Assignment 3 Solutions

Size: px
Start display at page:

Download "Assignment 3 Solutions"

Transcription

1 Assignment Solutions Networks and systems August 8, 7. Consider an LTI system with transfer function H(jw) = input is sin(t + π 4 ), what is the output? +jw. If the Solution : C For an LTI system with frequency response H(jw) and input A sin(ω t+θ) the output is given by A H(jω ) sin(ω t + θ + H(jω )). H(jω ) = + = H(jω )) = π 4 Output = sin(t + π 4 π 4 ) = sin(t). In the circuit shown below, v s (t) is the input and v c (t) the output. All initial conditions are zero. If v s (t) = cos(πt+ π 4 ) sin( πt π 6 ), find the steady-state value of v c (t) Solution : B

2 For an LTI system with frequency response H(jw) and input A sin(ω t+θ) the output is given by A H(jω ) sin(ω t + θ + H(jω )). Similarly input A cos(ω t + θ) gives A H(jω ) cos(ω t + θ + H(jω )). H(jω) = jωc R + jωc = + jωcr (a) When input = cos(πt + π 4 ) ω = π H(jω ) = + j π. = + j = π H(jω ) = π 4 Output = cos(πt + π 4 π 4 ) (b) When Input = sin( πt π 6 ) ω = π H(jω ) = + j π. = + j = π H(jω ) = π Output = sin( πt π 6 π ) Total output : = cos(πt + π 4 π 4 ) sin( πt π 6 π ) = 5 cos(πt) + cos( πt). If the signal x(t) = +4 cos(ω t π 6 )+ cos(ω t+ π ) is written as Fourier series in the form a + n= [a n cos(nω t) + b n sin(nω t)], find the value of a + a a + b + b + b. Solution : A cos(ω t π 6 ) = cos(ω t) + sin(ω t)

3 cos(ω t + π ) = cos(ω t) sin(ω t) x(t) = + 4[cos(ω t) + sin(ω t) ] + [cos(ω t) sin(ω t) x(t) = + cos(ω t) + cos(ω t) sin(ω t) + sin(ω t) Hence we have a = ; a = ; a = ; b = ; b = ; b = a + a a + b + b + b = ] 4. Evaluate the integral sin(mπt) sin(nπt)dt. Solution : A,D I = sin(mπt) sin(nπt)dt = cos((m n)πt) cos((m + n)πt) = [ (sin((m n)π) (m n)π ) ( sin((m + n)π) ) ] (m + n)π m = and n= = I = = [ sin(π) π sin(π) ] π m = and n= = I = [ π ] π = sin(ax) (Since lim = a) x x 5. Evaluate the integral sin(mπt) cos(nπt)dt Solution : A,C I = = = sin(mπt) cos(nπt)dt [ sin((m + n)πt) + sin((m n)πt) ( cos((m + n)π) (m + n)π ) ( cos((m n)π) ) ] + (m + n)π (m n)π (m n)π

4 m = and n= = m = and n= = I = [ ] = I = = [ cos(6π) π + cos(π) ] π cos(ax) sin (ax) (Since lim = lim = ) x x x x 6. Find the DC term a in the Fourier series expansion of the following signal. x(t) t Solution : D Time Period = 4 DC term = a = T T x(t)dt T x(t)dt = Area of triangle = = Hence a = 4 7. For the following signal which of the following is/are true? x(t) 4 4 t Solution : A,B 4

5 (a) DC term is zero since signed area between - to is zero. (b) Since x(t) has half wave anti symmetry i.e. x(t + T ) = x(t) the even harmonics are zero. (c) Odd harmonics are clearly not zero. (d) Cosine terms are not zero because x(t) is NOT odd symmetric. 8. Identify the even-symmetric functions in the following: Solution : C Only option c is even symmetric 9. Identify the Odd-symmetric functions in the following: Solution : A,D Options a and d are odd symmetric. Let f(t) = f e (t) + f o (t) = e j(t+ π ) where fe (t) = f e ( t) (even part) and f o (t) = f o ( t) (odd part) Solution : B,D f(t) = e j(t+ π ) f(t) = cos(t + π ) + j sin(t + π ) f(t) = sin(t) + j cos(t) f( t) = sin(t) + j cos(t) f e (t) = f(t) + f( t) f e (t) = cos(t + π ) + j sin(t + π ) f(t) f( t) f o (t) = f o (t) = sin(t) 5

6 . Which of the following signals has only sine terms in the Fourier Series expansion? Solution : A,C (a) sin(t) cos(t) =.5 sin(t) and hence contains only sine terms.(same result also be concluded from observing that it has odd symmetry) (b) sin (t) = cos(t) and thus contains a cos term. (c) Possesses odd symmetry and hence contains only sine terms. (d) Does not possess odd symmetry and hence does NOT contain only sine terms.. Let x(t) = x(t + T ).If its FS expansion has only even-order harmonics, the fundamental period of the signal must be T / Solution : False Suppose If the fundamental period is T even then there are only even 4 order harmonics present and hence we cannot conclude that fundamental period is T Let us consider an illustrative example x(t) = sin(4t) + sin(8t) Consider T = π Clearly the condition x(t) = x(t + T ) is satisfied. With respect to T signal x(t) has only even order harmonics (in particular 4th and 8th). However the fundamental period of x(t) = T 4. Let x(t) = x(t + T ). One period of x(t) is shown below:select all the applicable properties in the Fourier Series expansion 6

7 A T 4 T T t A Solution : B,C The given signal has half wave anti symmetry i.e. x(t + T ) = x(t) and hence there are only odd harmonics in the signal Only cosine terms are present due to even symmetry of x(t). 4. Which of the following signals has only odd harmonics in the Fourier Series expansion? Recall that by harmonics we mean those frequencies that are integer multiples of the fundamental frequency. Solution : A,B,D (a) Clearly has only odd harmonics. (b) Even though 4 might look tempting to say even harmonic it is NOT because sin(4t) has only one component i.e. fundamental frequency and hence has only odd harmonics.(can also be concluded from the half wave anti symmetry of sin(4t) ). (c) f(t+t/) -f(t) i.e. does not have half wave anti symmetry and hence does NOT contain only odd harmonics. (d) f(t+t/) -f(t) i.e. does not have half wave anti symmetry and hence does NOT contain only odd harmonics. (e) f(t+t/) = -f(t) i.e. has have half wave anti symmetry and hence contains only odd harmonics. 5. For the waveform shown below, the amplitude and frequency are A = 7

8 5V, f = 5Hz.If the signal is represented as f(t) = a π + b π sin(πt) + c cos(πt) +..., what is the value of a + b + c π A T t Solution : - : (a) DC component a = T x(t)dt T = T ( π ) A sin t dt T T = A [ T T π cos = A π Hence a = A = ( π T T ) cos ( π )] T (b) Coefficient of sin(πt) Since the waveform is even symmetric the sine terms are zero. Hence b= (c) Coefficient of cos(πt) a = T x(t) cos(πt)dt T = T T ( π ) A sin t cos(πt)dt T = T A sin(5πt) cos(πt)dt T 8

9 = A T [sin(5πt) sin(5πt)]dt T [ = A (cos(5πt ) T 5π = A [ T 5π ] 5π = A T = π 5π ) ( cos(5π T ) ) ] 5π Hence c=- Therefore a+b+c= - 9

George Mason University Signals and Systems I Spring 2016

George Mason University Signals and Systems I Spring 2016 George Mason University Signals and Systems I Spring 206 Problem Set #6 Assigned: March, 206 Due Date: March 5, 206 Reading: This problem set is on Fourier series representations of periodic signals. The

More information

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal.

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal. EE 34: Signals, Systems, and Transforms Summer 7 Test No notes, closed book. Show your work. Simplify your answers. 3. It is observed of some continuous-time LTI system that the input signal = 3 u(t) produces

More information

CHAPTER 4 FOURIER SERIES S A B A R I N A I S M A I L

CHAPTER 4 FOURIER SERIES S A B A R I N A I S M A I L CHAPTER 4 FOURIER SERIES 1 S A B A R I N A I S M A I L Outline Introduction of the Fourier series. The properties of the Fourier series. Symmetry consideration Application of the Fourier series to circuit

More information

Fourier Series and Fourier Transforms

Fourier Series and Fourier Transforms Fourier Series and Fourier Transforms EECS2 (6.082), MIT Fall 2006 Lectures 2 and 3 Fourier Series From your differential equations course, 18.03, you know Fourier s expression representing a T -periodic

More information

Fourier Transform. Find the Fourier series for a periodic waveform Determine the output of a filter when the input is a periodic function

Fourier Transform. Find the Fourier series for a periodic waveform Determine the output of a filter when the input is a periodic function Objectives: Be able to Fourier Transform Find the Fourier series for a periodic waveform Determine the output of a filter when the input is a periodic function Filters with a Single Sinusoidal Input: Suppose

More information

ECE 301 Fall 2011 Division 1. Homework 1 Solutions.

ECE 301 Fall 2011 Division 1. Homework 1 Solutions. ECE 3 Fall 2 Division. Homework Solutions. Reading: Course information handout on the course website; textbook sections.,.,.2,.3,.4; online review notes on complex numbers. Problem. For each discrete-time

More information

2.161 Signal Processing: Continuous and Discrete

2.161 Signal Processing: Continuous and Discrete MIT OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. M MASSACHUSETTS

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 6a. Dr David Corrigan 1. Electronic and Electrical Engineering Dept.

SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 6a. Dr David Corrigan 1. Electronic and Electrical Engineering Dept. SIGNALS AND SYSTEMS: PAPER 3C HANDOUT 6a. Dr David Corrigan. Electronic and Electrical Engineering Dept. corrigad@tcd.ie www.mee.tcd.ie/ corrigad FOURIER SERIES Have seen how the behaviour of systems can

More information

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2)

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2) E.5 Signals & Linear Systems Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & ) 1. Sketch each of the following continuous-time signals, specify if the signal is periodic/non-periodic,

More information

IB Paper 6: Signal and Data Analysis

IB Paper 6: Signal and Data Analysis IB Paper 6: Signal and Data Analysis Handout 2: Fourier Series S Godsill Signal Processing and Communications Group, Engineering Department, Cambridge, UK Lent 2015 1 / 1 Fourier Series Revision of Basics

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 10: Sinusoidal Steady-State Analysis 1 Objectives : sinusoidal functions Impedance use phasors to determine the forced response of a circuit subjected to sinusoidal excitation Apply techniques

More information

7. Find the Fourier transform of f (t)=2 cos(2π t)[u (t) u(t 1)]. 8. (a) Show that a periodic signal with exponential Fourier series f (t)= δ (ω nω 0

7. Find the Fourier transform of f (t)=2 cos(2π t)[u (t) u(t 1)]. 8. (a) Show that a periodic signal with exponential Fourier series f (t)= δ (ω nω 0 Fourier Transform Problems 1. Find the Fourier transform of the following signals: a) f 1 (t )=e 3 t sin(10 t)u (t) b) f 1 (t )=e 4 t cos(10 t)u (t) 2. Find the Fourier transform of the following signals:

More information

5. THE CLASSES OF FOURIER TRANSFORMS

5. THE CLASSES OF FOURIER TRANSFORMS 5. THE CLASSES OF FOURIER TRANSFORMS There are four classes of Fourier transform, which are represented in the following table. So far, we have concentrated on the discrete Fourier transform. Table 1.

More information

Time-Frequency Analysis

Time-Frequency Analysis Time-Frequency Analysis Basics of Fourier Series Philippe B. aval KSU Fall 015 Philippe B. aval (KSU) Fourier Series Fall 015 1 / 0 Introduction We first review how to derive the Fourier series of a function.

More information

EE301 Signals and Systems In-Class Exam Exam 3 Thursday, Apr. 19, Cover Sheet

EE301 Signals and Systems In-Class Exam Exam 3 Thursday, Apr. 19, Cover Sheet EE301 Signals and Systems In-Class Exam Exam 3 Thursday, Apr. 19, 2012 Cover Sheet Test Duration: 75 minutes. Coverage: Chaps. 5,7 Open Book but Closed Notes. One 8.5 in. x 11 in. crib sheet Calculators

More information

Fourier Series Tutorial

Fourier Series Tutorial Fourier Series Tutorial INTRODUCTION This document is designed to overview the theory behind the Fourier series and its alications. It introduces the Fourier series and then demonstrates its use with a

More information

Signal Functions (0B)

Signal Functions (0B) Signal Functions (0B) Signal Functions Copyright (c) 2009-203 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,

More information

Solutions to Assignment 4

Solutions to Assignment 4 EE35 Spectrum Analysis and Discrete Time Systems (Fall 5) Solutions to Assignment. Consider the continuous-time periodic signal: x(t) = sin(t 3) + sin(6t) (8) [] (a) Obviously, the fundamental frequency

More information

Signals and Systems Spring 2004 Lecture #9

Signals and Systems Spring 2004 Lecture #9 Signals and Systems Spring 2004 Lecture #9 (3/4/04). The convolution Property of the CTFT 2. Frequency Response and LTI Systems Revisited 3. Multiplication Property and Parseval s Relation 4. The DT Fourier

More information

EC Signals and Systems

EC Signals and Systems UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS Continuous time signals (CT signals), discrete time signals (DT signals) Step, Ramp, Pulse, Impulse, Exponential 1. Define Unit Impulse Signal [M/J 1], [M/J

More information

2 Fourier Transforms and Sampling

2 Fourier Transforms and Sampling 2 Fourier ransforms and Sampling 2.1 he Fourier ransform he Fourier ransform is an integral operator that transforms a continuous function into a continuous function H(ω) =F t ω [h(t)] := h(t)e iωt dt

More information

EECS 20. Midterm No. 2 Practice Problems Solution, November 10, 2004.

EECS 20. Midterm No. 2 Practice Problems Solution, November 10, 2004. EECS. Midterm No. Practice Problems Solution, November, 4.. When the inputs to a time-invariant system are: n, x (n) = δ(n ) x (n) = δ(n +), where δ is the Kronecker delta the corresponding outputs are

More information

LECTURE 12 Sections Introduction to the Fourier series of periodic signals

LECTURE 12 Sections Introduction to the Fourier series of periodic signals Signals and Systems I Wednesday, February 11, 29 LECURE 12 Sections 3.1-3.3 Introduction to the Fourier series of periodic signals Chapter 3: Fourier Series of periodic signals 3. Introduction 3.1 Historical

More information

Properties of Fourier Series - GATE Study Material in PDF

Properties of Fourier Series - GATE Study Material in PDF Properties of Fourier Series - GAE Study Material in PDF In the previous article, we learnt the Basics of Fourier Series, the different types and all about the different Fourier Series spectrums. Now,

More information

Ver 3808 E1.10 Fourier Series and Transforms (2014) E1.10 Fourier Series and Transforms. Problem Sheet 1 (Lecture 1)

Ver 3808 E1.10 Fourier Series and Transforms (2014) E1.10 Fourier Series and Transforms. Problem Sheet 1 (Lecture 1) Ver 88 E. Fourier Series and Transforms 4 Key: [A] easy... [E]hard Questions from RBH textbook: 4., 4.8. E. Fourier Series and Transforms Problem Sheet Lecture. [B] Using the geometric progression formula,

More information

Line Spectra and their Applications

Line Spectra and their Applications In [ ]: cd matlab pwd Line Spectra and their Applications Scope and Background Reading This session concludes our introduction to Fourier Series. Last time (http://nbviewer.jupyter.org/github/cpjobling/eg-47-

More information

Wave Equation With Homogeneous Boundary Conditions

Wave Equation With Homogeneous Boundary Conditions Wave Equation With Homogeneous Boundary Conditions MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 018 Objectives In this lesson we will learn: how to solve the

More information

Amplitude and Phase A(0) 2. We start with the Fourier series representation of X(t) in real notation: n=1

Amplitude and Phase A(0) 2. We start with the Fourier series representation of X(t) in real notation: n=1 VI. Power Spectra Amplitude and Phase We start with the Fourier series representation of X(t) in real notation: A() X(t) = + [ A(n) cos(nωt) + B(n) sin(nωt)] 2 n=1 he waveform of the observed segment exactly

More information

Continuous-Time Fourier Transform

Continuous-Time Fourier Transform Signals and Systems Continuous-Time Fourier Transform Chang-Su Kim continuous time discrete time periodic (series) CTFS DTFS aperiodic (transform) CTFT DTFT Lowpass Filtering Blurring or Smoothing Original

More information

Chapter 10 Fourier Series

Chapter 10 Fourier Series Chapter Fourier Series. Periodic Functions and Orthogonality Relations The differential equation y +β 2 y = F cosωt models a mass-spring system with natural frequency β with a pure cosine forcing function

More information

Notes 07 largely plagiarized by %khc

Notes 07 largely plagiarized by %khc Notes 07 largely plagiarized by %khc Warning This set of notes covers the Fourier transform. However, i probably won t talk about everything here in section; instead i will highlight important properties

More information

2.3 Oscillation. The harmonic oscillator equation is the differential equation. d 2 y dt 2 r y (r > 0). Its solutions have the form

2.3 Oscillation. The harmonic oscillator equation is the differential equation. d 2 y dt 2 r y (r > 0). Its solutions have the form 2. Oscillation So far, we have used differential equations to describe functions that grow or decay over time. The next most common behavior for a function is to oscillate, meaning that it increases and

More information

Fourier series for continuous and discrete time signals

Fourier series for continuous and discrete time signals 8-9 Signals and Systems Fall 5 Fourier series for continuous and discrete time signals The road to Fourier : Two weeks ago you saw that if we give a complex exponential as an input to a system, the output

More information

Overview of Fourier Series (Sect. 6.2). Origins of the Fourier Series.

Overview of Fourier Series (Sect. 6.2). Origins of the Fourier Series. Overview of Fourier Series (Sect. 6.2. Origins of the Fourier Series. Periodic functions. Orthogonality of Sines and Cosines. Main result on Fourier Series. Origins of the Fourier Series. Summary: Daniel

More information

Chapter 6: Applications of Fourier Representation Houshou Chen

Chapter 6: Applications of Fourier Representation Houshou Chen Chapter 6: Applications of Fourier Representation Houshou Chen Dept. of Electrical Engineering, National Chung Hsing University E-mail: houshou@ee.nchu.edu.tw H.S. Chen Chapter6: Applications of Fourier

More information

Superposition (take 3)

Superposition (take 3) Superposition (take 3) Previously, we looked at how to analyze an AC to DC converter and a Buck converter. To solve these circuits, we changed the problem so that the input contained A DC signal, and An

More information

Fourier Series & The Fourier Transform

Fourier Series & The Fourier Transform Fourier Series & The Fourier Transform What is the Fourier Transform? Anharmonic Waves Fourier Cosine Series for even functions Fourier Sine Series for odd functions The continuous limit: the Fourier transform

More information

Frequency Response of Linear Time Invariant Systems

Frequency Response of Linear Time Invariant Systems ME 328, Spring 203, Prof. Rajamani, University of Minnesota Frequency Response of Linear Time Invariant Systems Complex Numbers: Recall that every complex number has a magnitude and a phase. Example: z

More information

22. Periodic Functions and Fourier Series

22. Periodic Functions and Fourier Series November 29, 2010 22-1 22. Periodic Functions and Fourier Series 1 Periodic Functions A real-valued function f(x) of a real variable is called periodic of period T > 0 if f(x + T ) = f(x) for all x R.

More information

ECE 301: Signals and Systems Homework Assignment #3

ECE 301: Signals and Systems Homework Assignment #3 ECE 31: Signals and Systems Homework Assignment #3 Due on October 14, 215 Professor: Aly El Gamal A: Xianglun Mao 1 Aly El Gamal ECE 31: Signals and Systems Homework Assignment #3 Problem 1 Problem 1 Consider

More information

SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 6. Dr Anil Kokaram Electronic and Electrical Engineering Dept.

SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 6. Dr Anil Kokaram Electronic and Electrical Engineering Dept. SIGNALS AND SYSTEMS: PAPER 3C HANDOUT 6. Dr Anil Kokaram Electronic and Electrical Engineering Dept. anil.kokaram@tcd.ie www.mee.tcd.ie/ sigmedia FOURIER ANALYSIS Have seen how the behaviour of systems

More information

4 The Harmonics of Vibrating Strings

4 The Harmonics of Vibrating Strings 4 The Harmonics of Vibrating Strings 4. Harmonics and Vibrations What I am going to tell you about is what we teach our physics students in the third or fourth year of graduate school... It is my task

More information

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 2 Solutions

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 2 Solutions 8-90 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 08 Midterm Solutions Name: Andrew ID: Problem Score Max 8 5 3 6 4 7 5 8 6 7 6 8 6 9 0 0 Total 00 Midterm Solutions. (8 points) Indicate whether

More information

Section 6: Summary Section 7

Section 6: Summary Section 7 Section 6: Summary Section 7 a n = 2 ( 2πnx cos b n = 2 ( 2πnx sin d = f(x dx f(x = d + n= [ a n cos f(x dx f(x dx ( ( ] 2πnx 2πnx + b n sin You can sometimes combine multiple integrals using symmetry

More information

2.161 Signal Processing: Continuous and Discrete

2.161 Signal Processing: Continuous and Discrete MI OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 8 For information about citing these materials or our erms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSES INSIUE

More information

Complex symmetry Signals and Systems Fall 2015

Complex symmetry Signals and Systems Fall 2015 18-90 Signals and Systems Fall 015 Complex symmetry 1. Complex symmetry This section deals with the complex symmetry property. As an example I will use the DTFT for a aperiodic discrete-time signal. The

More information

Lecture 7 ELE 301: Signals and Systems

Lecture 7 ELE 301: Signals and Systems Lecture 7 ELE 30: Signals and Systems Prof. Paul Cuff Princeton University Fall 20-2 Cuff (Lecture 7) ELE 30: Signals and Systems Fall 20-2 / 22 Introduction to Fourier Transforms Fourier transform as

More information

Assignment 4 Solutions Continuous-Time Fourier Transform

Assignment 4 Solutions Continuous-Time Fourier Transform Assignment 4 Solutions Continuous-Time Fourier Transform ECE 3 Signals and Systems II Version 1.01 Spring 006 1. Properties of complex numbers. Let c 1 α 1 + jβ 1 and c α + jβ be two complex numbers. a.

More information

Trigonometric Applications and Models

Trigonometric Applications and Models Trigonometric Applications and Models MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this section we will learn to: solve real-world problems involving right

More information

Homework 6 EE235, Spring 2011

Homework 6 EE235, Spring 2011 Homework 6 EE235, Spring 211 1. Fourier Series. Determine w and the non-zero Fourier series coefficients for the following functions: (a 2 cos(3πt + sin(1πt + π 3 w π e j3πt + e j3πt + 1 j2 [ej(1πt+ π

More information

Linear Systems Theory

Linear Systems Theory ME 3253 Linear Systems Theory Review Class Overview and Introduction 1. How to build dynamic system model for physical system? 2. How to analyze the dynamic system? -- Time domain -- Frequency domain (Laplace

More information

Question Paper Code : AEC11T02

Question Paper Code : AEC11T02 Hall Ticket No Question Paper Code : AEC11T02 VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Affiliated to JNTUH, Hyderabad Four Year B. Tech III Semester Tutorial Question Bank 2013-14 (Regulations: VCE-R11)

More information

EE 313 Linear Systems and Signals The University of Texas at Austin. Solution Set for Homework #1 on Sinusoidal Signals

EE 313 Linear Systems and Signals The University of Texas at Austin. Solution Set for Homework #1 on Sinusoidal Signals Solution Set for Homework #1 on Sinusoidal Signals By Mr. Houshang Salimian and Prof. Brian L. Evans September 7, 2018 1. Prologue: This problem helps you to identify the points of interest in a sinusoidal

More information

Homework 1 Solutions

Homework 1 Solutions 18-9 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 18 Homework 1 Solutions Part One 1. (8 points) Consider the DT signal given by the algorithm: x[] = 1 x[1] = x[n] = x[n 1] x[n ] (a) Plot

More information

Math 345: Applied Mathematics

Math 345: Applied Mathematics Math 345: Applied Mathematics Introduction to Fourier Series, I Tones, Harmonics, and Fourier s Theorem Marcus Pendergrass Hampden-Sydney College Fall 2012 1 Sounds as waveforms I ve got a bad feeling

More information

a k cos kω 0 t + b k sin kω 0 t (1) k=1

a k cos kω 0 t + b k sin kω 0 t (1) k=1 MOAC worksheet Fourier series, Fourier transform, & Sampling Working through the following exercises you will glean a quick overview/review of a few essential ideas that you will need in the moac course.

More information

Homework 5 EE235, Summer 2013 Solution

Homework 5 EE235, Summer 2013 Solution Homework 5 EE235, Summer 23 Solution. Fourier Series. Determine w and the non-zero Fourier series coefficients for the following functions: (a f(t 2 cos(3πt + sin(πt + π 3 w π f(t e j3πt + e j3πt + j2

More information

Solutions to the Homework Replaces Section 3.7, 3.8

Solutions to the Homework Replaces Section 3.7, 3.8 Solutions to the Homework Replaces Section 3.7, 3.8. Show that the period of motion of an undamped vibration of a mass hanging from a vertical spring is 2π L/g SOLUTION: With no damping, mu + ku = 0 has

More information

Notes on Fourier Series and Integrals Fourier Series

Notes on Fourier Series and Integrals Fourier Series Notes on Fourier Series and Integrals Fourier Series et f(x) be a piecewise linear function on [, ] (This means that f(x) may possess a finite number of finite discontinuities on the interval). Then f(x)

More information

Fourier transform representation of CT aperiodic signals Section 4.1

Fourier transform representation of CT aperiodic signals Section 4.1 Fourier transform representation of CT aperiodic signals Section 4. A large class of aperiodic CT signals can be represented by the CT Fourier transform (CTFT). The (CT) Fourier transform (or spectrum)

More information

MATH 251 Final Examination May 4, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination May 4, 2015 FORM A. Name: Student Number: Section: MATH 251 Final Examination May 4, 2015 FORM A Name: Student Number: Section: This exam has 16 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all work must

More information

ENGIN 211, Engineering Math. Fourier Series and Transform

ENGIN 211, Engineering Math. Fourier Series and Transform ENGIN 11, Engineering Math Fourier Series and ransform 1 Periodic Functions and Harmonics f(t) Period: a a+ t Frequency: f = 1 Angular velocity (or angular frequency): ω = ππ = π Such a periodic function

More information

Selected Solutions: 3.5 (Undetermined Coefficients)

Selected Solutions: 3.5 (Undetermined Coefficients) Selected Solutions: 3.5 (Undetermined Coefficients) In Exercises 1-10, we want to apply the ideas from the table to specific DEs, and solve for the coefficients as well. If you prefer, you might start

More information

King Fahd University of Petroleum & Minerals Computer Engineering Dept

King Fahd University of Petroleum & Minerals Computer Engineering Dept King Fahd University of Petroleum & Minerals Computer Engineering Dept COE 4 Data and Computer Communications erm 5 Dr. shraf S. Hasan Mahmoud Rm -4 Ext. 74 Email: ashraf@kfupm.edu.sa /7/6 Dr. shraf S.

More information

Homework 7 Solution EE235, Spring Find the Fourier transform of the following signals using tables: te t u(t) h(t) = sin(2πt)e t u(t) (2)

Homework 7 Solution EE235, Spring Find the Fourier transform of the following signals using tables: te t u(t) h(t) = sin(2πt)e t u(t) (2) Homework 7 Solution EE35, Spring. Find the Fourier transform of the following signals using tables: (a) te t u(t) h(t) H(jω) te t u(t) ( + jω) (b) sin(πt)e t u(t) h(t) sin(πt)e t u(t) () h(t) ( ejπt e

More information

Circuit Analysis Using Fourier and Laplace Transforms

Circuit Analysis Using Fourier and Laplace Transforms EE2015: Electrical Circuits and Networks Nagendra Krishnapura https://wwweeiitmacin/ nagendra/ Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India July-November

More information

EECS 20N: Midterm 2 Solutions

EECS 20N: Midterm 2 Solutions EECS 0N: Midterm Solutions (a) The LTI system is not causal because its impulse response isn t zero for all time less than zero. See Figure. Figure : The system s impulse response in (a). (b) Recall that

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

Practice Midterm Exam 1. Instructions. You have 60 minutes. No calculators allowed. Show all your work in order to receive full credit.

Practice Midterm Exam 1. Instructions. You have 60 minutes. No calculators allowed. Show all your work in order to receive full credit. MATH202X-F01/UX1 Spring 2015 Practice Midterm Exam 1 Name: Answer Key Instructions You have 60 minutes No calculators allowed Show all your work in order to receive full credit 1 Consider the points P

More information

10.2-3: Fourier Series.

10.2-3: Fourier Series. 10.2-3: Fourier Series. 10.2-3: Fourier Series. O. Costin: Fourier Series, 10.2-3 1 Fourier series are very useful in representing periodic functions. Examples of periodic functions. A function is periodic

More information

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University September 26, 2005 1 Sinusoids Sinusoids

More information

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case.

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case. s of the Fourier Theorem (Sect. 1.3. The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem. The Fourier Theorem:

More information

Solutions to Problems in Chapter 4

Solutions to Problems in Chapter 4 Solutions to Problems in Chapter 4 Problems with Solutions Problem 4. Fourier Series of the Output Voltage of an Ideal Full-Wave Diode Bridge Rectifier he nonlinear circuit in Figure 4. is a full-wave

More information

Homework 7 Solutions

Homework 7 Solutions Homework 7 Solutions # (Section.4: The following functions are defined on an interval of length. Sketch the even and odd etensions of each function over the interval [, ]. (a f( =, f ( Even etension of

More information

CT Rectangular Function Pairs (5B)

CT Rectangular Function Pairs (5B) C Rectangular Function Pairs (5B) Continuous ime Rect Function Pairs Copyright (c) 009-013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU

More information

Frequency- and Time-Domain Spectroscopy

Frequency- and Time-Domain Spectroscopy Frequency- and Time-Domain Spectroscopy We just showed that you could characterize a system by taking an absorption spectrum. We select a frequency component using a grating or prism, irradiate the sample,

More information

Topic 3: Fourier Series (FS)

Topic 3: Fourier Series (FS) ELEC264: Signals And Systems Topic 3: Fourier Series (FS) o o o o Introduction to frequency analysis of signals CT FS Fourier series of CT periodic signals Signal Symmetry and CT Fourier Series Properties

More information

Homework 3 Solutions

Homework 3 Solutions EECS Signals & Systems University of California, Berkeley: Fall 7 Ramchandran September, 7 Homework 3 Solutions (Send your grades to ee.gsi@gmail.com. Check the course website for details) Review Problem

More information

Chapter 2. Signals. Static and Dynamic Characteristics of Signals. Signals classified as

Chapter 2. Signals. Static and Dynamic Characteristics of Signals. Signals classified as Chapter 2 Static and Dynamic Characteristics of Signals Signals Signals classified as. Analog continuous in time and takes on any magnitude in range of operations 2. Discrete Time measuring a continuous

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Representation of Signals in Terms of Frequency Components Consider the CT signal defined by N xt () = Acos( ω t+ θ ), t k = 1 k k k The frequencies `present

More information

4.5. Applications of Trigonometry to Waves. Introduction. Prerequisites. Learning Outcomes

4.5. Applications of Trigonometry to Waves. Introduction. Prerequisites. Learning Outcomes Applications of Trigonometry to Waves 4.5 Introduction Waves and vibrations occur in many contexts. The water waves on the sea and the vibrations of a stringed musical instrument are just two everyday

More information

Chapter 10: Partial Differential Equations

Chapter 10: Partial Differential Equations 1.1: Introduction Chapter 1: Partial Differential Equations Definition: A differential equations whose dependent variable varies with respect to more than one independent variable is called a partial differential

More information

f (t) K(t, u) d t. f (t) K 1 (t, u) d u. Integral Transform Inverse Fourier Transform

f (t) K(t, u) d t. f (t) K 1 (t, u) d u. Integral Transform Inverse Fourier Transform Integral Transforms Massoud Malek An integral transform maps an equation from its original domain into another domain, where it might be manipulated and solved much more easily than in the original domain.

More information

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name:

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name: ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, 205 Name:. The quiz is closed book, except for one 2-sided sheet of handwritten notes. 2. Turn off

More information

EA2.3 - Electronics 2 1

EA2.3 - Electronics 2 1 In the previous lecture, I talked about the idea of complex frequency s, where s = σ + jω. Using such concept of complex frequency allows us to analyse signals and systems with better generality. In this

More information

EE 435. Lecture 30. Data Converters. Spectral Performance

EE 435. Lecture 30. Data Converters. Spectral Performance EE 435 Lecture 30 Data Converters Spectral Performance . Review from last lecture. INL Often Not a Good Measure of Linearity Four identical INL with dramatically different linearity X OUT X OUT X REF X

More information

CH.4 Continuous-Time Fourier Series

CH.4 Continuous-Time Fourier Series CH.4 Continuous-Time Fourier Series First step to Fourier analysis. My mathematical model is killing me! The difference between mathematicians and engineers is mathematicians develop mathematical tools

More information

Chapter 5 Notes. 5.1 Using Fundamental Identities

Chapter 5 Notes. 5.1 Using Fundamental Identities Chapter 5 Notes 5.1 Using Fundamental Identities 1. Simplify each expression to its lowest terms. Write the answer to part as the product of factors. (a) sin x csc x cot x ( 1+ sinσ + cosσ ) (c) 1 tanx

More information

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18 Circuit Analysis-III Sinusoids Example #1 ü Find the amplitude, phase, period and frequency of the sinusoid: v (t ) =12cos(50t +10 ) Signal Conversion ü From sine to cosine and vice versa. ü sin (A ± B)

More information

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University ENSC37 Communications Systems : Fourier Representations School o Engineering Science Simon Fraser University Outline Chap..5: Signal Classiications Fourier Transorm Dirac Delta Function Unit Impulse Fourier

More information

Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105.

Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105. Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, e-mail address,

More information

CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation

CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 23, 2006 1 Exponentials The exponential is

More information

2 Background: Fourier Series Analysis and Synthesis

2 Background: Fourier Series Analysis and Synthesis Signal Processing First Lab 15: Fourier Series Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment and go over all exercises in the Pre-Lab section before

More information

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n.

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n. ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Consider the following periodic signal, depicted below: {, if n t < n +, for any integer n,

More information

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 2: Fourier Representations Jie Liang School of Engineering Science Simon Fraser University 1 Outline Chap 2.1 2.5: Signal Classifications Fourier Transform Dirac Delta Function

More information

ENGI Duffing s Equation Page 4.65

ENGI Duffing s Equation Page 4.65 ENGI 940 4. - Duffing s Equation Page 4.65 4. Duffing s Equation Among the simplest models of damped non-linear forced oscillations of a mechanical or electrical system with a cubic stiffness term is Duffing

More information

Frequency Response and Continuous-time Fourier Series

Frequency Response and Continuous-time Fourier Series Frequency Response and Continuous-time Fourier Series Recall course objectives Main Course Objective: Fundamentals of systems/signals interaction (we d like to understand how systems transform or affect

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES Before starting this section, you might need to review the trigonometric functions. DIFFERENTIATION RULES In particular, it is important to remember that,

More information

Fourier Representations of Signals & LTI Systems

Fourier Representations of Signals & LTI Systems 3. Introduction. A signal can be represented as a weighted superposition of complex sinusoids. x(t) or x[n] 2. LTI system: LTI System Output = A weighted superposition of the system response to each complex

More information