qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

Size: px
Start display at page:

Download "qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq"

Transcription

1 qwertyuiopasdfgjklzxcbnmqwerty uiopasdfgjklzxcbnmqwertyuiopasd fgjklzxcbnmqwertyuiopasdfgjklzx cbnmqwertyuiopasdfgjklzxcbnmq Projectile Motion Quick concepts regarding Projectile Motion wertyuiopasdfgjklzxcbnmqwertyui opasdfgjklzxcbnmqwertyuiopasdfg jklzxcbnmqwertyuiopasdfgjklzxc bnmqwertyuiopasdfgjklzxcbnmq wertyuiopasdfgjklzxcbnmqwertyui opasdfgjklzxcbnmqwertyuiopasdfg jklzxcbnmqwertyuiopasdfgjklzxc bnmqwertyuiopasdfgjklzxcbnmq wertyuiopasdfgjklzxcbnmqwertyui opasdfgjklzxcbnmqwertyuiopasdfg jklzxcbnmrtyuiopasdfgjklzxcbn mqwertyuiopasdfgjklzxcbnmqwert yuiopasdfgjklzxcbnmqwertyuiopas dfgjklzxcbnmqwertyuiopasdfgjklz xcbnmqwertyuiopasdfgjklzxcbnm qwertyuiopasdfgjklzxcbnmqwerty

2 Analysing Projectile Motion Inestigate and analyse te motion of projectiles near te Eart s surface including a qualitatie description of te effect of air resistance; Let us break projectile motion into two cases; Case - off a orizontal cliff face and Case launced off te ground at an angle Case : Horizontal Projectile Motion 8 m/s 0 m Once te ball leaes te cliff te only force tat will act on it is te force of graity. Normally we break te motion into two components: te orizontal component and te ertical component Horizontal Component Since no force acts in te orizontal direction tis elocity will remain te same, namely 8m/s in te orizontal direction u at u at since tere is no acceleration in te orizontal direction we ae Vertical Component u 8ms Once it leaes te cliff it begins to experience te force of graity and its starts to ae a ertical elocity downwards We can work out te alue of te ertical elocity simply by using te equations of constant acceleration u at

3 Now we can add a subscript to sow tat we are looking at te component in te ertical direction u at So calling down as positie we can find te elocity in te ertical direction at any gien time, as it will be gien by te equation aboe But we will need to know ow long it will be in te air before it its te ground. So we use te equation of constant acceleration s ut at s ut at Notice we ae used te expression s wic means te displacement in te ertical direction. In te problem aboe te ertical displacement is 0metres and since it just leaes te cliff te initial ertical elocity, u is initially 0 Tere we get te following equation s ut at 0 at 0 0 t 0 5t t t t

4 3 Now we know ow long te ball stays in te air, namely seconds so we can find te final ertical elocity just before it its te ground u at ms downwards Now wat is te elocity on impact wit te ground? Since elocity is a ector we need to add te two elocities; te orizontal elocity and te ertical elocity 8 m/s.54 m/s 0 m/s So using Pytagoras we can find te elocity on impact c a b c c c c.54ms But wat about ow far it goes in te orizontal direction, tis is called te range To find te range we simply multiply te orizontal ertical wit te time it is in te air Now if we would use te equation of motion we would get te following equation

5 4 s ut at s ut at Since tere is no force in te orizontal direction, terefore tere is no acceleration in te orizontal direction our equation becomes te following Summary for doing problems inoling case s s s u t 8 6m Horizontal component Vertical Component elocity does not cange-u Vertical elocity does cange -U Range= u t To find te time we need to use te equations of constant acceleration and make sure we pick down as positie s ut at To find te final elocity we need to add ectorially te orizontal component wit te ertical component Try a few questions now on tis type of projectile motion 33 m m/s Find te following: a) Find te time it takes to reac te ground b) Find te orizontal elocity at t = 0.3 sec c) Find te ertical elocity at t = 0.3 sec d) Find te resultant elocity at t = 0.3 sec e) Find te resultant elocity just before it its ground.

6 5 3 m 7 m/s Find te following: f) Find te time it takes to reac te ground g) Find te orizontal elocity at t = 0.3 sec ) Find te ertical elocity at t = 0.3 sec i) Find te resultant elocity at t = 0.3 sec j) Find te resultant elocity just before it its ground. Case Case is a little more inoled Look at te diagram below 00 m/s 50º

7 6 Once again we break te problem into two components te orizontal component and te ertical component Initial Horizontal Component Initial Vertical Component 00m/s 00m/s U 50º 50º U U 00cos50 U 00sin50 Now tat we ae broken te problem into te two components we take eac component one at a time and find te releant information Horizontal Component - Te initial orizontal component will not cange proided te missile in on te same leel ( most of te time) - No force acting in te orizontal direction, terefore no acceleration in te orizontal direction Vertical Component - Tis component canges as tere is a force acting in te ertical direction, te force of graity - If we pick up to be positie ten te acceleration will be negatie - At te igest point ertically tere will be no more ertical elocity ( except for te orizontal elocity), so we can use te equation of constant acceleration to sole tis problem - Wen te object returns to te ground, te ertical displacement will be zero Lets us terefore analyse te question to see wat we can learn Question : Wat is te initial ertical elocity of te missile? : Since we ae already done it from te preious page te initial ertical elocity U 00sin ms Question : Wat is te initial orizontal l elocity of te missile?

8 7 U 00cos ms No remember tis orizontal elocity will remain constant for te entire question proided it stays on te same orizontal leel Question 3:Wat is te ertical elocity after second? Since we are asked to find te ertical elocity we will need to use ertical components. Remember we ae cosen to use up as being positie so we need to adjust te equations accordingly u at Question 4: Wat is te orizontal elocity after second? Te orizontal elocity does not cange terefore it is 8.56 m/s Question 5: Wat is te elocity after second? Tis is a tricky question since it is asking us to find te elocity after second, meaning we will need to add te two ectors, i.e te orizontal elocity and te ertical elocity and ten using Pytagoras find te resultant elocity m/s º 8.56 Te answer is 9.45 m/s in te direction gien by te two ectors Question 6: How ig will te missile go? Once again we are dealing wit ertical components, so we will need to use ertical elocities and let us not forget te initial direction-(wic is upwards as being positie) At te top of te eigt, te ertical elocity will be zero, so we can use te following equation u as

9 8 u as u as s 0s s s Question 7: How long does it take to get to te maximum eigt? We can use many different approaces but let us use a ery simple metod. At te top of te objects eigt, te ertical elocity will be 0 and we can ten use one of te simple equations to find te time it takes u at u at t 53. t So it takes just a bit oer 5 seconds or to be precise 5.3 seconds. Question 8: How long is te missile in te air? Ignoring air resistance, and looking at te symmetry of te pat te answer is twice te time to get to te igest point. so it will be seconds in te air. We could ae used anoter metod but tis is one of te simplest ways of soling it. Question 9: Find te final elocity it its te ground wit? Ignoring air resistance it sould it te ground wit te initial elocity it was projected i.e 00m/s Anoter way Find te final ertical elocity using u at and ten add te orizontal elocity wit tis to find te final elocity

10 9 Questions to try now 40 m/s 30º a) How far will tis object stay in te air for? b) How far will it go? ( its range) c) Find te initial ertical elocity of te object? d) Find te initial orizontal elocity of te object? e) How long does it take to get to te maximum eigt? f) Wat is its maximum eigt? g) Wat is te kinetic energy at te maximum eigt? ) Wat is te resultant elocity just before it its te ground? i) After 3 seconds ow ig is te object ertically? a. Wat is te objects orizontal distance from te start at 3 seconds? 330 m/s 40º a) How far will tis object stay in te air for? b) How far will it go? ( its range) c) Find te initial ertical elocity of te object? d) Find te initial orizontal elocity of te object? e) How long does it take to get to te maximum eigt? f) Wat is its maximum eigt? g) Wat is te kinetic energy at te maximum eigt? ) Wat is te resultant elocity just before it its te ground? i) After 3 seconds ow ig is te object ertically?

VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION

VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION Predict Obsere Explain Exercise 1 Take an A4 sheet of paper and a heay object (cricket ball, basketball, brick, book, etc). Predict what will

More information

Lesson 6: The Derivative

Lesson 6: The Derivative Lesson 6: Te Derivative Def. A difference quotient for a function as te form f(x + ) f(x) (x + ) x f(x + x) f(x) (x + x) x f(a + ) f(a) (a + ) a Notice tat a difference quotient always as te form of cange

More information

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS SUBAREA I. COMPETENCY 1.0 UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS MECHANICS Skill 1.1 Calculating displacement, aerage elocity, instantaneous elocity, and acceleration in a gien frame of reference

More information

University of Babylon College of Engineering Mechanical Engineering Dept. Subject : Mathematics III Class : 2 nd First Semester Year :

University of Babylon College of Engineering Mechanical Engineering Dept. Subject : Mathematics III Class : 2 nd First Semester Year : Uniersity of Babylon College of Engineering Mechanical Engineering Dept. Subject : Mathematics III Class : nd First Semester Year : 16-17 VECTOR FUNCTIONS SECTION 13. Ideal Projectile Motion Ideal Projectile

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

Chapter 4 Two-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc.

Chapter 4 Two-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc. Chapter 4 Two-Dimensional Kinematics Units of Chapter 4 Motion in Two Dimensions Projectile Motion: Basic Equations Zero Launch Angle General Launch Angle Projectile Motion: Key Characteristics 4-1 Motion

More information

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits.

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits. Questions 1. State weter te function is an exponential growt or exponential decay, and describe its end beaviour using its. (a) f(x) = 3 2x (b) f(x) = 0.5 x (c) f(x) = e (d) f(x) = ( ) x 1 4 2. Matc te

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

Derivative as Instantaneous Rate of Change

Derivative as Instantaneous Rate of Change 43 Derivative as Instantaneous Rate of Cange Consider a function tat describes te position of a racecar moving in a straigt line away from some starting point Let y s t suc tat t represents te time in

More information

Physics Kinematics: Projectile Motion. Science and Mathematics Education Research Group

Physics Kinematics: Projectile Motion. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Department of Curriculum and Pedagogy Physics Kinematics: Projectile Motion Science and Mathematics Education Research Group Supported by UBC Teaching

More information

Work and Energy. Introduction. Work. PHY energy - J. Hedberg

Work and Energy. Introduction. Work. PHY energy - J. Hedberg Work and Energy PHY 207 - energy - J. Hedberg - 2017 1. Introduction 2. Work 3. Kinetic Energy 4. Potential Energy 5. Conservation of Mecanical Energy 6. Ex: Te Loop te Loop 7. Conservative and Non-conservative

More information

Calculus I, Fall Solutions to Review Problems II

Calculus I, Fall Solutions to Review Problems II Calculus I, Fall 202 - Solutions to Review Problems II. Find te following limits. tan a. lim 0. sin 2 b. lim 0 sin 3. tan( + π/4) c. lim 0. cos 2 d. lim 0. a. From tan = sin, we ave cos tan = sin cos =

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

Introduction to Derivatives

Introduction to Derivatives Introduction to Derivatives 5-Minute Review: Instantaneous Rates and Tangent Slope Recall te analogy tat we developed earlier First we saw tat te secant slope of te line troug te two points (a, f (a))

More information

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator. Lecture XVII Abstract We introduce te concept of directional derivative of a scalar function and discuss its relation wit te gradient operator. Directional derivative and gradient Te directional derivative

More information

2.3. Applying Newton s Laws of Motion. Objects in Equilibrium

2.3. Applying Newton s Laws of Motion. Objects in Equilibrium Appling Newton s Laws of Motion As ou read in Section 2.2, Newton s laws of motion describe ow objects move as a result of different forces. In tis section, ou will appl Newton s laws to objects subjected

More information

= h. Geometrically this quantity represents the slope of the secant line connecting the points

= h. Geometrically this quantity represents the slope of the secant line connecting the points Section 3.7: Rates of Cange in te Natural and Social Sciences Recall: Average rate of cange: y y y ) ) ), ere Geometrically tis quantity represents te slope of te secant line connecting te points, f (

More information

Calculus I Homework: The Derivative as a Function Page 1

Calculus I Homework: The Derivative as a Function Page 1 Calculus I Homework: Te Derivative as a Function Page 1 Example (2.9.16) Make a careful sketc of te grap of f(x) = sin x and below it sketc te grap of f (x). Try to guess te formula of f (x) from its grap.

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

4.2 - Richardson Extrapolation

4.2 - Richardson Extrapolation . - Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Definition Let x n n converge to a number x. Suppose tat n n is a sequence

More information

CHAPTER (A) When x = 2, y = 6, so f( 2) = 6. (B) When y = 4, x can equal 6, 2, or 4.

CHAPTER (A) When x = 2, y = 6, so f( 2) = 6. (B) When y = 4, x can equal 6, 2, or 4. SECTION 3-1 101 CHAPTER 3 Section 3-1 1. No. A correspondence between two sets is a function only if eactly one element of te second set corresponds to eac element of te first set. 3. Te domain of a function

More information

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here!

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here! Precalculus Test 2 Practice Questions Page Note: You can expect oter types of questions on te test tan te ones presented ere! Questions Example. Find te vertex of te quadratic f(x) = 4x 2 x. Example 2.

More information

COMPUTATION OF ACTIVE EARTH PRESSURE OF COHESIVE BACKFILL ON RETAINING WALL CONSIDERING SEISMIC FORCE

COMPUTATION OF ACTIVE EARTH PRESSURE OF COHESIVE BACKFILL ON RETAINING WALL CONSIDERING SEISMIC FORCE COMPUTATION OF ACTIVE EARTH PRESSURE OF COHESIVE BACKFILL ON RETAINING WALL CONSIDERING SEISMIC FORCE Feng Zen Wang Na. Scool of Ciil Engineering and Arcitecture Beijing Jiaotong Uniersity Beijing 00044

More information

CHAPTER 3: Kinematics in Two Dimensions; Vectors

CHAPTER 3: Kinematics in Two Dimensions; Vectors HAPTER 3: Kinematics in Two Dimensions; Vectors Solution Guide to WebAssign Problems 3.1 [] The truck has a displacement of 18 + (16) blocks north and 1 blocks east. The resultant has a magnitude of +

More information

(4.2) -Richardson Extrapolation

(4.2) -Richardson Extrapolation (.) -Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Suppose tat lim G 0 and lim F L. Te function F is said to converge to L as

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Some Review Problems for First Midterm Mathematics 1300, Calculus 1 Some Review Problems for First Midterm Matematics 00, Calculus. Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd,

More information

1 Limits and Continuity

1 Limits and Continuity 1 Limits and Continuity 1.0 Tangent Lines, Velocities, Growt In tion 0.2, we estimated te slope of a line tangent to te grap of a function at a point. At te end of tion 0.3, we constructed a new function

More information

Section 3.1 Quadratic Functions and Models

Section 3.1 Quadratic Functions and Models Math 130 www.timetodare.com Section 3.1 Quadratic Functions and Models Quadratic Function: ( ) f x = ax + bx+ c ( a 0) The graph of a quadratic function is called a parabola. Graphing Parabolas: Special

More information

Displacement, Time, Velocity

Displacement, Time, Velocity Lecture. Chapter : Motion along a Straight Line Displacement, Time, Velocity 3/6/05 One-Dimensional Motion The area of physics that we focus on is called mechanics: the study of the relationships between

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

MCAT Physics - Problem Drill 06: Translational Motion

MCAT Physics - Problem Drill 06: Translational Motion MCAT Physics - Problem Drill 06: Translational Motion Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as 1. An object falls from rest

More information

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if Computational Aspects of its. Keeping te simple simple. Recall by elementary functions we mean :Polynomials (including linear and quadratic equations) Eponentials Logaritms Trig Functions Rational Functions

More information

Derivatives. By: OpenStaxCollege

Derivatives. By: OpenStaxCollege By: OpenStaxCollege Te average teen in te United States opens a refrigerator door an estimated 25 times per day. Supposedly, tis average is up from 10 years ago wen te average teenager opened a refrigerator

More information

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 Mat 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 f(x+) f(x) 10 1. For f(x) = x 2 + 2x 5, find ))))))))) and simplify completely. NOTE: **f(x+) is NOT f(x)+! f(x+) f(x) (x+) 2 + 2(x+) 5 ( x 2

More information

Lab 6 Derivatives and Mutant Bacteria

Lab 6 Derivatives and Mutant Bacteria Lab 6 Derivatives and Mutant Bacteria Date: September 27, 20 Assignment Due Date: October 4, 20 Goal: In tis lab you will furter explore te concept of a derivative using R. You will use your knowledge

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM MA9-A Applied Calculus for Business 006 Fall Homework Solutions Due 9/9/006 0:0AM. #0 Find te it 5 0 + +.. #8 Find te it. #6 Find te it 5 0 + + = (0) 5 0 (0) + (0) + =.!! r + +. r s r + + = () + 0 () +

More information

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a?

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a? Solutions to Test 1 Fall 016 1pt 1. Te grap of a function f(x) is sown at rigt below. Part I. State te value of eac limit. If a limit is infinite, state weter it is or. If a limit does not exist (but is

More information

Differential Calculus (The basics) Prepared by Mr. C. Hull

Differential Calculus (The basics) Prepared by Mr. C. Hull Differential Calculus Te basics) A : Limits In tis work on limits, we will deal only wit functions i.e. tose relationsips in wic an input variable ) defines a unique output variable y). Wen we work wit

More information

Excerpt from "Calculus" 2013 AoPS Inc.

Excerpt from Calculus 2013 AoPS Inc. Excerpt from "Calculus" 03 AoPS Inc. Te term related rates refers to two quantities tat are dependent on eac oter and tat are canging over time. We can use te dependent relationsip between te quantities

More information

2.1 THE DEFINITION OF DERIVATIVE

2.1 THE DEFINITION OF DERIVATIVE 2.1 Te Derivative Contemporary Calculus 2.1 THE DEFINITION OF DERIVATIVE 1 Te grapical idea of a slope of a tangent line is very useful, but for some uses we need a more algebraic definition of te derivative

More information

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points MAT 15 Test #2 Name Solution Guide Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points Use te grap of a function sown ere as you respond to questions 1 to 8. 1. lim f (x) 0 2. lim

More information

On seismic landslide hazard assessment

On seismic landslide hazard assessment Yang, J. (27). Géotecnique 57, No. 8, 77 713 doi: 1.168/geot.27.57.8.77 TECHNICAL NOTE On seismic landslide azard assessment J. YANG* KEYWORDS: eartquakes; landslides; slopes INTRODUCTION Seismic landslides

More information

Physics 4A Solutions to Chapter 4 Homework

Physics 4A Solutions to Chapter 4 Homework Physics 4A Solutions to Chapter 4 Homework Chapter 4 Questions: 4, 1, 1 Exercises & Problems: 5, 11, 3, 7, 8, 58, 67, 77, 87, 11 Answers to Questions: Q 4-4 (a) all tie (b) 1 and tie (the rocket is shot

More information

Two-Dimensional Motion and Vectors

Two-Dimensional Motion and Vectors CHAPTER 3 VECTOR quantities: Two-imensional Motion and Vectors Vectors ave magnitude and direction. (x, y) Representations: y (x, y) (r, ) x Oter vectors: velocity, acceleration, momentum, force Vector

More information

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017 These notes are seen pages. A quick summary: Projectile motion is simply horizontal motion at constant elocity with ertical motion at constant acceleration. An object moing in a circular path experiences

More information

Time (hours) Morphine sulfate (mg)

Time (hours) Morphine sulfate (mg) Mat Xa Fall 2002 Review Notes Limits and Definition of Derivative Important Information: 1 According to te most recent information from te Registrar, te Xa final exam will be eld from 9:15 am to 12:15

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LAURA EVANS.. Introduction Not all differential equations can be explicitly solved for y. Tis can be problematic if we need to know te value of y

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

We name Functions f (x) or g(x) etc.

We name Functions f (x) or g(x) etc. Section 2 1B: Function Notation Bot of te equations y 2x +1 and y 3x 2 are functions. It is common to ave two or more functions in terms of x in te same problem. If I ask you wat is te value for y if x

More information

158 Calculus and Structures

158 Calculus and Structures 58 Calculus and Structures CHAPTER PROPERTIES OF DERIVATIVES AND DIFFERENTIATION BY THE EASY WAY. Calculus and Structures 59 Copyrigt Capter PROPERTIES OF DERIVATIVES. INTRODUCTION In te last capter you

More information

III. Relative Velocity

III. Relative Velocity Adanced Kinematics I. Vector addition/subtraction II. Components III. Relatie Velocity IV. Projectile Motion V. Use of Calculus (nonuniform acceleration) VI. Parametric Equations The student will be able

More information

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014 Solutions to te Multivariable Calculus and Linear Algebra problems on te Compreensive Examination of January 3, 24 Tere are 9 problems ( points eac, totaling 9 points) on tis portion of te examination.

More information

Roberto s Notes on Linear Algebra Chapter 1: Geometric vectors Section 8. The dot product

Roberto s Notes on Linear Algebra Chapter 1: Geometric vectors Section 8. The dot product Roberto s Notes on Linear Algebra Chapter 1: Geometric ectors Section 8 The dot product What you need to know already: What a linear combination of ectors is. What you can learn here: How to use two ectors

More information

Logarithmic functions

Logarithmic functions Roberto s Notes on Differential Calculus Capter 5: Derivatives of transcendental functions Section Derivatives of Logaritmic functions Wat ou need to know alread: Definition of derivative and all basic

More information

2.3 Product and Quotient Rules

2.3 Product and Quotient Rules .3. PRODUCT AND QUOTIENT RULES 75.3 Product and Quotient Rules.3.1 Product rule Suppose tat f and g are two di erentiable functions. Ten ( g (x)) 0 = f 0 (x) g (x) + g 0 (x) See.3.5 on page 77 for a proof.

More information

1 Power is transferred through a machine as shown. power input P I machine. power output P O. power loss P L. What is the efficiency of the machine?

1 Power is transferred through a machine as shown. power input P I machine. power output P O. power loss P L. What is the efficiency of the machine? 1 1 Power is transferred troug a macine as sown. power input P I macine power output P O power loss P L Wat is te efficiency of te macine? P I P L P P P O + P L I O P L P O P I 2 ir in a bicycle pump is

More information

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value AB Calculus Unit Review Key Concepts Average and Instantaneous Speed Definition of Limit Properties of Limits One-sided and Two-sided Limits Sandwic Teorem Limits as x ± End Beaviour Models Continuity

More information

Pre-lab Quiz/PHYS 224 Earth s Magnetic Field. Your name Lab section

Pre-lab Quiz/PHYS 224 Earth s Magnetic Field. Your name Lab section Pre-lab Quiz/PHYS 4 Eart s Magnetic Field Your name Lab section 1. Wat do you investigate in tis lab?. For a pair of Helmoltz coils described in tis manual and sown in Figure, r=.15 m, N=13, I =.4 A, wat

More information

The Derivative The rate of change

The Derivative The rate of change Calculus Lia Vas Te Derivative Te rate of cange Knowing and understanding te concept of derivative will enable you to answer te following questions. Let us consider a quantity wose size is described by

More information

Practice Problem Solutions: Exam 1

Practice Problem Solutions: Exam 1 Practice Problem Solutions: Exam 1 1. (a) Algebraic Solution: Te largest term in te numerator is 3x 2, wile te largest term in te denominator is 5x 2 3x 2 + 5. Tus lim x 5x 2 2x 3x 2 x 5x 2 = 3 5 Numerical

More information

Definition of the Derivative

Definition of the Derivative Te Limit Definition of te Derivative Tis Handout will: Define te limit grapically and algebraically Discuss, in detail, specific features of te definition of te derivative Provide a general strategy of

More information

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x.

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x. Problem. Let f x x. Using te definition of te derivative prove tat f x x Solution. Te function f x is only defined wen x 0, so we will assume tat x 0 for te remainder of te solution. By te definition of

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS INTODUCTION ND MTHEMTICL CONCEPTS PEVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips of sine,

More information

Runge-Kutta methods. With orders of Taylor methods yet without derivatives of f (t, y(t))

Runge-Kutta methods. With orders of Taylor methods yet without derivatives of f (t, y(t)) Runge-Kutta metods Wit orders of Taylor metods yet witout derivatives of f (t, y(t)) First order Taylor expansion in two variables Teorem: Suppose tat f (t, y) and all its partial derivatives are continuous

More information

10 Derivatives ( )

10 Derivatives ( ) Instructor: Micael Medvinsky 0 Derivatives (.6-.8) Te tangent line to te curve yf() at te point (a,f(a)) is te line l m + b troug tis point wit slope Alternatively one can epress te slope as f f a m lim

More information

(a) Taking the derivative of the position vector with respect to time, we have, in SI units (m/s),

(a) Taking the derivative of the position vector with respect to time, we have, in SI units (m/s), Chapter 4 Student Solutions Manual. We apply Eq. 4- and Eq. 4-6. (a) Taking the deriatie of the position ector with respect to time, we hae, in SI units (m/s), d ˆ = (i + 4t ˆj + tk) ˆ = 8tˆj + k ˆ. dt

More information

Math 144 Activity #9 Introduction to Vectors

Math 144 Activity #9 Introduction to Vectors 144 p 1 Math 144 ctiity #9 Introduction to Vectors Often times you hear people use the words speed and elocity. Is there a difference between the two? If so, what is the difference? Discuss this with your

More information

Feb 6, 2013 PHYSICS I Lecture 5

Feb 6, 2013 PHYSICS I Lecture 5 95.141 Feb 6, 213 PHYSICS I Lecture 5 Course website: faculty.uml.edu/pchowdhury/95.141/ www.masteringphysics.com Course: UML95141SPRING213 Lecture Capture h"p://echo36.uml.edu/chowdhury213/physics1spring.html

More information

E p = mgh (if h i=0) E k = ½ mv 2 Ek is measured in Joules (J); m is measured in kg; v is measured in m/s. Energy Continued (E)

E p = mgh (if h i=0) E k = ½ mv 2 Ek is measured in Joules (J); m is measured in kg; v is measured in m/s. Energy Continued (E) nergy Continued () Gravitational Potential nergy: - e energy stored in an object due to its distance above te surface of te art. - e energy stored depends on te mass of te object, te eigt above te surface,

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition and s James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 8, 2017 Outline 1 Function Composition and Continuity 2 Function

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

Pre-Calculus Review Preemptive Strike

Pre-Calculus Review Preemptive Strike Pre-Calculus Review Preemptive Strike Attaced are some notes and one assignment wit tree parts. Tese are due on te day tat we start te pre-calculus review. I strongly suggest reading troug te notes torougly

More information

1 1. Rationalize the denominator and fully simplify the radical expression 3 3. Solution: = 1 = 3 3 = 2

1 1. Rationalize the denominator and fully simplify the radical expression 3 3. Solution: = 1 = 3 3 = 2 MTH - Spring 04 Exam Review (Solutions) Exam : February 5t 6:00-7:0 Tis exam review contains questions similar to tose you sould expect to see on Exam. Te questions included in tis review, owever, are

More information

Would you risk your live driving drunk? Intro

Would you risk your live driving drunk? Intro Martha Casquete Would you risk your lie driing drunk? Intro Motion Position and displacement Aerage elocity and aerage speed Instantaneous elocity and speed Acceleration Constant acceleration: A special

More information

University of Alabama Department of Physics and Astronomy PH 101 LeClair Summer Exam 1 Solutions

University of Alabama Department of Physics and Astronomy PH 101 LeClair Summer Exam 1 Solutions University of Alabama Department of Pysics and Astronomy PH 101 LeClair Summer 2011 Exam 1 Solutions 1. A motorcycle is following a car tat is traveling at constant speed on a straigt igway. Initially,

More information

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0 3.4: Partial Derivatives Definition Mat 22-Lecture 9 For a single-variable function z = f(x), te derivative is f (x) = lim 0 f(x+) f(x). For a function z = f(x, y) of two variables, to define te derivatives,

More information

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1 Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 969) Quick Review..... f ( ) ( ) ( ) 0 ( ) f ( ) f ( ) sin π sin π 0 f ( ). < < < 6. < c c < < c 7. < < < < < 8. 9. 0. c < d d < c

More information

. h I B. Average velocity can be interpreted as the slope of a tangent line. I C. The difference quotient program finds the exact value of f ( a)

. h I B. Average velocity can be interpreted as the slope of a tangent line. I C. The difference quotient program finds the exact value of f ( a) Capter Review Packet (questions - ) KEY. In eac case determine if te information or statement is correct (C) or incorrect (I). If it is incorrect, include te correction. f ( a ) f ( a) I A. represents

More information

Excursions in Computing Science: Week v Milli-micro-nano-..math Part II

Excursions in Computing Science: Week v Milli-micro-nano-..math Part II Excursions in Computing Science: Week v Milli-micro-nano-..mat Part II T. H. Merrett McGill University, Montreal, Canada June, 5 I. Prefatory Notes. Cube root of 8. Almost every calculator as a square-root

More information

MTH-112 Quiz 1 Name: # :

MTH-112 Quiz 1 Name: # : MTH- Quiz Name: # : Please write our name in te provided space. Simplif our answers. Sow our work.. Determine weter te given relation is a function. Give te domain and range of te relation.. Does te equation

More information

Material for Difference Quotient

Material for Difference Quotient Material for Difference Quotient Prepared by Stepanie Quintal, graduate student and Marvin Stick, professor Dept. of Matematical Sciences, UMass Lowell Summer 05 Preface Te following difference quotient

More information

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c)

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c) Paper 1: Pure Matematics 1 Mark Sceme 1(a) (i) (ii) d d y 3 1x 4x x M1 A1 d y dx 1.1b 1.1b 36x 48x A1ft 1.1b Substitutes x = into teir dx (3) 3 1 4 Sows d y 0 and states ''ence tere is a stationary point''

More information

Outline. MS121: IT Mathematics. Limits & Continuity Rates of Change & Tangents. Is there a limit to how fast a man can run?

Outline. MS121: IT Mathematics. Limits & Continuity Rates of Change & Tangents. Is there a limit to how fast a man can run? Outline MS11: IT Matematics Limits & Continuity & 1 Limits: Atletics Perspective Jon Carroll Scool of Matematical Sciences Dublin City University 3 Atletics Atletics Outline Is tere a limit to ow fast

More information

Physics 107 HOMEWORK ASSIGNMENT #9b

Physics 107 HOMEWORK ASSIGNMENT #9b Physics 07 HOMEWORK SSIGNMENT #9b Cutnell & Johnson, 7 th edition Chapter : Problems 5, 58, 66, 67, 00 5 Concept Simulation. reiews the concept that plays the central role in this problem. (a) The olume

More information

Honors Calculus Midterm Review Packet

Honors Calculus Midterm Review Packet Name Date Period Honors Calculus Midterm Review Packet TOPICS THAT WILL APPEAR ON THE EXAM Capter Capter Capter (Sections. to.6) STRUCTURE OF THE EXAM Part No Calculators Miture o multiple-coice, matcing,

More information

CJ57.P.003 REASONING AND SOLUTION According to the impulse-momentum theorem (see Equation 7.4), F t = mv

CJ57.P.003 REASONING AND SOLUTION According to the impulse-momentum theorem (see Equation 7.4), F t = mv Solution to HW#7 CJ57.CQ.003. RASONNG AND SOLUTON a. Yes. Momentum is a ector, and the two objects hae the same momentum. This means that the direction o each object s momentum is the same. Momentum is

More information

Solutions Manual for Precalculus An Investigation of Functions

Solutions Manual for Precalculus An Investigation of Functions Solutions Manual for Precalculus An Investigation of Functions David Lippman, Melonie Rasmussen 1 st Edition Solutions created at Te Evergreen State College and Soreline Community College 1.1 Solutions

More information

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible.

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible. 004 Algebra Pretest answers and scoring Part A. Multiple coice questions. Directions: Circle te letter ( A, B, C, D, or E ) net to te correct answer. points eac, no partial credit. Wic one of te following

More information

Exercises for numerical differentiation. Øyvind Ryan

Exercises for numerical differentiation. Øyvind Ryan Exercises for numerical differentiation Øyvind Ryan February 25, 2013 1. Mark eac of te following statements as true or false. a. Wen we use te approximation f (a) (f (a +) f (a))/ on a computer, we can

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

SFU UBC UNBC Uvic Calculus Challenge Examination June 5, 2008, 12:00 15:00

SFU UBC UNBC Uvic Calculus Challenge Examination June 5, 2008, 12:00 15:00 SFU UBC UNBC Uvic Calculus Callenge Eamination June 5, 008, :00 5:00 Host: SIMON FRASER UNIVERSITY First Name: Last Name: Scool: Student signature INSTRUCTIONS Sow all your work Full marks are given only

More information

SEISMIC PASSIVE EARTH PRESSURE WITH VARYING SHEAR MODULUS: PSEUDO-DYNAMIC APPROACH

SEISMIC PASSIVE EARTH PRESSURE WITH VARYING SHEAR MODULUS: PSEUDO-DYNAMIC APPROACH IGC 29, Guntur, INDIA SEISMIC PASSIE EART PRESSURE WIT ARYING SEAR MODULUS: PSEUDO-DYNAMIC APPROAC P. Gos Assistant Professor, Deartment of Ciil Engineering, Indian Institute of Tecnology Kanur, Kanur

More information

Precalculus Notes: Unit 6 Law of Sines & Cosines, Vectors, & Complex Numbers. A can be rewritten as B

Precalculus Notes: Unit 6 Law of Sines & Cosines, Vectors, & Complex Numbers. A can be rewritten as B Date: 6.1 Law of Sines Syllaus Ojetie: 3.5 Te student will sole appliation prolems inoling triangles (Law of Sines). Deriing te Law of Sines: Consider te two triangles. a C In te aute triangle, sin and

More information

Sin, Cos and All That

Sin, Cos and All That Sin, Cos and All Tat James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 9, 2017 Outline Sin, Cos and all tat! A New Power Rule Derivatives

More information

Status: Unit 2, Chapter 3

Status: Unit 2, Chapter 3 1 Status: Unit, Chapter 3 Vectors and Scalars Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication by a Scalar Adding Vectors by Components Unit Vectors Vector Kinematics Projectile

More information