18/2017 2 By Lecturer Ahmed Wael Academic Year 2017-2018 LOPE3202: Communication Systems 10/18/2017 We need tools to build any communication system. Mathematics is our premium tool to do work with signals and systems.

More information

1 Wavelets: A New Tool for Signal Analysis

1 Wavelets: A New Tool for Signal Analysis 1 s: A New Tool for Analysis The Continuous Transform Mathematically, the process of Fourier analysis is represented by the Fourier transform: F( ω) = ft ()e jωt dt which is the sum over all time of the

More information

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University September 26, 2005 1 Sinusoids Sinusoids

More information

CT Rectangular Function Pairs (5B)

CT Rectangular Function Pairs (5B) C Rectangular Function Pairs (5B) Continuous ime Rect Function Pairs Copyright (c) 009-013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU

More information

EE 435. Lecture 30. Data Converters. Spectral Performance

EE 435. Lecture 30. Data Converters. Spectral Performance EE 435 Lecture 30 Data Converters Spectral Performance . Review from last lecture. INL Often Not a Good Measure of Linearity Four identical INL with dramatically different linearity X OUT X OUT X REF X

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Physics 5c Lecture Fourier Analysis (H&L Sections 3. 4) (Georgi Chapter ) What We Did Last ime Studied reflection of mechanical waves Similar to reflection of electromagnetic waves Mechanical

More information

Solutions a) The characteristic equation is r = 0 with roots ±2i, so the complementary solution is. y c = c 1 cos(2t)+c 2 sin(2t).

Solutions a) The characteristic equation is r = 0 with roots ±2i, so the complementary solution is. y c = c 1 cos(2t)+c 2 sin(2t). Solutions 3.9. a) The characteristic equation is r + 4 = 0 with roots ±i, so the complementar solution is c = c cos(t)+c sin(t). b) We look for a particular solution in the form and obtain the equations

More information

Fourier Transform. Find the Fourier series for a periodic waveform Determine the output of a filter when the input is a periodic function

Fourier Transform. Find the Fourier series for a periodic waveform Determine the output of a filter when the input is a periodic function Objectives: Be able to Fourier Transform Find the Fourier series for a periodic waveform Determine the output of a filter when the input is a periodic function Filters with a Single Sinusoidal Input: Suppose

More information

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis SEISMIC WAVE PROPAGATION Lecture 2: Fourier Analysis Fourier Series & Fourier Transforms Fourier Series Review of trigonometric identities Analysing the square wave Fourier Transform Transforms of some

More information

Fourier series. XE31EO2 - Pavel Máša. Electrical Circuits 2 Lecture1. XE31EO2 - Pavel Máša - Fourier Series

Fourier series. XE31EO2 - Pavel Máša. Electrical Circuits 2 Lecture1. XE31EO2 - Pavel Máša - Fourier Series Fourier series Electrical Circuits Lecture - Fourier Series Filtr RLC defibrillator MOTIVATION WHAT WE CAN'T EXPLAIN YET Source voltage rectangular waveform Resistor voltage sinusoidal waveform - Fourier

More information

DCSP-3: Minimal Length Coding. Jianfeng Feng

DCSP-3: Minimal Length Coding. Jianfeng Feng DCSP-3: Minimal Length Coding Jianfeng Feng Department of Computer Science Warwick Univ., UK Jianfeng.feng@warwick.ac.uk http://www.dcs.warwick.ac.uk/~feng/dcsp.html Automatic Image Caption (better than

More information

Complex symmetry Signals and Systems Fall 2015

Complex symmetry Signals and Systems Fall 2015 18-90 Signals and Systems Fall 015 Complex symmetry 1. Complex symmetry This section deals with the complex symmetry property. As an example I will use the DTFT for a aperiodic discrete-time signal. The

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Fourier Series Representation of Periodic Signals Let x(t) be a CT periodic signal with period T, i.e., xt ( + T) = xt ( ), t R Example: the rectangular

More information

Functions not limited in time

Functions not limited in time Functions not limited in time We can segment an arbitrary L 2 function into segments of width T. The mth segment is u m (t) = u(t)rect(t/t m). We then have m 0 u(t) =l.i.m. m0 u m (t) m= m 0 This wors

More information

Lab10: FM Spectra and VCO

Lab10: FM Spectra and VCO Lab10: FM Spectra and VCO Prepared by: Keyur Desai Dept. of Electrical Engineering Michigan State University ECE458 Lab 10 What is FM? A type of analog modulation Remember a common strategy in analog modulation?

More information

Fourier Series and Fourier Transforms

Fourier Series and Fourier Transforms Fourier Series and Fourier Transforms EECS2 (6.082), MIT Fall 2006 Lectures 2 and 3 Fourier Series From your differential equations course, 18.03, you know Fourier s expression representing a T -periodic

More information

Lecture 7 ELE 301: Signals and Systems

Lecture 7 ELE 301: Signals and Systems Lecture 7 ELE 30: Signals and Systems Prof. Paul Cuff Princeton University Fall 20-2 Cuff (Lecture 7) ELE 30: Signals and Systems Fall 20-2 / 22 Introduction to Fourier Transforms Fourier transform as

More information

SOLVING DIFFERENTIAL EQUATIONS. Amir Asif. Department of Computer Science and Engineering York University, Toronto, ON M3J1P3

SOLVING DIFFERENTIAL EQUATIONS. Amir Asif. Department of Computer Science and Engineering York University, Toronto, ON M3J1P3 SOLVING DIFFERENTIAL EQUATIONS Amir Asif Department of Computer Science and Engineering York University, Toronto, ON M3J1P3 ABSTRACT This article reviews a direct method for solving linear, constant-coefficient

More information

16.362: Signals and Systems: 1.0

16.362: Signals and Systems: 1.0 16.362: Signals and Systems: 1.0 Prof. K. Chandra ECE, UMASS Lowell September 1, 2016 1 Background The pre-requisites for this course are Calculus II and Differential Equations. A basic understanding of

More information

Lecture 4, Noise. Noise and distortion

Lecture 4, Noise. Noise and distortion Lecture 4, Noise Noise and distortion What did we do last time? Operational amplifiers Circuit-level aspects Simulation aspects Some terminology Some practical concerns Limited current Limited bandwidth

More information

2.3 Oscillation. The harmonic oscillator equation is the differential equation. d 2 y dt 2 r y (r > 0). Its solutions have the form

2.3 Oscillation. The harmonic oscillator equation is the differential equation. d 2 y dt 2 r y (r > 0). Its solutions have the form 2. Oscillation So far, we have used differential equations to describe functions that grow or decay over time. The next most common behavior for a function is to oscillate, meaning that it increases and

More information

Sinusoids. Amplitude and Magnitude. Phase and Period. CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

Sinusoids. Amplitude and Magnitude. Phase and Period. CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation Sinusoids CMPT 889: Lecture Sinusoids, Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University September 6, 005 Sinusoids are

More information

Superposition (take 3)

Superposition (take 3) Superposition (take 3) Previously, we looked at how to analyze an AC to DC converter and a Buck converter. To solve these circuits, we changed the problem so that the input contained A DC signal, and An

More information

Physics 8 Monday, December 4, 2017

Physics 8 Monday, December 4, 2017 Physics 8 Monday, December 4, 2017 HW12 due Friday. Grace will do a review session Dec 12 or 13. When? I will do a review session: afternoon Dec 17? Evening Dec 18? Wednesday, I will hand out the practice

More information

Communication Systems Lecture 21, 22. Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University

Communication Systems Lecture 21, 22. Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University Communication Systems Lecture 1, Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University 1 Outline Linear Systems with WSS Inputs Noise White noise, Gaussian noise, White Gaussian noise

More information

Wave Phenomena Physics 15c. Masahiro Morii

Wave Phenomena Physics 15c. Masahiro Morii Wave Phenomena Physics 15c Masahiro Morii Teaching Staff! Masahiro Morii gives the lectures.! Tuesday and Thursday @ 1:00 :30.! Thomas Hayes supervises the lab.! 3 hours/week. Date & time to be decided.!

More information

HOMEWORK 4: MATH 265: SOLUTIONS. y p = cos(ω 0t) 9 ω 2 0

HOMEWORK 4: MATH 265: SOLUTIONS. y p = cos(ω 0t) 9 ω 2 0 HOMEWORK 4: MATH 265: SOLUTIONS. Find the solution to the initial value problems y + 9y = cos(ωt) with y(0) = 0, y (0) = 0 (account for all ω > 0). Draw a plot of the solution when ω = and when ω = 3.

More information

Lecture 28 Continuous-Time Fourier Transform 2

Lecture 28 Continuous-Time Fourier Transform 2 Lecture 28 Continuous-Time Fourier Transform 2 Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/6/14 1 Limit of the Fourier Series Rewrite (11.9) and (11.10) as As, the fundamental

More information

Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis

Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis Series FOURIER SERIES Graham S McDonald A self-contained Tutorial Module for learning the technique of Fourier series analysis Table of contents Begin Tutorial c 24 g.s.mcdonald@salford.ac.uk 1. Theory

More information

Fourier Series and Integrals

Fourier Series and Integrals Fourier Series and Integrals Fourier Series et f(x) beapiece-wiselinearfunctionon[, ] (Thismeansthatf(x) maypossessa finite number of finite discontinuities on the interval). Then f(x) canbeexpandedina

More information

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal.

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal. EE 34: Signals, Systems, and Transforms Summer 7 Test No notes, closed book. Show your work. Simplify your answers. 3. It is observed of some continuous-time LTI system that the input signal = 3 u(t) produces

More information

I. Signals & Sinusoids

I. Signals & Sinusoids I. Signals & Sinusoids [p. 3] Signal definition Sinusoidal signal Plotting a sinusoid [p. 12] Signal operations Time shifting Time scaling Time reversal Combining time shifting & scaling [p. 17] Trigonometric

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Representation of Signals in Terms of Frequency Components Consider the CT signal defined by N xt () = Acos( ω t+ θ ), t k = 1 k k k The frequencies `present

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 10: Sinusoidal Steady-State Analysis 1 Objectives : sinusoidal functions Impedance use phasors to determine the forced response of a circuit subjected to sinusoidal excitation Apply techniques

More information

Phasor Young Won Lim 05/19/2015

Phasor Young Won Lim 05/19/2015 Phasor Copyright (c) 2009-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

26. The Fourier Transform in optics

26. The Fourier Transform in optics 26. The Fourier Transform in optics What is the Fourier Transform? Anharmonic waves The spectrum of a light wave Fourier transform of an exponential The Dirac delta function The Fourier transform of e

More information

Lab Fourier Analysis Do prelab before lab starts. PHSX 262 Spring 2011 Lecture 5 Page 1. Based with permission on lectures by John Getty

Lab Fourier Analysis Do prelab before lab starts. PHSX 262 Spring 2011 Lecture 5 Page 1. Based with permission on lectures by John Getty Today /5/ Lecture 5 Fourier Series Time-Frequency Decomposition/Superposition Fourier Components (Ex. Square wave) Filtering Spectrum Analysis Windowing Fast Fourier Transform Sweep Frequency Analyzer

More information

MATH 24 EXAM 3 SOLUTIONS

MATH 24 EXAM 3 SOLUTIONS MATH 4 EXAM 3 S Consider the equation y + ω y = cosω t (a) Find the general solution of the homogeneous equation (b) Find the particular solution of the non-homogeneous equation using the method of Undetermined

More information

MAE143A Signals & Systems - Homework 1, Winter 2014 due by the end of class Thursday January 16, 2014.

MAE143A Signals & Systems - Homework 1, Winter 2014 due by the end of class Thursday January 16, 2014. MAE43A Signals & Systems - Homework, Winter 4 due by the end of class Thursday January 6, 4. Question Time shifting [Chaparro Question.5] Consider a finite-support signal and zero everywhere else. Part

More information

Notes 07 largely plagiarized by %khc

Notes 07 largely plagiarized by %khc Notes 07 largely plagiarized by %khc Warning This set of notes covers the Fourier transform. However, i probably won t talk about everything here in section; instead i will highlight important properties

More information

Lecture 4: Oscillators to Waves

Lecture 4: Oscillators to Waves Matthew Schwartz Lecture 4: Oscillators to Waves Review two masses Last time we studied how two coupled masses on springs move If we take κ=k for simplicity, the two normal modes correspond to ( ) ( )

More information

A1 Time-Frequency Analysis

A1 Time-Frequency Analysis A 20 / A Time-Frequency Analysis David Murray david.murray@eng.ox.ac.uk www.robots.ox.ac.uk/ dwm/courses/2tf Hilary 20 A 20 2 / Content 8 Lectures: 6 Topics... From Signals to Complex Fourier Series 2

More information

Waves and the Schroedinger Equation

Waves and the Schroedinger Equation Waves and the Schroedinger Equation 5 april 010 1 The Wave Equation We have seen from previous discussions that the wave-particle duality of matter requires we describe entities through some wave-form

More information

EP375 Computational Physics

EP375 Computational Physics EP375 Computational Physics opic 11 FOURIER RANSFORM Department of Engineering Physics University of Gaziantep Apr 2014 Sayfa 1 Content 1. Introduction 2. Continues Fourier rans. 3. DF in MALAB and C++

More information

Electronic Power Conversion

Electronic Power Conversion Electronic Power Conversion Review of Basic Electrical and Magnetic Circuit Concepts Challenge the future 3. Review of Basic Electrical and Magnetic Circuit Concepts Notation Electric circuits Steady state

More information

REACTANCE. By: Enzo Paterno Date: 03/2013

REACTANCE. By: Enzo Paterno Date: 03/2013 REACTANCE REACTANCE By: Enzo Paterno Date: 03/2013 5/2007 Enzo Paterno 1 RESISTANCE - R i R (t R A resistor for all practical purposes is unaffected by the frequency of the applied sinusoidal voltage or

More information

Homework 6 EE235, Spring 2011

Homework 6 EE235, Spring 2011 Homework 6 EE235, Spring 211 1. Fourier Series. Determine w and the non-zero Fourier series coefficients for the following functions: (a 2 cos(3πt + sin(1πt + π 3 w π e j3πt + e j3πt + 1 j2 [ej(1πt+ π

More information

Question Paper Code : AEC11T02

Question Paper Code : AEC11T02 Hall Ticket No Question Paper Code : AEC11T02 VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Affiliated to JNTUH, Hyderabad Four Year B. Tech III Semester Tutorial Question Bank 2013-14 (Regulations: VCE-R11)

More information

Chapter 15 - Oscillations

Chapter 15 - Oscillations The pendulum of the mind oscillates between sense and nonsense, not between right and wrong. -Carl Gustav Jung David J. Starling Penn State Hazleton PHYS 211 Oscillatory motion is motion that is periodic

More information

General Inner Product and The Fourier Series

General Inner Product and The Fourier Series A Linear Algebra Approach Department of Mathematics University of Puget Sound 4-20-14 / Spring Semester Outline 1 2 Inner Product The inner product is an algebraic operation that takes two vectors and

More information

CHEE 319 Tutorial 3 Solutions. 1. Using partial fraction expansions, find the causal function f whose Laplace transform. F (s) F (s) = C 1 s + C 2

CHEE 319 Tutorial 3 Solutions. 1. Using partial fraction expansions, find the causal function f whose Laplace transform. F (s) F (s) = C 1 s + C 2 CHEE 39 Tutorial 3 Solutions. Using partial fraction expansions, find the causal function f whose Laplace transform is given by: F (s) 0 f(t)e st dt (.) F (s) = s(s+) ; Solution: Note that the polynomial

More information

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 2: Fourier Representations Jie Liang School of Engineering Science Simon Fraser University 1 Outline Chap 2.1 2.5: Signal Classifications Fourier Transform Dirac Delta Function

More information

SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 6a. Dr David Corrigan 1. Electronic and Electrical Engineering Dept.

SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 6a. Dr David Corrigan 1. Electronic and Electrical Engineering Dept. SIGNALS AND SYSTEMS: PAPER 3C HANDOUT 6a. Dr David Corrigan. Electronic and Electrical Engineering Dept. corrigad@tcd.ie www.mee.tcd.ie/ corrigad FOURIER SERIES Have seen how the behaviour of systems can

More information

Physics 141, Lecture 7. Outline. Course Information. Course information: Homework set # 3 Exam # 1. Quiz. Continuation of the discussion of Chapter 4.

Physics 141, Lecture 7. Outline. Course Information. Course information: Homework set # 3 Exam # 1. Quiz. Continuation of the discussion of Chapter 4. Physics 141, Lecture 7. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 07, Page 1 Outline. Course information: Homework set # 3 Exam # 1 Quiz. Continuation of the

More information

Wave Phenomena Physics 15c. Lecture 10 Fourier Transform

Wave Phenomena Physics 15c. Lecture 10 Fourier Transform Wave Phenomena Physics 15c Lecture 10 Fourier ransform What We Did Last ime Reflection of mechanical waves Similar to reflection of electromagnetic waves Mechanical impedance is defined by For transverse/longitudinal

More information

Summary: ISI. No ISI condition in time. II Nyquist theorem. Ideal low pass filter. Raised cosine filters. TX filters

Summary: ISI. No ISI condition in time. II Nyquist theorem. Ideal low pass filter. Raised cosine filters. TX filters UORIAL ON DIGIAL MODULAIONS Part 7: Intersymbol interference [last modified: 200--23] Roberto Garello, Politecnico di orino Free download at: www.tlc.polito.it/garello (personal use only) Part 7: Intersymbol

More information

Chapter 17: Fourier Series

Chapter 17: Fourier Series Section A Introduction to Fourier Series By the end of this section you will be able to recognise periodic functions sketch periodic functions determine the period of the given function Why are Fourier

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 16: 3.8 Forced Vibrations Without Damping

Lecture Notes for Math 251: ODE and PDE. Lecture 16: 3.8 Forced Vibrations Without Damping Lecture Notes for Math 25: ODE and PDE. Lecture 6:.8 Forced Vibrations Without Damping Shawn D. Ryan Spring 202 Forced Vibrations Last Time: We studied non-forced vibrations with and without damping. We

More information

Introduction to Fourier Transforms. Lecture 7 ELE 301: Signals and Systems. Fourier Series. Rect Example

Introduction to Fourier Transforms. Lecture 7 ELE 301: Signals and Systems. Fourier Series. Rect Example Introduction to Fourier ransforms Lecture 7 ELE 3: Signals and Systems Fourier transform as a limit of the Fourier series Inverse Fourier transform: he Fourier integral theorem Prof. Paul Cuff Princeton

More information

6.003 Signal Processing

6.003 Signal Processing 6.003 Signal Processing Week 6, Lecture A: The Discrete Fourier Transform (DFT) Adam Hartz hz@mit.edu What is 6.003? What is a signal? Abstractly, a signal is a function that conveys information Signal

More information

Mathematical Preliminaries and Review

Mathematical Preliminaries and Review Mathematical Preliminaries and Review Ruye Wang for E59 1 Complex Variables and Sinusoids AcomplexnumbercanberepresentedineitherCartesianorpolarcoordinatesystem: z = x + jy= z z = re jθ = r(cos θ + j sin

More information

Mathematical methods and its applications Dr. S. K. Gupta Department of Mathematics Indian Institute of Technology, Roorkee

Mathematical methods and its applications Dr. S. K. Gupta Department of Mathematics Indian Institute of Technology, Roorkee Mathematical methods and its applications Dr. S. K. Gupta Department of Mathematics Indian Institute of Technology, Roorkee Lecture - 56 Fourier sine and cosine transforms Welcome to lecture series on

More information

BME 50500: Image and Signal Processing in Biomedicine. Lecture 2: Discrete Fourier Transform CCNY

BME 50500: Image and Signal Processing in Biomedicine. Lecture 2: Discrete Fourier Transform CCNY 1 Lucas Parra, CCNY BME 50500: Image and Signal Processing in Biomedicine Lecture 2: Discrete Fourier Transform Lucas C. Parra Biomedical Engineering Department CCNY http://bme.ccny.cuny.edu/faculty/parra/teaching/signal-and-image/

More information

EECS 20N: Midterm 2 Solutions

EECS 20N: Midterm 2 Solutions EECS 0N: Midterm Solutions (a) The LTI system is not causal because its impulse response isn t zero for all time less than zero. See Figure. Figure : The system s impulse response in (a). (b) Recall that

More information

Lecture 11: Spectral Analysis

Lecture 11: Spectral Analysis Lecture 11: Spectral Analysis Methods For Estimating The Spectrum Walid Sharabati Purdue University Latest Update October 27, 2016 Professor Sharabati (Purdue University) Time Series Analysis October 27,

More information

Chapter 12 Variable Phase Interpolation

Chapter 12 Variable Phase Interpolation Chapter 12 Variable Phase Interpolation Contents Slide 1 Reason for Variable Phase Interpolation Slide 2 Another Need for Interpolation Slide 3 Ideal Impulse Sampling Slide 4 The Sampling Theorem Slide

More information

Sparse linear models

Sparse linear models Sparse linear models Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 2/22/2016 Introduction Linear transforms Frequency representation Short-time

More information

George Mason University Signals and Systems I Spring 2016

George Mason University Signals and Systems I Spring 2016 George Mason University Signals and Systems I Spring 206 Problem Set #6 Assigned: March, 206 Due Date: March 5, 206 Reading: This problem set is on Fourier series representations of periodic signals. The

More information

Vibrations and Waves Physics Year 1. Handout 1: Course Details

Vibrations and Waves Physics Year 1. Handout 1: Course Details Vibrations and Waves Jan-Feb 2011 Handout 1: Course Details Office Hours Vibrations and Waves Physics Year 1 Handout 1: Course Details Dr Carl Paterson (Blackett 621, carl.paterson@imperial.ac.uk Office

More information

Estimating Periodic Signals

Estimating Periodic Signals Department of Mathematics & Statistics Indian Institute of Technology Kanpur Most of this talk has been taken from the book Statistical Signal Processing, by D. Kundu and S. Nandi. August 26, 2012 Outline

More information

APPM 2360: Midterm 3 July 12, 2013.

APPM 2360: Midterm 3 July 12, 2013. APPM 2360: Midterm 3 July 12, 2013. ON THE FRONT OF YOUR BLUEBOOK write: (1) your name, (2) your instructor s name, (3) your recitation section number and (4) a grading table. Text books, class notes,

More information

PERIODIC STEADY STATE ANALYSIS, EFFECTIVE VALUE,

PERIODIC STEADY STATE ANALYSIS, EFFECTIVE VALUE, PERIODIC SEADY SAE ANALYSIS, EFFECIVE VALUE, DISORSION FACOR, POWER OF PERIODIC CURRENS t + Effective value of current (general definition) IRMS i () t dt Root Mean Square, in Czech boo denoted I he value

More information

Introduction to Signal Spaces

Introduction to Signal Spaces Introduction to Signal Spaces Selin Aviyente Department of Electrical and Computer Engineering Michigan State University January 12, 2010 Motivation Outline 1 Motivation 2 Vector Space 3 Inner Product

More information

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16 EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16 Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can use

More information

1 Simple Harmonic Oscillator

1 Simple Harmonic Oscillator Physics 1a Waves Lecture 3 Caltech, 10/09/18 1 Simple Harmonic Oscillator 1.4 General properties of Simple Harmonic Oscillator 1.4.4 Superposition of two independent SHO Suppose we have two SHOs described

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information