Honors Calculus Midterm Review Packet

Size: px
Start display at page:

Download "Honors Calculus Midterm Review Packet"

Transcription

1 Name Date Period Honors Calculus Midterm Review Packet TOPICS THAT WILL APPEAR ON THE EXAM Capter Capter Capter (Sections. to.6) STRUCTURE OF THE EXAM Part No Calculators Miture o multiple-coice, matcing, sort response Part Scientiic Calculators Open ended questions (6 pts) (5 pts) Te maimum possible score is points. Tere is no ormula seet. HOW TO PREPARE FOR THE MIDTERM EXAM Answer as many problems as possible rom tis review packet and ceck your answers. Only use a calculator i it is absolutely necessary. I you do not own a graping calculator, use desmos.com to practice. Review old tests and quizzes rom te st and nd marking periods. Ask questions on our review day. Stay ater scool or additional review. Get enoug rest te nigt beore. Wake up early and eat a ealty breakast. RULES AND EXPECTATIONS ON EXAM DAY Bring at least two sarpened pencils wit BIG erasers. You may only use a calculator tat as been RESET BY ME. Bring tings tat will elp you study or your oter eams in case you inis early. I you inis early, you must remain quiet until all eams ave been collected! NO ONE MAY LEAVE te room unless it is an absolute emergency. You are required to remain in te eam room te entire time. No one gets to leave early. Do not ask or passes to go places. You will ave a ten minute break between your eams to use te restroom. Midterm Eam Scedule Date Session Session Tuesday, January 9t Wednesday, January t Tursday, January st Friday, February st /5 5/6 6/7 8/9 7/8 9/

2 PRACTICE PROBLEMS: CHAPTER Scientiic Calculator Practice Question ) Use te Intermediate Value Teorem to determine i ( ) [, ] as zeros in te interval. Do not attempt to locate te zeros. Indicate i te teorem gives no inormation. No Calculator Practice Questions Use te table o values to determine te it. sin )..... ()? ) () ? ) State te interval(s) on wic te unction ( ) 5) Is te unction ( ) continuous at is continuous.? Wy or wy not? 6) Use te deinition o continuity to sow tat ( ) 9 6 < > is continuous at. 7) Find te constant a tat makes ( ), continuous on te entire real number line. a 5, > 8) Given: ( ) Find: 9) I ( ) c c g ( ) ( ) g c ( ) ( ) 8 ( ) ( ), ind. c ( ) 5 Study Tip: Break te study guide problems up into sections, and do a section eac day. I you ave any questions, come to etra elp and get tem answered!

3 ) I te unction as a vertical asymptote, state its equation. I te unction as a removable discontinuity, state te coordinates o te ole. ( ) ) Use te given grap to determine te -values 5 at wic te unction ( ) [ ] is not continuous. Use te given graps to ind eac it. ) [ sec ] ( ) sec ) ( ) sin ( ) sin ( ) Find eac it. ) ( ) sin 5) 6 6 6) 7 7) cos 5 8) sin 9) ) ( 5 ) ) ( ), were ( ),, <. ) Draw te grap o ( ) and ind ( )

4 Use te grap to answer eac questions # -. ) ( ) ) ( ) 5) ( ) 6) ( ) 7) () 8) ( ) 9) () ) ( ) ) Wat type o discontinuity eists at? ) Wat condition o te deinition o continuity is not satisied at? PRACTICE PROBLEMS: CHAPTER No Calculator Practice Questions. ) Use te it deinition o a derivative to sow tat te derivative o ( ) is ( ) 6 ) Determine te cot ( ) cot. (Just say te answer. Do not attempt to work it out.) Find te derivative o eac unction. ) g( ) sec 7 ( ) ) ( ) 5 5 s t 5) ( ) 6) ( ) sin t t y 7) Find te second derivative: ( ) 5 5 8) Given tat ( ) 8, ind ( 8). 9) Find te ourt derivative, ( ) ( ), o te unction ( ) sin. ) Given: ( ) ( ) and ( ), ( ), g( ) 5, and g ( ) g( ) Find: ( )

5 ) Find te slope o te line tangent to te grap o y at te point (, ). ) Find te equation o te normal line to te curve y 9 at. ) Consider te curve given by y y 6. dy d y y y a) Use implicit dierentiation to sow tat. b) Find all points on te curve wose -coordinate is. c) Write an equation or te tangent line at eac o tose points. sin sin ) Find te coordinates o all points on te grap o ( ) tangent lines in te interval [, ]. 5) Te graps o,, and are sown. Wic grap is wic? tat ave orizontal 6) Te grap o a piecewise-deined unction is sown below. Te grap as a vertical tangent line at and orizontal tangent lines at and. Wat are all values o, < <, at wic is continuous but not dierentiable? Study Tip: Studying or -5 minutes at a time (wit minute breaks in between) is te most eective way to retain inormation.

6 7) A particle moves along a line so tat at time t, were t, its position is given by te unction t s t cost. Wat is te velocity o te particle wen its acceleration is zero? ( ) 8) Te unction is deined on te closed interval [, 8]. Te grap o its derivative is sown. Te point (, 5) is on te grap o y ( ). Find te equation o te line tangent to te grap, 5. o y ( ) at te point ( ) Scientiic Calculator Practice Questions 9) A potato is launced upward rom te top o a 6-oot building wit an initial velocity o 8 eet per s t t t. second. Te position unction is given by ( ) 6 8 6? Include units o measure. b) At wat moment in time will te potato reac its maimum eigt? Include units o measure. c) At wat moment in time will te potato it te ground? Include units o measure. d) Wat is te velocity o te potato upon impact wit te ground? Include units o measure. a) Wat is te average rate o cange on te interval [, ] ) Two runners, A and B, run on a straigt racetrack or t seconds. Te grap, wic consists o two line segments, sows te velocity, in meters per second, o Runner A. Te velocity, t v t t. in meters per second, o Runner B is given by te unction ( ) a) Find te velocity o Runner A and te velocity o Runner B at time t seconds. Indicate units o measure. (, ) (, ) b) Find te acceleration o Runner A and te acceleration o Runner B at time t seconds. Indicate units o measure. Velocity o Runner A (meters/sec) time (seconds)

7 ) A 5 oot ladder is leaning against te side o a ouse. Te base o te ladder is pulled away at a rate o eet per second. How ast is te top o te ladder moving down te side o te ouse wen te base o te ladder is 5 eet rom te ouse? Include units o measure. ) A ot air balloon rising straigt up rom a level ield is traced by a range inder eet rom te lit o point. At te moment te range inder s angle is, te angle is increasing at a rate o.5 radians / min. How ast is te balloon rising at tat point? Include units o measure. ) Salt is poured rom a conveyer belt at a rate o t / min, orming a conical pile wit a circular base. Te eigt and diameter o base are always equal. How ast is te eigt o te pile increasing te moment wen te pile is eet ig? Include units o measure. Formula: V r No Calculator Practice Questions PRACTICE PROBLEMS: CHAPTER ) Use te given grap to determine te absolute ) Te grap o is given along wit its and relative etrema. inlection points. State te open intervals were te unction is concave up or concave down. ) Wy can t Rolle s Teorem be applied to te unction ( ) sec on te closed interval [ ] (Select all tat apply.) ( ) is not continuous on [ ], ( ) is not dierentiable on ( ) ( ) ( ).,,.? ( ) sec

8 ) State te domain, determine were it is continuous, identiy any absolute maimum values, identiy any absolute minimum values, identiy any relative maimum values, and identiy any relative minimum values. Domain: Continuous on: Absolute maimum value: Absolute minimum value: Relative maimum value: Relative minimum value: 5) Suppose is continuous on [, 5] and dierentiable on (, 5) and tat ( ) 6 ( 5 ) 8 (, 5) suc tat ( c)., and. According to te Mean Value Teorem (MVT), tere is some value c in te open interval 6) Find te critical numbers or te unction ( ) ( 8 ) 7) State te open intervals on wic ( ) ( ) 8) Find te relative etrema o te unction ( ) is increasing or decreasing. 6. ( ) 9) Given: ( ) sin on te closed interval [, ] a) State te open intervals were te unction is concave up or concave down. b) State te coordinates o te points o inlection.. Find eac it. ) 7 5 ) 5 ) Determine te equations o any asymptotes. ) ( ) ) ( ) 5) ( ) 6

9 6) A unction is continuous or all real numbers. Te graps o and are given below. ( ) y ( ) y (, ) a) Over wat interval(s) is increasing? b) Over wat interval(s) is decreasing? c) At wat value(s) o does ave a relative minimum? d) At wat value(s) o does ave a relative maimum? e) Were is concave up? ) Were is concave down? g) List any inlection points. Scientiic Calculator Practice Questions 7) Let ( ) on te closed interval [, ]. Find all numbers c tat satisy te MVT. 8) Find te absolute etrema o te unction ( ) on te closed interval [, ] 9) Given: ( ) a) State te open intervals were te unction is concave up or concave down. b) State te coordinates o te points o inlection. c) Use te Second Derivative Test to identiy any relative etrema. ) Given: ( ) a) State te domain. b) Find te intercepts. c) Determine te symmetry. d) State te equations o any asymptotes. Describe te end beavior. e) Determine were te unction is increasing or decreasing. ) Determine te relative etrema. g) Determine te concavity and points o inlection. ) Take all o tis wonderul inormation and draw me a gorgeous unction..

10 CHAPTER ANSWERS ) Since ( ) and ( ). 6, by te Intermediate Value Teorem, tere eists at least one, suc tat ( c). number c in te interval [ ] ) ) ) Continuous on te interval [, 9) ( 9, ). 5) No, because ( ) 6) Step : ( ) 6 ( )( ) Step : ( ) ( ) 9 ( ) 6 ( ) ( ) 6 Since te let and rigt-and its bot equal 6, ( ) 6. Step : Since ( ) ( ) 7) a 6, te unction is continuous at. is undeined. 8) ( ) ( ) g( ) g c 8 ( ) ( ) c c c ( ) ( 5) 5 9) ( ) ( ) ) Vertical asymptotes: and ) n were n is any integer ecept, Hole: (, ) ) ) ) 5) 8 6) 7 7) 8) 9) ) ) ) ( ) ) ) 5) DNE 6) 7) 8) 9) Undeined ) ) Removable ) ( ) ( )

11 CHAPTER ANSWERS ) ( ) ( ) ( ) ( ) ( ) 6 6 [ 6 ] 6 ( ) 6 csc ) g ( ) sec 7 ( ) tan( ) ) ) ( ) 5) ( ) 6) s ( t) 5 t cos t sin t t y 8 8) 9) 7) ( ) ( ) ( ) 6 sin ) 5 ) 5 ) y a) dy y y b) (, ) (, ) d y ) ( ) (, ), and c) At (, ) : y At (, ) : y and 5) : line, : parabola, : cubic unction 6) and 7) 9a) 8 t/sec 9b). 5 seconds ater being launced 9c) 5 seconds ater being launced 9d) t/sec 8) y a) Runner A: 6.67 m/s b) Runner A:. m/s ). 5 t/sec Runner B: 6.86 m/s Runner B:.7 m/s ) 8 t/min ). 8 t/min 6 5

12 CHAPTER ANSWERS ) ( ) : Relative Min ) Concave Up: (, ) and (, ) ( ) : Absolute Ma & Relative Ma Concave Down: (, ) and (, ) ( ) : Relative Min ( ) : Relative Ma ) ( ) is not continuous on [ ]. ( 5) : Absolute Min ( ) is not dierentiable on ( ). ) Domain: [, ] 5) ( c) Continuous on: [, ] ecept at Absolute Ma: ( ) 5 and ( ) 5 Absolute Min: None 6) and Relative Ma: ( ) 7) Increasing: (, ) and (, ) Relative Min: None Decreasing: (, ) and (, ) 8) Relative Min: ( ), No Relative Ma at because ( ), is undeined at 9a) Concave Up: (, ) and (, ) Concave Down: (, ) and (, ) 9b) Inlection Points: (, ), (, ), and (, ) ) 7 ) ) ) VA: HA: ) VA: None 5) VA: y HA: y and y OA: y 6a) (, ) and (, ) 7) c 6b) (, ) 8) Absolute Ma: ( ) 8 Absolute Min: ( ) 6c) Relative Min at 6d) Relative Ma at 6e) (, ) 9a) Concave Up: (, ) Concave Down: (, ) 6) (, ) and (, ) 9b) Inlection Point: (, ) 6g) (, () ) 9c) Relative Ma: ( ) Relative Min: ( ) 7 a) (, ) ) Relative Ma: ( ) Relative Min: ( ) b) -int:, ± y-int: g) Concave Up: (, ) Concave Down: (, ) c) symmetric wit origin Inlection Point: (, ) d) As, ( ) ) As, ( ) e) INC: (, ) and (, ) DEC: (, ) and (, )

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

MAT 1800 FINAL EXAM HOMEWORK

MAT 1800 FINAL EXAM HOMEWORK MAT 800 FINAL EXAM HOMEWORK Read te directions to eac problem careully ALL WORK MUST BE SHOWN DO NOT USE A CALCULATOR Problems come rom old inal eams (SS4, W4, F, SS, W) Solving Equations: Let 5 Find all

More information

Chapter 2 Limits and Continuity. Section 2.1 Rates of Change and Limits (pp ) Section Quick Review 2.1

Chapter 2 Limits and Continuity. Section 2.1 Rates of Change and Limits (pp ) Section Quick Review 2.1 Section. 6. (a) N(t) t (b) days: 6 guppies week: 7 guppies (c) Nt () t t t ln ln t ln ln ln t 8. 968 Tere will be guppies ater ln 8.968 days, or ater nearly 9 days. (d) Because it suggests te number o

More information

MATH Fall 08. y f(x) Review Problems for the Midterm Examination Covers [1.1, 4.3] in Stewart

MATH Fall 08. y f(x) Review Problems for the Midterm Examination Covers [1.1, 4.3] in Stewart MATH 121 - Fall 08 Review Problems for te Midterm Eamination Covers [1.1, 4.3] in Stewart 1. (a) Use te definition of te derivative to find f (3) wen f() = π 1 2. (b) Find an equation of te tangent line

More information

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value AB Calculus Unit Review Key Concepts Average and Instantaneous Speed Definition of Limit Properties of Limits One-sided and Two-sided Limits Sandwic Teorem Limits as x ± End Beaviour Models Continuity

More information

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a?

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a? Solutions to Test 1 Fall 016 1pt 1. Te grap of a function f(x) is sown at rigt below. Part I. State te value of eac limit. If a limit is infinite, state weter it is or. If a limit does not exist (but is

More information

SFU UBC UNBC Uvic Calculus Challenge Examination June 5, 2008, 12:00 15:00

SFU UBC UNBC Uvic Calculus Challenge Examination June 5, 2008, 12:00 15:00 SFU UBC UNBC Uvic Calculus Callenge Eamination June 5, 008, :00 5:00 Host: SIMON FRASER UNIVERSITY First Name: Last Name: Scool: Student signature INSTRUCTIONS Sow all your work Full marks are given only

More information

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Some Review Problems for First Midterm Mathematics 1300, Calculus 1 Some Review Problems for First Midterm Matematics 00, Calculus. Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd,

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f()

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f() 4.1 & 4. Student Notes Using the First and Second Derivatives Deinition A unction has an absolute maimum (or global maimum) at c i ( c) ( ) or all in D, where D is the domain o. The number () c is called

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM MA9-A Applied Calculus for Business 006 Fall Homework Solutions Due 9/9/006 0:0AM. #0 Find te it 5 0 + +.. #8 Find te it. #6 Find te it 5 0 + + = (0) 5 0 (0) + (0) + =.!! r + +. r s r + + = () + 0 () +

More information

Chapter 2 Limits and Continuity

Chapter 2 Limits and Continuity 4 Section. Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 6) Quick Review.. f () ( ) () 4 0. f () 4( ) 4. f () sin sin 0 4. f (). 4 4 4 6. c c c 7. 8. c d d c d d c d c 9. 8 ( )(

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

MATH1901 Differential Calculus (Advanced)

MATH1901 Differential Calculus (Advanced) MATH1901 Dierential Calculus (Advanced) Capter 3: Functions Deinitions : A B A and B are sets assigns to eac element in A eactl one element in B A is te domain o te unction B is te codomain o te unction

More information

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points MAT 15 Test #2 Name Solution Guide Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points Use te grap of a function sown ere as you respond to questions 1 to 8. 1. lim f (x) 0 2. lim

More information

Exam 1 Solutions. x(x 2) (x + 1)(x 2) = x

Exam 1 Solutions. x(x 2) (x + 1)(x 2) = x Eam Solutions Question (0%) Consider f() = 2 2 2 2. (a) By calculating relevant its, determine te equations of all vertical asymptotes of te grap of f(). If tere are none, say so. f() = ( 2) ( + )( 2)

More information

Section 3.4: Concavity and the second Derivative Test. Find any points of inflection of the graph of a function.

Section 3.4: Concavity and the second Derivative Test. Find any points of inflection of the graph of a function. Unit 3: Applications o Dierentiation Section 3.4: Concavity and the second Derivative Test Determine intervals on which a unction is concave upward or concave downward. Find any points o inlection o the

More information

MATH 3208 MIDTERM REVIEW. (B) {x 4 x 5 ; x ʀ} (D) {x x ʀ} Use the given functions to answer questions # 3 5. determine the value of h(7).

MATH 3208 MIDTERM REVIEW. (B) {x 4 x 5 ; x ʀ} (D) {x x ʀ} Use the given functions to answer questions # 3 5. determine the value of h(7). MATH 08 MIDTERM REVIEW. If () = (f + g)() wat is te domain of () { 5 4 ; ʀ} { 4 4 ; ʀ} { 4 5 ; ʀ} { ʀ}. Given p() = and g() = wic function represents k() k() = p() g() + + Use te given functions to answer

More information

Calculus I Practice Exam 1A

Calculus I Practice Exam 1A Calculus I Practice Exam A Calculus I Practice Exam A Tis practice exam empasizes conceptual connections and understanding to a greater degree tan te exams tat are usually administered in introductory

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

Answer Key-Math 11- Optional Review Homework For Exam 2

Answer Key-Math 11- Optional Review Homework For Exam 2 Answer Key-Math - Optional Review Homework For Eam 2. Compute the derivative or each o the ollowing unctions: Please do not simpliy your derivatives here. I simliied some, only in the case that you want

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

Differentiation. introduction to limits

Differentiation. introduction to limits 9 9A Introduction to limits 9B Limits o discontinuous, rational and brid unctions 9C Dierentiation using i rst principles 9D Finding derivatives b rule 9E Antidierentiation 9F Deriving te original unction

More information

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1 Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 969) Quick Review..... f ( ) ( ) ( ) 0 ( ) f ( ) f ( ) sin π sin π 0 f ( ). < < < 6. < c c < < c 7. < < < < < 8. 9. 0. c < d d < c

More information

Math 1210 Midterm 1 January 31st, 2014

Math 1210 Midterm 1 January 31st, 2014 Mat 110 Midterm 1 January 1st, 01 Tis exam consists of sections, A and B. Section A is conceptual, wereas section B is more computational. Te value of every question is indicated at te beginning of it.

More information

Pre-Calculus Review Preemptive Strike

Pre-Calculus Review Preemptive Strike Pre-Calculus Review Preemptive Strike Attaced are some notes and one assignment wit tree parts. Tese are due on te day tat we start te pre-calculus review. I strongly suggest reading troug te notes torougly

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

Differentiation. Area of study Unit 2 Calculus

Differentiation. Area of study Unit 2 Calculus Differentiation 8VCE VCEco Area of stud Unit Calculus coverage In tis ca 8A 8B 8C 8D 8E 8F capter Introduction to limits Limits of discontinuous, rational and brid functions Differentiation using first

More information

2.11 That s So Derivative

2.11 That s So Derivative 2.11 Tat s So Derivative Introduction to Differential Calculus Just as one defines instantaneous velocity in terms of average velocity, we now define te instantaneous rate of cange of a function at a point

More information

HOMEWORK HELP 2 FOR MATH 151

HOMEWORK HELP 2 FOR MATH 151 HOMEWORK HELP 2 FOR MATH 151 Here we go; te second round of omework elp. If tere are oters you would like to see, let me know! 2.4, 43 and 44 At wat points are te functions f(x) and g(x) = xf(x)continuous,

More information

UNIT #6 EXPONENTS, EXPONENTS, AND MORE EXPONENTS REVIEW QUESTIONS

UNIT #6 EXPONENTS, EXPONENTS, AND MORE EXPONENTS REVIEW QUESTIONS Answer Key Name: Date: UNIT # EXPONENTS, EXPONENTS, AND MORE EXPONENTS REVIEW QUESTIONS Part I Questions. Te epression 0 can be simpliied to () () 0 0. Wic o te ollowing is equivalent to () () 8 8? 8.

More information

Continuity and Differentiability

Continuity and Differentiability Continuity and Dierentiability Tis capter requires a good understanding o its. Te concepts o continuity and dierentiability are more or less obvious etensions o te concept o its. Section - INTRODUCTION

More information

lim 1 lim 4 Precalculus Notes: Unit 10 Concepts of Calculus

lim 1 lim 4 Precalculus Notes: Unit 10 Concepts of Calculus Syllabus Objectives: 1.1 Te student will understand and apply te concept of te limit of a function at given values of te domain. 1. Te student will find te limit of a function at given values of te domain.

More information

3.4 Algebraic Limits. Ex 1) lim. Ex 2)

3.4 Algebraic Limits. Ex 1) lim. Ex 2) Calculus Maimus.4 Algebraic Limits At tis point, you sould be very comfortable finding its bot grapically and numerically wit te elp of your graping calculator. Now it s time to practice finding its witout

More information

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk Bob Brown Mat 251 Calculus 1 Capter 3, Section 1 Completed 1 Te Tangent Line Problem Te idea of a tangent line first arises in geometry in te context of a circle. But before we jump into a discussion of

More information

Excerpt from "Calculus" 2013 AoPS Inc.

Excerpt from Calculus 2013 AoPS Inc. Excerpt from "Calculus" 03 AoPS Inc. Te term related rates refers to two quantities tat are dependent on eac oter and tat are canging over time. We can use te dependent relationsip between te quantities

More information

Section 3: The Derivative Definition of the Derivative

Section 3: The Derivative Definition of the Derivative Capter 2 Te Derivative Business Calculus 85 Section 3: Te Derivative Definition of te Derivative Returning to te tangent slope problem from te first section, let's look at te problem of finding te slope

More information

CHAPTER (A) When x = 2, y = 6, so f( 2) = 6. (B) When y = 4, x can equal 6, 2, or 4.

CHAPTER (A) When x = 2, y = 6, so f( 2) = 6. (B) When y = 4, x can equal 6, 2, or 4. SECTION 3-1 101 CHAPTER 3 Section 3-1 1. No. A correspondence between two sets is a function only if eactly one element of te second set corresponds to eac element of te first set. 3. Te domain of a function

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS INTODUCTION ND MTHEMTICL CONCEPTS PEVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips of sine,

More information

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question.

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question. Mth Calculus Practice Eam Questions NOTE: These questions should not be taken as a complete list o possible problems. The are merel intended to be eamples o the diicult level o the regular eam questions.

More information

The derivative function

The derivative function Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Te derivative function Wat you need to know already: f is at a point on its grap and ow to compute it. Wat te derivative

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

KEY CONCEPT: THE DERIVATIVE

KEY CONCEPT: THE DERIVATIVE Capter Two KEY CONCEPT: THE DERIVATIVE We begin tis capter by investigating te problem of speed: How can we measure te speed of a moving object at a given instant in time? Or, more fundamentally, wat do

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

Name Date Period. Pre-Calculus Midterm Review Packet (Chapters 1, 2, 3)

Name Date Period. Pre-Calculus Midterm Review Packet (Chapters 1, 2, 3) Name Date Period Sections and Scoring Pre-Calculus Midterm Review Packet (Chapters,, ) Your midterm eam will test your knowledge of the topics we have studied in the first half of the school year There

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019 ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 6. Differential Calculus 6.. Differentiation from First Principles. In tis capter, we will introduce

More information

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES (Section.0: Difference Quotients).0. SECTION.0: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES Define average rate of cange (and average velocity) algebraically and grapically. Be able to identify, construct,

More information

2.3 More Differentiation Patterns

2.3 More Differentiation Patterns 144 te derivative 2.3 More Differentiation Patterns Polynomials are very useful, but tey are not te only functions we need. Tis section uses te ideas of te two previous sections to develop tecniques for

More information

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist Mat 1120 Calculus Test 2. October 18, 2001 Your name Te multiple coice problems count 4 points eac. In te multiple coice section, circle te correct coice (or coices). You must sow your work on te oter

More information

Mathematics 105 Calculus I. Exam 1. February 13, Solution Guide

Mathematics 105 Calculus I. Exam 1. February 13, Solution Guide Matematics 05 Calculus I Exam February, 009 Your Name: Solution Guide Tere are 6 total problems in tis exam. On eac problem, you must sow all your work, or oterwise torougly explain your conclusions. Tere

More information

Derivatives of Exponentials

Derivatives of Exponentials mat 0 more on derivatives: day 0 Derivatives of Eponentials Recall tat DEFINITION... An eponential function as te form f () =a, were te base is a real number a > 0. Te domain of an eponential function

More information

f a h f a h h lim lim

f a h f a h h lim lim Te Derivative Te derivative of a function f at a (denoted f a) is f a if tis it exists. An alternative way of defining f a is f a x a fa fa fx fa x a Note tat te tangent line to te grap of f at te point

More information

1 (10) 2 (10) 3 (10) 4 (10) 5 (10) 6 (10) Total (60)

1 (10) 2 (10) 3 (10) 4 (10) 5 (10) 6 (10) Total (60) First Name: OSU Number: Last Name: Signature: OKLAHOMA STATE UNIVERSITY Department of Matematics MATH 2144 (Calculus I) Instructor: Dr. Matias Sculze MIDTERM 1 September 17, 2008 Duration: 50 minutes No

More information

. If lim. x 2 x 1. f(x+h) f(x)

. If lim. x 2 x 1. f(x+h) f(x) Review of Differential Calculus Wen te value of one variable y is uniquely determined by te value of anoter variable x, ten te relationsip between x and y is described by a function f tat assigns a value

More information

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY (Section 3.2: Derivative Functions and Differentiability) 3.2.1 SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY LEARNING OBJECTIVES Know, understand, and apply te Limit Definition of te Derivative

More information

Math 1241 Calculus Test 1

Math 1241 Calculus Test 1 February 4, 2004 Name Te first nine problems count 6 points eac and te final seven count as marked. Tere are 120 points available on tis test. Multiple coice section. Circle te correct coice(s). You do

More information

Math 124. Section 2.6: Limits at infinity & Horizontal Asymptotes. 1 x. lim

Math 124. Section 2.6: Limits at infinity & Horizontal Asymptotes. 1 x. lim Mat 4 Section.6: Limits at infinity & Horizontal Asymptotes Tolstoy, Count Lev Nikolgevic (88-90) A man is like a fraction wose numerator is wat e is and wose denominator is wat e tinks of imself. Te larger

More information

Introduction to Derivatives

Introduction to Derivatives Introduction to Derivatives 5-Minute Review: Instantaneous Rates and Tangent Slope Recall te analogy tat we developed earlier First we saw tat te secant slope of te line troug te two points (a, f (a))

More information

Higher Derivatives. Differentiable Functions

Higher Derivatives. Differentiable Functions Calculus 1 Lia Vas Higer Derivatives. Differentiable Functions Te second derivative. Te derivative itself can be considered as a function. Te instantaneous rate of cange of tis function is te second derivative.

More information

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ).

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ). Mat - Final Exam August 3 rd, Name: Answer Key No calculators. Sow your work!. points) All answers sould eiter be,, a finite) real number, or DNE does not exist ). a) Use te grap of te function to evaluate

More information

MAT Calculus for Engineers I EXAM #1

MAT Calculus for Engineers I EXAM #1 MAT 65 - Calculus for Engineers I EXAM # Instructor: Liu, Hao Honor Statement By signing below you conrm tat you ave neiter given nor received any unautorized assistance on tis eam. Tis includes any use

More information

Derivatives. By: OpenStaxCollege

Derivatives. By: OpenStaxCollege By: OpenStaxCollege Te average teen in te United States opens a refrigerator door an estimated 25 times per day. Supposedly, tis average is up from 10 years ago wen te average teenager opened a refrigerator

More information

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point.

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point. Popper 6: Review of skills: Find tis difference quotient. f ( x ) f ( x) if f ( x) x Answer coices given in audio on te video. Section.1 Te Definition of te Derivative We are interested in finding te slope

More information

Taylor Series and the Mean Value Theorem of Derivatives

Taylor Series and the Mean Value Theorem of Derivatives 1 - Taylor Series and te Mean Value Teorem o Derivatives Te numerical solution o engineering and scientiic problems described by matematical models oten requires solving dierential equations. Dierential

More information

Derivative as Instantaneous Rate of Change

Derivative as Instantaneous Rate of Change 43 Derivative as Instantaneous Rate of Cange Consider a function tat describes te position of a racecar moving in a straigt line away from some starting point Let y s t suc tat t represents te time in

More information

University Mathematics 2

University Mathematics 2 University Matematics 2 1 Differentiability In tis section, we discuss te differentiability of functions. Definition 1.1 Differentiable function). Let f) be a function. We say tat f is differentiable at

More information

Midterm #1B. x 8 < < x 8 < 11 3 < x < x > x < 5 or 3 2x > 5 2x < 8 2x > 2

Midterm #1B. x 8 < < x 8 < 11 3 < x < x > x < 5 or 3 2x > 5 2x < 8 2x > 2 Mat 30 College Algebra Februar 2, 2016 Midterm #1B Name: Answer Ke David Arnold Instructions. ( points) For eac o te ollowing questions, select te best answer and darken te corresponding circle on our

More information

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 Mat 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 f(x+) f(x) 10 1. For f(x) = x 2 + 2x 5, find ))))))))) and simplify completely. NOTE: **f(x+) is NOT f(x)+! f(x+) f(x) (x+) 2 + 2(x+) 5 ( x 2

More information

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3.

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3. Capter Functions and Graps Section. Ceck Point Exercises. Te slope of te line y x+ is. y y m( x x y ( x ( y ( x+ point-slope y x+ 6 y x+ slope-intercept. a. Write te equation in slope-intercept form: x+

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

Final Exam Review Math Determine the derivative for each of the following: dy dx. dy dx. dy dx dy dx. dy dx dy dx. dy dx

Final Exam Review Math Determine the derivative for each of the following: dy dx. dy dx. dy dx dy dx. dy dx dy dx. dy dx Final Eam Review Math. Determine the derivative or each o the ollowing: a. y 6 b. y sec c. y ln d. y e. y e. y sin sin g. y cos h. i. y e y log j. k. l. 6 y y cosh y sin m. y ln n. y tan o. y arctan e

More information

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x)

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x) Calculus. Gradients and te Derivative Q f(x+) δy P T δx R f(x) 0 x x+ Let P (x, f(x)) and Q(x+, f(x+)) denote two points on te curve of te function y = f(x) and let R denote te point of intersection of

More information

Chapter 4 Derivatives [ ] = ( ) ( )= + ( ) + + = ()= + ()+ Exercise 4.1. Review of Prerequisite Skills. 1. f. 6. d. 4. b. lim. x x. = lim = c.

Chapter 4 Derivatives [ ] = ( ) ( )= + ( ) + + = ()= + ()+ Exercise 4.1. Review of Prerequisite Skills. 1. f. 6. d. 4. b. lim. x x. = lim = c. Capter Derivatives Review of Prerequisite Skills. f. p p p 7 9 p p p Eercise.. i. ( a ) a ( b) a [ ] b a b ab b a. d. f. 9. c. + + ( ) ( + ) + ( + ) ( + ) ( + ) + + + + ( ) ( + ) + + ( ) ( ) ( + ) + 7

More information

Time (hours) Morphine sulfate (mg)

Time (hours) Morphine sulfate (mg) Mat Xa Fall 2002 Review Notes Limits and Definition of Derivative Important Information: 1 According to te most recent information from te Registrar, te Xa final exam will be eld from 9:15 am to 12:15

More information

2.1 THE DEFINITION OF DERIVATIVE

2.1 THE DEFINITION OF DERIVATIVE 2.1 Te Derivative Contemporary Calculus 2.1 THE DEFINITION OF DERIVATIVE 1 Te grapical idea of a slope of a tangent line is very useful, but for some uses we need a more algebraic definition of te derivative

More information

Differential Calculus (The basics) Prepared by Mr. C. Hull

Differential Calculus (The basics) Prepared by Mr. C. Hull Differential Calculus Te basics) A : Limits In tis work on limits, we will deal only wit functions i.e. tose relationsips in wic an input variable ) defines a unique output variable y). Wen we work wit

More information

Chapter Primer on Differentiation

Chapter Primer on Differentiation Capter 0.01 Primer on Differentiation After reaing tis capter, you soul be able to: 1. unerstan te basics of ifferentiation,. relate te slopes of te secant line an tangent line to te erivative of a function,.

More information

1. (a) 3. (a) 4 3 (b) (a) t = 5: 9. (a) = 11. (a) The equation of the line through P = (2, 3) and Q = (8, 11) is y 3 = 8 6

1. (a) 3. (a) 4 3 (b) (a) t = 5: 9. (a) = 11. (a) The equation of the line through P = (2, 3) and Q = (8, 11) is y 3 = 8 6 A Answers Important Note about Precision of Answers: In many of te problems in tis book you are required to read information from a grap and to calculate wit tat information. You sould take reasonable

More information

Calculus I Homework: The Derivative as a Function Page 1

Calculus I Homework: The Derivative as a Function Page 1 Calculus I Homework: Te Derivative as a Function Page 1 Example (2.9.16) Make a careful sketc of te grap of f(x) = sin x and below it sketc te grap of f (x). Try to guess te formula of f (x) from its grap.

More information

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible.

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible. 004 Algebra Pretest answers and scoring Part A. Multiple coice questions. Directions: Circle te letter ( A, B, C, D, or E ) net to te correct answer. points eac, no partial credit. Wic one of te following

More information

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits.

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits. Questions 1. State weter te function is an exponential growt or exponential decay, and describe its end beaviour using its. (a) f(x) = 3 2x (b) f(x) = 0.5 x (c) f(x) = e (d) f(x) = ( ) x 1 4 2. Matc te

More information

Differential Equaitons Equations

Differential Equaitons Equations Welcome to Multivariable Calculus / Dierential Equaitons Equations The Attached Packet is or all students who are planning to take Multibariable Multivariable Calculus/ Dierential Equations in the all.

More information

University of Alabama Department of Physics and Astronomy PH 101 LeClair Summer Exam 1 Solutions

University of Alabama Department of Physics and Astronomy PH 101 LeClair Summer Exam 1 Solutions University of Alabama Department of Pysics and Astronomy PH 101 LeClair Summer 2011 Exam 1 Solutions 1. A motorcycle is following a car tat is traveling at constant speed on a straigt igway. Initially,

More information

Math Final Review. 1. Match the following functions with the given graphs without using your calculator: f3 (x) = x4 x 5.

Math Final Review. 1. Match the following functions with the given graphs without using your calculator: f3 (x) = x4 x 5. Mat 5 Final Review. Matc te following functions wit te given graps witout using our calculator: f () = /3 f4 () = f () = /3 54 5 + 5 f5 () = f3 () = 4 5 53 5 + 5 f6 () = 5 5 + 5 (Ans: A, E, D, F, B, C)

More information

Section 2: The Derivative Definition of the Derivative

Section 2: The Derivative Definition of the Derivative Capter 2 Te Derivative Applied Calculus 80 Section 2: Te Derivative Definition of te Derivative Suppose we drop a tomato from te top of a 00 foot building and time its fall. Time (sec) Heigt (ft) 0.0 00

More information

The Derivative The rate of change

The Derivative The rate of change Calculus Lia Vas Te Derivative Te rate of cange Knowing and understanding te concept of derivative will enable you to answer te following questions. Let us consider a quantity wose size is described by

More information

= h. Geometrically this quantity represents the slope of the secant line connecting the points

= h. Geometrically this quantity represents the slope of the secant line connecting the points Section 3.7: Rates of Cange in te Natural and Social Sciences Recall: Average rate of cange: y y y ) ) ), ere Geometrically tis quantity represents te slope of te secant line connecting te points, f (

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

Review for Exam IV MATH 1113 sections 51 & 52 Fall 2018

Review for Exam IV MATH 1113 sections 51 & 52 Fall 2018 Review for Exam IV MATH 111 sections 51 & 52 Fall 2018 Sections Covered: 6., 6., 6.5, 6.6, 7., 7.1, 7.2, 7., 7.5 Calculator Policy: Calculator use may be allowed on part of te exam. Wen instructions call

More information

UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I FIRST TERM EXAMINATION - Version A October 12, :30 am

UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I FIRST TERM EXAMINATION - Version A October 12, :30 am DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I October 12, 2016 8:30 am LAST NAME: FIRST NAME: STUDENT NUMBER: SIGNATURE: (I understand tat ceating is a serious offense DO NOT WRITE IN THIS TABLE

More information

Math Module Preliminary Test Solutions

Math Module Preliminary Test Solutions SSEA Summer 207 Mat Module Preliminar Test Solutions. [3 points] Find all values of tat satisf =. Solution: = ( ) = ( ) = ( ) =. Tis means ( ) is positive. Tat is, 0, wic implies. 2. [6 points] Find all

More information

In Leibniz notation, we write this rule as follows. DERIVATIVE OF A CONSTANT FUNCTION. For n 4 we find the derivative of f x x 4 as follows: lim

In Leibniz notation, we write this rule as follows. DERIVATIVE OF A CONSTANT FUNCTION. For n 4 we find the derivative of f x x 4 as follows: lim .1 DERIVATIVES OF POLYNOIALS AND EXPONENTIAL FUNCTIONS c =c slope=0 0 FIGURE 1 Te grap of ƒ=c is te line =c, so fª()=0. In tis section we learn ow to ifferentiate constant functions, power functions, polnomials,

More information

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12) *

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12) * OpenStax-CNX moule: m39313 1 Differential Calculus: Differentiation (First Principles, Rules) an Sketcing Graps (Grae 12) * Free Hig Scool Science Texts Project Tis work is prouce by OpenStax-CNX an license

More information

1 Limits and Continuity

1 Limits and Continuity 1 Limits and Continuity 1.0 Tangent Lines, Velocities, Growt In tion 0.2, we estimated te slope of a line tangent to te grap of a function at a point. At te end of tion 0.3, we constructed a new function

More information

Mathematics 123.3: Solutions to Lab Assignment #5

Mathematics 123.3: Solutions to Lab Assignment #5 Matematics 3.3: Solutions to Lab Assignment #5 Find te derivative of te given function using te definition of derivative. State te domain of te function and te domain of its derivative..: f(x) 6 x Solution:

More information

5.1 We will begin this section with the definition of a rational expression. We

5.1 We will begin this section with the definition of a rational expression. We Basic Properties and Reducing to Lowest Terms 5.1 We will begin tis section wit te definition of a rational epression. We will ten state te two basic properties associated wit rational epressions and go

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS Capter 1 INTRODUCTION ND MTHEMTICL CONCEPTS PREVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips

More information

CHAPTER 3: DERIVATIVES

CHAPTER 3: DERIVATIVES (Answers to Exercises for Capter 3: Derivatives) A.3.1 CHAPTER 3: DERIVATIVES SECTION 3.1: DERIVATIVES, TANGENT LINES, and RATES OF CHANGE 1) a) f ( 3) f 3.1 3.1 3 f 3.01 f ( 3) 3.01 3 f 3.001 f ( 3) 3.001

More information