Jianfeng Feng. DCSP-15: Wiener Filter and Kalman Filter* Department of Computer Science Warwick Univ.

Size: px
Start display at page:

Download "Jianfeng Feng. DCSP-15: Wiener Filter and Kalman Filter* Department of Computer Science Warwick Univ."

Transcription

1 DCSP-15: Wiener Filter and Kalman Filter* Jianfeng Feng Department of Computer Science Warwick Univ., UK

2 Father of cybernetics Norbert Wiener: Harvard awarded Wiener a PhD, when he was 17.

3 Example The RGB format stores three color values, R, G and B, for each pixel. RGB = imread( bush.png'); size(rgb) ans = imshow(rgb)

4 Example

5 Setup Recorded signal x(n,m) = s(n,m) +x(n,m) True Signal noise for example, an image of 1500 X1200

6 Setup RGB = imread( bush.png'); I = rgb2gray(rgb); J = imnoise(i,'gaussian',0,0.0 05); figure, imshow(i), figure, imshow(j)

7 Setup To find a constant a(m,n) such that E ( a(m,n) x(m,n) s(m,n) ) 2 as small as possible y(m,n) = a(m,n) x(m,n) Different from the filter before, a(m,n) depends on (m,n) : Adaptive filter

8 Setup E( ax s) E( a x 2 axs s ) a Ex 2aExs Es The quanttity above is minimized if the derivative of it with respect to a is zero 2aEx 2-2Exs = 0 a = Exs E(s +x)s = = Es 2 = s 2 - Ex 2 Ex 2 Es 2 + Ex 2 Es 2 + Ex 2 s 2 (optimal Wiener gain)

9 Setup Without loss of generality, we assume that Es=0 Ex=0 for simplicity of formulation. S, x are independent

10 Algorithm The filtered output is given by y(n 1,n 2 ) = m(n 1,n 2 ) + s 2 (n 1,n 2 ) - Ex 2 (x(n s 2 (n 1,n 2 ) 1,n 2 ) - m(n 1,n 2 )) Note that the coefficient a depends on the position s is the local variance, Ex 2 is the global variance (noise)

11 Algorithm 1 NM s 1 n, n x( n, n ) x 1 2 ( n, n ) NM n, n where summation is over an area of N and M 3X 3 area (N=3, M=3)

12 Algorithm in Matlab wiener2 lowpass - filters an intensity image that has been degraded by constant power additive noise. wiener2 uses a pixelwise adaptive Wiener method based on statistics estimated from a local neighborhood of each pixel.

13 Example RGB = imread( bush.png'); I = rgb2gray(rgb); J = imnoise(i,'gaussian',0, 0.005); K = wiener2(j,[5 5]); figure, imshow(j), figure, imshow(k)

14 Further issues Large M and N reduce noise, but blur the photo small M and N will not affect noise optimal size should be used N=M=50 N=M=2

15 Further issues A more general version of Wiener: Kalman filter Kaman filter is widely used in many areas (still a very hot research topic) As an introductory course, we only give you a taste of its flavour

16 Kalman Filter

17 Kalman Filter: find out x k Have two variables state variable x which is not observable x k = F k x k-1 + B k u k + w k B k Input u k X k-1 Output x k Observable variable z which we can observe, but is contaminated by noise z k = H k x k +v k where w k ~ N(0,Q k ) and v k ~ N(0,R k ) are noise, F k and H k are constants.

18 Kalman Filter Predict For given x k-1 k-1 and p K-1 K-1 Predicted (a priori) state estimate x k k-1 = F k-1 x k-1 k-1 +B k u k Predicted (a priori) estimate covariance p k k-1 = F k-1 p k-1 k-1 F K-1 +Q K Update measurement residual y k = z k H k X k k-1 measurement residual covariance S k = H k P k k-1 H K +R k optimal Kalman gain K k = P k k-1 H k (S K ) -1 updated (a posteriori) state estimate X k k = x k k-1 + K k y k updated (a posteriori) estimate covariance p K K = (I-K k H k ) P k k-1

19 Kalman Filter clear all close all N=1000; q=1; r=1; f=0.1; h=0.2; x(1)=0.5; xsignal(1)=0.5; xhat=zeros(1,n+1); phat=zeros(1,n+1); xhat(1)=x(1); phat(1)=x(1); p(1)=1; z(1)=0.1; y(1)=1; for i=1:n xsignal(i+1)=f*xsignal(i)+randn(1,1)*sqrt(q)+1*cos(2* z(i+1)=h*xsignal(i)+randn(1,1)*sqrt(r); end for i=1:n x(i+1)=f*xhat(i)+1*cos(2*pi*0.01*i); p(i+1)=f*phat(i)*f+q; y(i+1)=z(i+1)-h*x(i+1); s(i+1)=h*p(i+1)*h+r; k(i+1)=p(i+1)*h/s(i+1); atemp=x(i+1)+k*y(i+1); xhat(1,i+1)=atemp(1,i+1); atemp=(1-k*h)*p(i+1); phat(i+1)=atemp(1,i+1); clear atemp end plot(xsignal); hold on plot(xhat,'r') plot(z,'g') plot(xhat,'r') It is one of the most useful filters in the literature, as shown below We do not have time to go further, but do read around

20 Applications Attitude and Heading Reference Systems Autopilot Battery state of charge (SoC) estimation [1][2] Brain-computer interface Chaotic signals Tracking and Vertex Fitting of charged particles in Particle Detectors [35] Tracking of objects in computer vision Dynamic positioning Economics, in particular macroeconomics, time series, and econometrics Inertial guidance system Orbit Determination Power system state estimation Radar tracker Satellite navigation systems Seismology [3] Sensorless control of AC motor variable-frequency drives Simultaneous localization and mapping Speech enhancement Weather forecasting Navigation system 3D modeling Structural health monitoring Human sensorimotor processing[36] Flight control unit of an Airbus A340 modern weather forecasting.

21 DCSP-Revision Jianfeng Feng Department of Computer Science Warwick Univ., UK

22 Fourier Thm. Any signal x(t) of period T can be represented as the sum of a set of cosinusoidal and sinusoidal waves of different frequencies and phases x(t) = A 0 + ì ï ï ï ï í ï ï ï ï îï å n=1 A n cos(nwt)+ A 0 =<1, x(t) >= 1 T T /2 ò -T /2 å n=1 B n sin(nwt) x(t)dt A n =< cos(nwt), x(t) >= 2 T B n =< sin(nwt), x(t) >= 2 T w = 2p T T /2 ò -T /2 T /2 ò -T /2 x(t) cos(nwt) dt x(t)sin(nwt) dt

23 Example I X(F) 2/p = Time domain Frequency domain

24 FT in complex exponential If the periodic signal is replace with an aperiodic signal (general case) FT is given by ì ïx(f) = FT(x) = í ïx(t) = FT -1 î (X) = ò - ò - x(t)exp(-2p jft)dt X(F)exp(2p jft)df Is that deadly simple?

25 Information Defined the information contained in an outcome x i in x={x 1, x 2,,x n } Entropy I(x i ) = - log 2 p(x i ) H(X)= S i P(x i ) I(x i ) = - S i P(x i ) log 2 P(x i )

26 Shannon's first theorem An instantaneous code can be found that encodes a source of entropy H(X) with an average number L s (average length) such that L s >= H(X)

27 Huffman coding code length L s = 0.729* *3* *5* * 5 = (remember entropy is 1.4)

28 Definition and properties: The DTFT gives the frequency representation of a discrete time sequence with infinite length. ì X(w) = DTFT(x) = å x[n]exp(- jwn) ï n=- í x[n] = IDTFT(X) = 1 p ï ò X(w)exp( jwn)dw î ï 2p -p X(w): frequency domain x [n]: time domain

29 DFT III Definition: The discrete Fourier transform (DFT) and its own inverse DFT (IDFT) associated with a vector X = ( X[0], X[1],, X[N-1] ) to a vector x = ( x[0], x[1],, x[n-1] ) of N data points, is given by ì N-1 æ X[k] = DFT{x[n]} = x[n]expç- j 2pk è N n ö ï å ø n=0 í x[n] = IDFT{X[k]} = 1 N-1 ï æ X[k]expç j 2pk N è N n ö ï å î ø k=0

30 Mysterious sound Fig. 2 clear all close all sampling_rate=100;%hz omega=30; %signal frequecy Hz N=20000; %total number of samples for i=1:n x_sound(i)=cos(2*pi*omega*i/sampling_rate); %sign x(i)=x_sound(i)+2*randn(1,1); %signal+noise axis(i)=sampling_rate*i/n; % for psd time(i)=i/sampling_rate; % for time trace end subplot(1,2,1) plot(time,x); %signal + noise, time trace xlabel('second') ylabel('x') subplot(1,2,2) plot(axis,abs(fft(x)),'r'); % magnitude of signal xlabel('hz'); ylabel('amplitude') sound(x_sound) Simple Matlab program is left on slides

31 Spectrogram t=0:0.001:2; % 2 1kHz sample rate y=chirp(t,100,1,200,'q'); % 100Hz, cross 200Hz at t=1sec spectrogram(y,128,120,128,1e3); % Display the spectrogram title('quadratic Chirp: start at 100Hz and cross 200Hz at t=1sec'); sound(y) y=chirp(t,100,1,200,'q'); % Fs=5000; filename = 'h.wav'; audiowrite(filename,y,fs); F r e q u e n c y Time (sec)

32 DFT for image DFT for x N 2-1 N X[k 1,k 2 ] = å 1-1 å x[n 1, n 2 ]exp(- 2p jk 1 n 1 ) exp(- 2p jk 2 n 2 ) n 2 =0 n 1 =0 N 1 N 2 IDFT for X x[n 1, n 2 ] = 1 N 2-1 N å 1-1 å X[k 1, k 2 ]exp( 2p jk 1 n 1 ) exp( 2p jk 2 n 2 ) N 1 N 2 k2 =0 k 1 =0 N 1 N 2

33 Example I clear all close all figure(1) I = imread('peppers.png'); imshow(i); K=rgb2gray(I); figure(2) F = fft2(k); figure; imagesc(100*log(1+abs(fftshift(f)))); colormap(gray); title('magnitude spectrum'); figure; imagesc(angle(f)); colormap(gray) Original picture Gray scale picture

34 Example I

35 simple filter design Notice two facts: The signal has a frequency spectrum within the interval 0 to F s /2 khz. The disturbance is at frequency F 0 (1.5) khz. Design and implement a filter that rejects the disturbance without affecting the signal excessively. We will follow three steps:

36 Step 1: Frequency domain specifications Reject the signal at the frequency of the disturbance. Ideally, we would like to have the following frequency response: where w 0 =2p (F 0 /F s ) = p/4 radians, the digital frequency of the disturbance.

37 Step 2: Determine poles and zeros We need to place two zeros on the unit circle z 1 =exp(jw 0 )=exp(jp/4) and z 2 =exp(-jw 0 )=exp(-jp/4) z 2 H(z) = k(z - z 1 )(z - z 2 ) = k[z 2 - (z 1 + z 2 )z + z 1 z 2 ] = k[z 2 - (1.414)z +1] p/4

38 Step 2: Determine poles and zeros We need to place two zeros on the unit circle z 1 =exp(jw 0 )=exp(jp/4) and z 2 =exp(-jw 0 )=exp(-jp/4) z 2 H(z) = k(z - z 1 )(z - z 2 ) = k[z 2 - (z 1 + z 2 )z + z 1 z 2 ] = k[z 2 - (1.414)z +1] If we choose, say K=1, the frequency response is shown in the figure.

39 PSD and Phase As we can see, it rejects the desired frequency As expected, but greatly distorts the signal

40 Result

41 Recursive Filter A better choice would be to select the poles close to the zeros, within the unit circle, for stability. For example, let the poles be p 1 = r exp(jw 0 ) and p 2 = r exp(-jw 0 ). With r =0.95, for example we obtain the transfer function H(z) = k (z - z 1)(z - z 2 ) (z - p 1 )(z - p 2 )

42 Recursive Filter H(z) = k (z - z 1)(z - z 2 ) (z - p 1 )(z - p 2 ) = k (z - p 1 +e)(z - z 2 ) (z - p 1 )(z - p 2 ) æ = kç1+ è e ö (z - z 2) (z - p 1 ) ø(z - p 2 ) e= z 1 - p 1 = (1-r) z 1 ~ 0. So we have H(w 0 ) = 0, but close to 1 everywhere else

43 Recursive Filter We choose the overall gain k so that H(z) z=1 =1. This yields the frequency response function as shown in the figures below. H(z) = k (z - z 1 )(z - z 2 ) (z - p 1 )(z - p 2 ) = z z +1 z z

44 Step 3: Determine the difference equation in the time domain From the transfer function, the difference equation is determined by inspection: y(n)= x(n) x(n-1) x(n-2) y(n-1) y(n-2)

45 Step 3: difference equation Easily implemented as a recursion in a high-level language. The final signal y(n) with the frequency spectrum shown in the following Fig., We notice the absence of the disturbance.

46 Step 3: Outcomes

47 Matched filter Define a i = s N-i (reversing the order) y(n) = a 0 x(n) + a 1 x(n-1) + + a N x(n-n) So when the signal arrives we have y(n) = S N x(n) + S N-1 x(n-1) + + S 1 x(n-n) = S N S N + S N-1 S N S 1 S 1

48 Wiener Filter The filtered output is given by y(n 1,n 2 ) = m(n 1,n 2 ) + s 2 (n 1,n 2 ) - Ex 2 (x(n s 2 (n 1,n 2 ) 1,n 2 ) - m(n 1,n 2 )) Note that the coefficient a depends on the position s is the local variance, Ex 2 is the global variance (noise)

49 past papers before the exam

50 Next week No lecture next Monday Assignment help Tuesday (same time and venue as lecture) Revision class (second week, next term)

DCSP-3: Fourier Transform II

DCSP-3: Fourier Transform II DCSP-3: Fourier Transform II Jianfeng Feng Department of Computer Science Warwick Univ., UK Jianfeng.feng@warwick.ac.uk http://www.dcs.warwick.ac.uk/~feng/dcsp.html Fourier Theorem This representation

More information

DCSP-2: Fourier Transform

DCSP-2: Fourier Transform DCSP-2: Fourier Transform Jianfeng Feng Department of Computer Science Warwick Univ., UK Jianfeng.feng@warwick.ac.uk http://www.dcs.warwick.ac.uk/~feng/dcsp.html Data transmission Channel characteristics,

More information

DCSP-5: Fourier Transform II

DCSP-5: Fourier Transform II DCSP-5: Fourier Transform II Jianfeng Feng Department of Computer Science Warwick Univ., UK Jianfeng.feng@warwick.ac.uk http://www.dcs.warwick.ac.uk/~feng/dcsp.html Assignment:2018 Q1: you should be able

More information

Miscellaneous. Regarding reading materials. Again, ask questions (if you have) and ask them earlier

Miscellaneous. Regarding reading materials. Again, ask questions (if you have) and ask them earlier Miscellaneous Regarding reading materials Reading materials will be provided as needed If no assigned reading, it means I think the material from class is sufficient Should be enough for you to do your

More information

E : Lecture 1 Introduction

E : Lecture 1 Introduction E85.2607: Lecture 1 Introduction 1 Administrivia 2 DSP review 3 Fun with Matlab E85.2607: Lecture 1 Introduction 2010-01-21 1 / 24 Course overview Advanced Digital Signal Theory Design, analysis, and implementation

More information

DCSP-3: Minimal Length Coding. Jianfeng Feng

DCSP-3: Minimal Length Coding. Jianfeng Feng DCSP-3: Minimal Length Coding Jianfeng Feng Department of Computer Science Warwick Univ., UK Jianfeng.feng@warwick.ac.uk http://www.dcs.warwick.ac.uk/~feng/dcsp.html Automatic Image Caption (better than

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche

More information

In this Lecture. Frequency domain analysis

In this Lecture. Frequency domain analysis In this Lecture Frequency domain analysis Introduction In most cases we want to know the frequency content of our signal Why? Most popular analysis in frequency domain is based on work of Joseph Fourier

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 11 Adaptive Filtering 14/03/04 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Topic 3: Fourier Series (FS)

Topic 3: Fourier Series (FS) ELEC264: Signals And Systems Topic 3: Fourier Series (FS) o o o o Introduction to frequency analysis of signals CT FS Fourier series of CT periodic signals Signal Symmetry and CT Fourier Series Properties

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Review of Discrete-Time System

Review of Discrete-Time System Review of Discrete-Time System Electrical & Computer Engineering University of Maryland, College Park Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu.

More information

CS 532: 3D Computer Vision 6 th Set of Notes

CS 532: 3D Computer Vision 6 th Set of Notes 1 CS 532: 3D Computer Vision 6 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Intro to Covariance

More information

LAB 2: DTFT, DFT, and DFT Spectral Analysis Summer 2011

LAB 2: DTFT, DFT, and DFT Spectral Analysis Summer 2011 University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering ECE 311: Digital Signal Processing Lab Chandra Radhakrishnan Peter Kairouz LAB 2: DTFT, DFT, and DFT Spectral

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Signal Processing Lecture 1 Time-Dependent FT Announcements! Midterm: 2/22/216 Open everything... but cheat sheet recommended instead 1am-12pm How s the lab going? Frequency Analysis with

More information

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 )

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 ) Review: Poles and Zeros of Fractional Form Let H() = P()/Q() be the system function of a rational form. Let us represent both P() and Q() as polynomials of (not - ) Then Poles: the roots of Q()=0 Zeros:

More information

III. Time Domain Analysis of systems

III. Time Domain Analysis of systems 1 III. Time Domain Analysis of systems Here, we adapt properties of continuous time systems to discrete time systems Section 2.2-2.5, pp 17-39 System Notation y(n) = T[ x(n) ] A. Types of Systems Memoryless

More information

6.003 Signal Processing

6.003 Signal Processing 6.003 Signal Processing Week 6, Lecture A: The Discrete Fourier Transform (DFT) Adam Hartz hz@mit.edu What is 6.003? What is a signal? Abstractly, a signal is a function that conveys information Signal

More information

Continuous Fourier transform of a Gaussian Function

Continuous Fourier transform of a Gaussian Function Continuous Fourier transform of a Gaussian Function Gaussian function: e t2 /(2σ 2 ) The CFT of a Gaussian function is also a Gaussian function (i.e., time domain is Gaussian, then the frequency domain

More information

Random signals II. ÚPGM FIT VUT Brno,

Random signals II. ÚPGM FIT VUT Brno, Random signals II. Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 Temporal estimate of autocorrelation coefficients for ergodic discrete-time random process. ˆR[k] = 1 N N 1 n=0 x[n]x[n + k],

More information

Summary of lecture 1. E x = E x =T. X T (e i!t ) which motivates us to define the energy spectrum Φ xx (!) = jx (i!)j 2 Z 1 Z =T. 2 d!

Summary of lecture 1. E x = E x =T. X T (e i!t ) which motivates us to define the energy spectrum Φ xx (!) = jx (i!)j 2 Z 1 Z =T. 2 d! Summary of lecture I Continuous time: FS X FS [n] for periodic signals, FT X (i!) for non-periodic signals. II Discrete time: DTFT X T (e i!t ) III Poisson s summation formula: describes the relationship

More information

Digital Signal Processing, Lecture 2 Frequency description continued, DFT

Digital Signal Processing, Lecture 2 Frequency description continued, DFT Outline cture 2 2 Digital Signal Processing, cture 2 Frequency description continued, DFT Thomas Schön Division of Automatic Control Department of Electrical Engineering Linköping i University it E-mail:

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 6: January 31, 2017 Inverse z-transform Lecture Outline! z-transform " Tie up loose ends " Regions of convergence properties! Inverse z-transform " Inspection " Partial

More information

Interchange of Filtering and Downsampling/Upsampling

Interchange of Filtering and Downsampling/Upsampling Interchange of Filtering and Downsampling/Upsampling Downsampling and upsampling are linear systems, but not LTI systems. They cannot be implemented by difference equations, and so we cannot apply z-transform

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 6: January 30, 2018 Inverse z-transform Lecture Outline! z-transform " Tie up loose ends " Regions of convergence properties! Inverse z-transform " Inspection " Partial

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING ECE 06 Summer 08 Final Exam July 7, 08 NAME: Important Notes: Do not unstaple the test. Closed book and notes, except for three

More information

Fourier analysis of discrete-time signals. (Lathi Chapt. 10 and these slides)

Fourier analysis of discrete-time signals. (Lathi Chapt. 10 and these slides) Fourier analysis of discrete-time signals (Lathi Chapt. 10 and these slides) Towards the discrete-time Fourier transform How we will get there? Periodic discrete-time signal representation by Discrete-time

More information

DISCRETE FOURIER TRANSFORM

DISCRETE FOURIER TRANSFORM DISCRETE FOURIER TRANSFORM 1. Introduction The sampled discrete-time fourier transform (DTFT) of a finite length, discrete-time signal is known as the discrete Fourier transform (DFT). The DFT contains

More information

From Fourier Series to Analysis of Non-stationary Signals - X

From Fourier Series to Analysis of Non-stationary Signals - X From Fourier Series to Analysis of Non-stationary Signals - X prof. Miroslav Vlcek December 14, 21 Contents Stationary and non-stationary 1 Stationary and non-stationary 2 3 Contents Stationary and non-stationary

More information

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Kalman Filter Kalman Filter Predict: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Update: K = P k k 1 Hk T (H k P k k 1 Hk T + R) 1 x k k = x k k 1 + K(z k H k x k k 1 ) P k k =(I

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 02 DSP Fundamentals 14/01/21 http://www.ee.unlv.edu/~b1morris/ee482/

More information

ECE 450 Homework #3. 1. Given the joint density function f XY (x,y) = 0.5 1<x<2, 2<y< <x<4, 2<y<3 0 else

ECE 450 Homework #3. 1. Given the joint density function f XY (x,y) = 0.5 1<x<2, 2<y< <x<4, 2<y<3 0 else ECE 450 Homework #3 0. Consider the random variables X and Y, whose values are a function of the number showing when a single die is tossed, as show below: Exp. Outcome 1 3 4 5 6 X 3 3 4 4 Y 0 1 3 4 5

More information

Correlation, discrete Fourier transforms and the power spectral density

Correlation, discrete Fourier transforms and the power spectral density Correlation, discrete Fourier transforms and the power spectral density visuals to accompany lectures, notes and m-files by Tak Igusa tigusa@jhu.edu Department of Civil Engineering Johns Hopkins University

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 11 Adaptive Filtering 14/03/04 http://www.ee.unlv.edu/~b1morris/ee482/

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:305:45 CBC C222 Lecture 8 Frequency Analysis 14/02/18 http://www.ee.unlv.edu/~b1morris/ee482/

More information

ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM. Dr. Lim Chee Chin

ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM. Dr. Lim Chee Chin ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM Dr. Lim Chee Chin Outline Introduction Discrete Fourier Series Properties of Discrete Fourier Series Time domain aliasing due to frequency

More information

6.003 Signal Processing

6.003 Signal Processing 6.003 Signal Processing Week 6, Lecture A: The Discrete Fourier Transform (DFT) Adam Hartz hz@mit.edu What is 6.003? What is a signal? Abstractly, a signal is a function that conveys information Signal

More information

Chapter 2: Problem Solutions

Chapter 2: Problem Solutions Chapter 2: Problem Solutions Discrete Time Processing of Continuous Time Signals Sampling à Problem 2.1. Problem: Consider a sinusoidal signal and let us sample it at a frequency F s 2kHz. xt 3cos1000t

More information

Lec 05 Arithmetic Coding

Lec 05 Arithmetic Coding ECE 5578 Multimedia Communication Lec 05 Arithmetic Coding Zhu Li Dept of CSEE, UMKC web: http://l.web.umkc.edu/lizhu phone: x2346 Z. Li, Multimedia Communciation, 208 p. Outline Lecture 04 ReCap Arithmetic

More information

Lecture 10. Digital Signal Processing. Chapter 7. Discrete Fourier transform DFT. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev.

Lecture 10. Digital Signal Processing. Chapter 7. Discrete Fourier transform DFT. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev. Lecture 10 Digital Signal Processing Chapter 7 Discrete Fourier transform DFT Mikael Swartling Nedelko Grbic Bengt Mandersson rev. 016 Department of Electrical and Information Technology Lund University

More information

EECE 301 Signals & Systems

EECE 301 Signals & Systems EECE 30 Signals & Systems Prof. Mark Fowler Note Set #22 D-T Systems: DT Systems & Difference Equations / D-T System Models So far we ve seen how to use the FT to analyze circuits Use phasors and standard

More information

How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches

How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches Difference Equations (an LTI system) x[n]: input, y[n]: output That is, building a system that maes use of the current and previous

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 4 Digital Signal Processing Pro. Mark Fowler ote Set # Using the DFT or Spectral Analysis o Signals Reading Assignment: Sect. 7.4 o Proakis & Manolakis Ch. 6 o Porat s Book /9 Goal o Practical Spectral

More information

Chapter 8 The Discrete Fourier Transform

Chapter 8 The Discrete Fourier Transform Chapter 8 The Discrete Fourier Transform Introduction Representation of periodic sequences: the discrete Fourier series Properties of the DFS The Fourier transform of periodic signals Sampling the Fourier

More information

6 The SVD Applied to Signal and Image Deblurring

6 The SVD Applied to Signal and Image Deblurring 6 The SVD Applied to Signal and Image Deblurring We will discuss the restoration of one-dimensional signals and two-dimensional gray-scale images that have been contaminated by blur and noise. After an

More information

Responses of Digital Filters Chapter Intended Learning Outcomes:

Responses of Digital Filters Chapter Intended Learning Outcomes: Responses of Digital Filters Chapter Intended Learning Outcomes: (i) Understanding the relationships between impulse response, frequency response, difference equation and transfer function in characterizing

More information

Digital Signal Processing Chapter 10. Fourier Analysis of Discrete- Time Signals and Systems CHI. CES Engineering. Prof. Yasser Mostafa Kadah

Digital Signal Processing Chapter 10. Fourier Analysis of Discrete- Time Signals and Systems CHI. CES Engineering. Prof. Yasser Mostafa Kadah Digital Signal Processing Chapter 10 Fourier Analysis of Discrete- Time Signals and Systems Prof. Yasser Mostafa Kadah CHI CES Engineering Discrete-Time Fourier Transform Sampled time domain signal has

More information

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE)

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) 1. For the signal shown in Fig. 1, find x(2t + 3). i. Fig. 1 2. What is the classification of the systems? 3. What are the Dirichlet s conditions of Fourier

More information

8 The SVD Applied to Signal and Image Deblurring

8 The SVD Applied to Signal and Image Deblurring 8 The SVD Applied to Signal and Image Deblurring We will discuss the restoration of one-dimensional signals and two-dimensional gray-scale images that have been contaminated by blur and noise. After an

More information

8 The SVD Applied to Signal and Image Deblurring

8 The SVD Applied to Signal and Image Deblurring 8 The SVD Applied to Signal and Image Deblurring We will discuss the restoration of one-dimensional signals and two-dimensional gray-scale images that have been contaminated by blur and noise. After an

More information

EE376A - Information Theory Final, Monday March 14th 2016 Solutions. Please start answering each question on a new page of the answer booklet.

EE376A - Information Theory Final, Monday March 14th 2016 Solutions. Please start answering each question on a new page of the answer booklet. EE376A - Information Theory Final, Monday March 14th 216 Solutions Instructions: You have three hours, 3.3PM - 6.3PM The exam has 4 questions, totaling 12 points. Please start answering each question on

More information

CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation

CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 23, 2006 1 Exponentials The exponential is

More information

1 1.27z z 2. 1 z H 2

1 1.27z z 2. 1 z H 2 E481 Digital Signal Processing Exam Date: Thursday -1-1 16:15 18:45 Final Exam - Solutions Dan Ellis 1. (a) In this direct-form II second-order-section filter, the first stage has

More information

PS403 - Digital Signal processing

PS403 - Digital Signal processing PS403 - Digital Signal processing III. DSP - Digital Fourier Series and Transforms Key Text: Digital Signal Processing with Computer Applications (2 nd Ed.) Paul A Lynn and Wolfgang Fuerst, (Publisher:

More information

EA2.3 - Electronics 2 1

EA2.3 - Electronics 2 1 In the previous lecture, I talked about the idea of complex frequency s, where s = σ + jω. Using such concept of complex frequency allows us to analyse signals and systems with better generality. In this

More information

Digital Signal Processing: Signal Transforms

Digital Signal Processing: Signal Transforms Digital Signal Processing: Signal Transforms Aishy Amer, Mohammed Ghazal January 19, 1 Instructions: 1. This tutorial introduces frequency analysis in Matlab using the Fourier and z transforms.. More Matlab

More information

Lesson 1. Optimal signalbehandling LTH. September Statistical Digital Signal Processing and Modeling, Hayes, M:

Lesson 1. Optimal signalbehandling LTH. September Statistical Digital Signal Processing and Modeling, Hayes, M: Lesson 1 Optimal Signal Processing Optimal signalbehandling LTH September 2013 Statistical Digital Signal Processing and Modeling, Hayes, M: John Wiley & Sons, 1996. ISBN 0471594318 Nedelko Grbic Mtrl

More information

Spectral Analysis - Introduction

Spectral Analysis - Introduction Spectral Analysis - Introduction Initial Code Introduction Summer Semester 011/01 Lukas Vacha In previous lectures we studied stationary time series in terms of quantities that are functions of time. The

More information

6.4 Kalman Filter Equations

6.4 Kalman Filter Equations 6.4 Kalman Filter Equations 6.4.1 Recap: Auxiliary variables Recall the definition of the auxiliary random variables x p k) and x m k): Init: x m 0) := x0) S1: x p k) := Ak 1)x m k 1) +uk 1) +vk 1) S2:

More information

The Discrete Fourier Transform

The Discrete Fourier Transform In [ ]: cd matlab pwd The Discrete Fourier Transform Scope and Background Reading This session introduces the z-transform which is used in the analysis of discrete time systems. As for the Fourier and

More information

BASICS OF COMPRESSION THEORY

BASICS OF COMPRESSION THEORY BASICS OF COMPRESSION THEORY Why Compression? Task: storage and transport of multimedia information. E.g.: non-interlaced HDTV: 0x0x0x = Mb/s!! Solutions: Develop technologies for higher bandwidth Find

More information

Frequency Domain Speech Analysis

Frequency Domain Speech Analysis Frequency Domain Speech Analysis Short Time Fourier Analysis Cepstral Analysis Windowed (short time) Fourier Transform Spectrogram of speech signals Filter bank implementation* (Real) cepstrum and complex

More information

From Fourier Series to Analysis of Non-stationary Signals - II

From Fourier Series to Analysis of Non-stationary Signals - II From Fourier Series to Analysis of Non-stationary Signals - II prof. Miroslav Vlcek October 10, 2017 Contents Signals 1 Signals 2 3 4 Contents Signals 1 Signals 2 3 4 Contents Signals 1 Signals 2 3 4 Contents

More information

( ) John A. Quinn Lecture. ESE 531: Digital Signal Processing. Lecture Outline. Frequency Response of LTI System. Example: Zero on Real Axis

( ) John A. Quinn Lecture. ESE 531: Digital Signal Processing. Lecture Outline. Frequency Response of LTI System. Example: Zero on Real Axis John A. Quinn Lecture ESE 531: Digital Signal Processing Lec 15: March 21, 2017 Review, Generalized Linear Phase Systems Penn ESE 531 Spring 2017 Khanna Lecture Outline!!! 2 Frequency Response of LTI System

More information

Need for transformation?

Need for transformation? Z-TRANSFORM In today s class Z-transform Unilateral Z-transform Bilateral Z-transform Region of Convergence Inverse Z-transform Power Series method Partial Fraction method Solution of difference equations

More information

Extended Kalman Filter Derivation Example application: frequency tracking

Extended Kalman Filter Derivation Example application: frequency tracking Extended Kalman Filter Derivation Example application: frequency tracking Nonlinear State Space Model Consider the nonlinear state-space model of a random process x n+ = f n (x n )+g n (x n )u n y n =

More information

UNIT 1. SIGNALS AND SYSTEM

UNIT 1. SIGNALS AND SYSTEM Page no: 1 UNIT 1. SIGNALS AND SYSTEM INTRODUCTION A SIGNAL is defined as any physical quantity that changes with time, distance, speed, position, pressure, temperature or some other quantity. A SIGNAL

More information

Ch. 15 Wavelet-Based Compression

Ch. 15 Wavelet-Based Compression Ch. 15 Wavelet-Based Compression 1 Origins and Applications The Wavelet Transform (WT) is a signal processing tool that is replacing the Fourier Transform (FT) in many (but not all!) applications. WT theory

More information

Fourier Methods in Digital Signal Processing Final Exam ME 579, Spring 2015 NAME

Fourier Methods in Digital Signal Processing Final Exam ME 579, Spring 2015 NAME Fourier Methods in Digital Signal Processing Final Exam ME 579, Instructions for this CLOSED BOOK EXAM 2 hours long. Monday, May 8th, 8-10am in ME1051 Answer FIVE Questions, at LEAST ONE from each section.

More information

SAMPLE EXAMINATION PAPER (with numerical answers)

SAMPLE EXAMINATION PAPER (with numerical answers) CID No: IMPERIAL COLLEGE LONDON Design Engineering MEng EXAMINATIONS For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination

More information

GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs

GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs STATISTICS 4 Summary Notes. Geometric and Exponential Distributions GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs P(X = x) = ( p) x p x =,, 3,...

More information

The Kalman Filter (part 1) Definition. Rudolf Emil Kalman. Why do we need a filter? Definition. HCI/ComS 575X: Computational Perception.

The Kalman Filter (part 1) Definition. Rudolf Emil Kalman. Why do we need a filter? Definition. HCI/ComS 575X: Computational Perception. The Kalman Filter (part 1) HCI/ComS 575X: Computational Perception Instructor: Alexander Stoytchev http://www.cs.iastate.edu/~alex/classes/2007_spring_575x/ March 5, 2007 HCI/ComS 575X: Computational Perception

More information

SIGNALS AND SYSTEMS. Unit IV. Analysis of DT signals

SIGNALS AND SYSTEMS. Unit IV. Analysis of DT signals SIGNALS AND SYSTEMS Unit IV Analysis of DT signals Contents: 4.1 Discrete Time Fourier Transform 4.2 Discrete Fourier Transform 4.3 Z Transform 4.4 Properties of Z Transform 4.5 Relationship between Z

More information

MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012

MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012 MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012 Unit Outline Introduction to the course: Course goals, assessment, etc... What is Control Theory A bit of jargon,

More information

= 4. e t/a dt (2) = 4ae t/a. = 4a a = 1 4. (4) + a 2 e +j2πft 2

= 4. e t/a dt (2) = 4ae t/a. = 4a a = 1 4. (4) + a 2 e +j2πft 2 ECE 341: Probability and Random Processes for Engineers, Spring 2012 Homework 13 - Last homework Name: Assigned: 04.18.2012 Due: 04.25.2012 Problem 1. Let X(t) be the input to a linear time-invariant filter.

More information

ECE Homework Set 3

ECE Homework Set 3 ECE 450 1 Homework Set 3 0. Consider the random variables X and Y, whose values are a function of the number showing when a single die is tossed, as show below: Exp. Outcome 1 3 4 5 6 X 3 3 4 4 Y 0 1 3

More information

Noise - irrelevant data; variability in a quantity that has no meaning or significance. In most cases this is modeled as a random variable.

Noise - irrelevant data; variability in a quantity that has no meaning or significance. In most cases this is modeled as a random variable. 1.1 Signals and Systems Signals convey information. Systems respond to (or process) information. Engineers desire mathematical models for signals and systems in order to solve design problems efficiently

More information

Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum

Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum CEN352, DR. Nassim Ammour, King Saud University 1 Fourier Transform History Born 21 March 1768 ( Auxerre ). Died 16 May 1830 ( Paris ) French

More information

Final Exam January 31, Solutions

Final Exam January 31, Solutions Final Exam January 31, 014 Signals & Systems (151-0575-01) Prof. R. D Andrea & P. Reist Solutions Exam Duration: Number of Problems: Total Points: Permitted aids: Important: 150 minutes 7 problems 50 points

More information

! z-transform. " Tie up loose ends. " Regions of convergence properties. ! Inverse z-transform. " Inspection. " Partial fraction

! z-transform.  Tie up loose ends.  Regions of convergence properties. ! Inverse z-transform.  Inspection.  Partial fraction Lecture Outline ESE 53: Digital Signal Processing Lec 6: January 3, 207 Inverse z-transform! z-transform " Tie up loose ends " gions of convergence properties! Inverse z-transform " Inspection " Partial

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 6.2: Kalman Filter Jürgen Sturm Technische Universität München Motivation Bayes filter is a useful tool for state

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Spring 2014 TTh 14:30-15:45 CBC C313 Lecture 05 Image Processing Basics 13/02/04 http://www.ee.unlv.edu/~b1morris/ecg782/

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A Classification of systems : Continuous and Discrete

More information

Digital Image Processing

Digital Image Processing Digital Image Processing 2D SYSTEMS & PRELIMINARIES Hamid R. Rabiee Fall 2015 Outline 2 Two Dimensional Fourier & Z-transform Toeplitz & Circulant Matrices Orthogonal & Unitary Matrices Block Matrices

More information

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu Anwesan Pal:

More information

6.003: Signal Processing

6.003: Signal Processing 6.003: Signal Processing Discrete Fourier Transform Discrete Fourier Transform (DFT) Relations to Discrete-Time Fourier Transform (DTFT) Relations to Discrete-Time Fourier Series (DTFS) October 16, 2018

More information

L29: Fourier analysis

L29: Fourier analysis L29: Fourier analysis Introduction The discrete Fourier Transform (DFT) The DFT matrix The Fast Fourier Transform (FFT) The Short-time Fourier Transform (STFT) Fourier Descriptors CSCE 666 Pattern Analysis

More information

ENGR352 Problem Set 02

ENGR352 Problem Set 02 engr352/engr352p02 September 13, 2018) ENGR352 Problem Set 02 Transfer function of an estimator 1. Using Eq. (1.1.4-27) from the text, find the correct value of r ss (the result given in the text is incorrect).

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

probability of k samples out of J fall in R.

probability of k samples out of J fall in R. Nonparametric Techniques for Density Estimation (DHS Ch. 4) n Introduction n Estimation Procedure n Parzen Window Estimation n Parzen Window Example n K n -Nearest Neighbor Estimation Introduction Suppose

More information

Laplace Transforms and use in Automatic Control

Laplace Transforms and use in Automatic Control Laplace Transforms and use in Automatic Control P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: P.Santosh Krishna, SYSCON Recap Fourier series Fourier transform: aperiodic Convolution integral

More information

ECE Lecture #10 Overview

ECE Lecture #10 Overview ECE 450 - Lecture #0 Overview Introduction to Random Vectors CDF, PDF Mean Vector, Covariance Matrix Jointly Gaussian RV s: vector form of pdf Introduction to Random (or Stochastic) Processes Definitions

More information

Lecture 5. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith)

Lecture 5. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) Lecture 5 The Digital Fourier Transform (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) 1 -. 8 -. 6 -. 4 -. 2-1 -. 8 -. 6 -. 4 -. 2 -. 2. 4. 6. 8 1

More information

Announcements (repeat) Principal Components Analysis

Announcements (repeat) Principal Components Analysis 4/7/7 Announcements repeat Principal Components Analysis CS 5 Lecture #9 April 4 th, 7 PA4 is due Monday, April 7 th Test # will be Wednesday, April 9 th Test #3 is Monday, May 8 th at 8AM Just hour long

More information

Each problem is worth 25 points, and you may solve the problems in any order.

Each problem is worth 25 points, and you may solve the problems in any order. EE 120: Signals & Systems Department of Electrical Engineering and Computer Sciences University of California, Berkeley Midterm Exam #2 April 11, 2016, 2:10-4:00pm Instructions: There are four questions

More information

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein Kalman filtering and friends: Inference in time series models Herke van Hoof slides mostly by Michael Rubinstein Problem overview Goal Estimate most probable state at time k using measurement up to time

More information

Fourier Transform 4: z-transform (part 2) & Introduction to 2D Fourier Analysis

Fourier Transform 4: z-transform (part 2) & Introduction to 2D Fourier Analysis 052600 VU Signal and Image Processing Fourier Transform 4: z-transform (part 2) & Introduction to 2D Fourier Analysis Torsten Möller + Hrvoje Bogunović + Raphael Sahann torsten.moeller@univie.ac.at hrvoje.bogunovic@meduniwien.ac.at

More information

Signals and Systems. Problem Set: The z-transform and DT Fourier Transform

Signals and Systems. Problem Set: The z-transform and DT Fourier Transform Signals and Systems Problem Set: The z-transform and DT Fourier Transform Updated: October 9, 7 Problem Set Problem - Transfer functions in MATLAB A discrete-time, causal LTI system is described by the

More information

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes Electrical & Computer Engineering North Carolina State University Acknowledgment: ECE792-41 slides were adapted

More information