40th AIAA Aerospace Sciences Meeting and Exhibit January 14 17, 2002/Reno, NV

Size: px
Start display at page:

Download "40th AIAA Aerospace Sciences Meeting and Exhibit January 14 17, 2002/Reno, NV"

Transcription

1 AIAA Rsistnc Appoc fo Annul Fins wit Contct Conductnc nd End Cooling Susnt K. Mit nd M. Micl Yovnovic Dptmnt of Mcnicl Engining, Univsity of Wtloo, Wtloo, Cnd, N2 3G 40t AIAA Aospc Scincs Mting nd Exibit Jnuy 4 7, 2002/Rno, NV Fo pmission to copy o publis, contct t Amicn Institut of Aonutics nd Astonutics 80 Alxnd Bll Div, Suit 500, Rston, VA

2 Rsistnc Appoc fo Annul Fins wit Contct Conductnc nd End Cooling Susnt K. Mit Λ nd M. Micl Yovnovic y Dptmnt of Mcnicl Engining, Univsity of Wtloo, Wtloo, Cnd, N2 3G A simplifid mtod, bsd on contol volum, is dvlopd to obtin t sistnc of nnul fins of constnt ticknss wit bs contct nd nd cooling. Tis ppoc is fut xtndd to nnul fins wit vibl ticknss fo wic nlyticl solution is not possibl. Suc novl mtod is bl to mtc t nlyticl solution fo constnt ticknss fins wit minimum numb of contol volums nd sows xcllnt gmnt fo vious limiting css of Biot numbs. Nomncltu tip ticknss A coss-sctionl b bs ticknss C constnt wit modifid Bssl functions Bi Biot numb t tnsf cofficint I modifid Bssl function of fist kind k tml conductivity K modifid Bssl function of scond kind fin lngt m non-dimnsionl fin pmt n numb ofcontol volum Q t flow dius R fin sistnc t lf-fin ticknss T fin tmptu ff non-dimnsionl inn dius fi non-dimnsionl out dius smi-tpd ngl fin tmptu xcss of mbint ψ non-dimnsionl tmptu Ω constnt wit modifid Bssl functions ρ non-dimnsionl dil position Subscipts c bs contct nd cooling f convctiv sufc i inn j indx fo contol volum o out mbint Λ Psnt Addss: Ontio Pow Gntion, Nucl Sfty Anlysis Division, Toonto, Cnd, M5G X6. y Pincipl Scintific Adviso, Micolctonics Ht Tnsf botoy, Univsity ofwtloo, Fllow AIAA. Copyigt cfl 2002 by t Amicn Institut of Aonutics nd Astonutics, Inc. No copyigt is sstd in t Unitd Stts und Titl 7, U.S. Cod. T U.S. Govnmnt s oyltyf licns to xcis ll igts und t copyigt climd in fo Govnmntl Puposs. All ot igts svd by t copyigt own. Supscipt nd conduction Intoduction ANNUAR fins fquntly usd s xtndd sufcs to nnc t t tnsf t in vious pplictions suc s i conditioning, t xcngs nd mico-lctonic pckgs. Wn suc fins ddd to sufc in contct wit t suounding fluid, t following sistncs ply ky ol in t nti t tnsf pocss: () t contct sistnc du to t mcnicl contct btwn t fin bs nd t pviously xposd sufc, (b) t conductiv sistnc to t flow witin t fin itslf, nd (c) t sistnc to t flow toug t convctiv film of t suounding fluid. Svl nlyticl solutions fo t stdy-stt t conduction witin n nnul fin of constnt ticknss, pfct contct t t bs, nd insultd nd (o som ppoximtion fo nd cooling) ldy xist., 7 On t ot nd, t on-dimnsionl stdy-stt nlyticl solution fo nnul fin wit constnt ticknss long wit bs contct sistnc nd nd cooling 3 involvs modifid Bssl functions tt difficult to comput nd lso computtionlly intnsiv, t dtils of wic will b discussd lt. Howv, in tcsofvibl ticknss nnul fin, nlyticl solutions do not xist. Suc poblms solvd numiclly, it toug finit diffnc 4 o finit lmnt 5 mtod, o by mns of intgl contol volum ppoc. 6 T min objctiv of t psnt wok is to dvlop simplifid, yt ccut tcniqu, by mns of sistnc mtod, fo dtmining t fin sistnc of constnt ticknss nnul fin wit bs contct sistnc nd nd cooling. It is lso sown tt suc tcniqu cn b dily xtndd fo n nnul fin wit vibl ticknss. of5 Amicn Institut of Aonutics nd Astonutics Pp

3 CV CVj (2 < j< n-) CV n 2t k c Nodl Point o i 2n /n /n /n /n /n 2n Fig. 2 Subdivision into n contol volums. Fig. Scmtic digm of constnt ticknss nnul fin. Constnt Ticknss Fin Anlyticl Mtod Figu sows scmtic digm fo n nnul fin of constnt ticknss 2t, tml conductivity k, nd inn nd out dii of i nd o, spctivly. T fin is coold long t sids toug unifom film cofficint nd t t nd toug unifom film cofficint. T contct conductnc, c,t t bs is ssumd to b unifom. T stdy stt on-dimnsionl govning t tnsf qution fo t fin cn b wittn s: 7» d ρ dψ m 2 ψ =0 () ρ dρ dρ w ψ = = b, wit dfind s = T () T nd b = T ( i ) T; ρ = =t, ndm 2 is t nondimnsionl fin pmt. By intoducing t following non-dimnsionl Biot numbs: Bi = t=k (= m 2 ) (2) Bi c = c t=k (3) Bi = t=k (4) t bs nd nd boundy conditions cn b wittn s: dψ ρ = ff; dρ = Bi c[ ψ] (5) ρ = fi; dψ dρ = Bi ψ (6) w ff = i =t nd fi = o =t. T solution of t govning qution subjctd to t boundy conditions givs t fin sistnc, R fin, in t following fom: R fin =[4ßktmffC fωk (mff) I (mff)g] (7) w I nd K t modifid Bssl functions of t fist nd t scond kind of od unity, spctivly; C nd Ω constnts wic involv modifid Bssl functions, t dtils of wic povidd by Yovnovic t l. 3 Tfo, it bcoms obvious tt t nlyticl solution fo constnt ticknss nnul fin quis vlution of t Bssl functions, wic t tims my b difficult to obtin. R s R R s(i) R f(i) R c R s2 Fig. 3 Diffnt sistncs ssocitd wit c contol volum. Rsistnc Mtod As n ltntiv ppoc to t xct closd fom solution, t sistnc mtod is usd to obtin t fin sistnc ccutly nd sily wit minimum computtion ffot. T nti fin lngt (= o i )is dividd into n contol volums, s sown in Fig. 2. T nodl points loctd t t cnt of c contol volum. Figu 3 sows t tml sistncs ptinnt toccontol volum du to t conduction witin t fin mtil (R s ), t convctiv sid (R f )ndnd(r ) coolings nd t bs contct (R c ). T conduction sistncs, (R s), fo t two nd contol volums (CV & CV n ) sptly vlutd in od to simplify t tml cicuit. T gnl xpssions fo c sistnc cn b wittn s: R c = R = R f(j) = = c (4ß i t) (4ß o t) ß (» o (j ) n 2 (8) (9) )(0) o n j i 2 (fo j =;:::(n )) (» ) 2 () (n ) ß o n 2 i (fo j = n) 2of5 Amicn Institut of Aonutics nd Astonutics Pp

4 Tbl t fin. Gomticl nd pysicl pmts fo Pmts i o t k c Vlus 5 mm 0 mm mm 20 W=mK 50 W=m 2 K 20 W=m 2 K 500 W=m 2 K R s(j) =» 2no f2(i )g ln 2n o f32(i )g 4ßkt (fo j =;:::(n )) 2 3 R s = ln 4 o o 2n 5 4ßkt 2 3 R s2 = ln 4 i 2n i 5 4ßkt (2) (3) (4) In od to obtin t totl sistnc, t sistncs fo c contol volum summd, stting fom t tip nd moving towds t bs. Tfo, t quivlnt sistnc fo c contol volum cn b wittn s: 2 = R R f (R s R (5) ) 2 = (6) R 2 (R R s) R 3 =. = R n R f2 2 R f3 (R 2 R s2). 2 R fn (R n R s(n )) (7) (8) w R j (j =;:::n) is t quivlnt sistnc fo t j t contol volum. Hnc, t ovll fin sistnc is xpssd s R = R n R c R s2 (9) Rsults nd Discussions T gomticl nd t pysicl pmts usd to clcult t fin sistnc povidd in Tbl. Wit ts typicl vlus, t nlyticl solution fo t fin sistnc, givn by Eq. (7), is 7:52K=W. By using t sistnc mtod, it is found tt t nlyticl solution cn b obtind wit minimum numb ofcontol volum, s sown in Fig. 4. It is obsvd tt vn wit t contol volums (n =3), t diffnc in t solution btwn t nlyticl nd t sistnc mtods is only 0:04%. It is to b pointd out tt pvious ttmpts using sistnc ppoc 4 quid lg numb of ittions Fin Rsistnc (K/W) Rsistnc Mtod. Exct Solution No. of Contol Volums Fig. 4 Compison of t sult obtind by sistnc mtod wit xct solution. Fin Rsistnc (K/W) Rsistnc Mtod. Appox. Solution[2] No. of Contol Volums Fig. 5 Compison of t solution obtind by sistnc mtod wit ppoximt mtod. 2 (ppoximtly 50 ittions) to obtin t nlyticl solution fo t constnt ticknss fin. Tfo, it sows tt t psnt ppoc isvy fficint, yt ccut, in dtmining t fin sistnc wit minimum computtionl ffot. T psnt sistnc mtod cn b pplid to obtin vious ppoximt solutions wic involv coction fcto fo tip convction nd zo bs sistnc. 2 Fo suc css, good gmnt cn b obtind wit t ppoximt solution by tting t nd nd t sid convction cofficints to b qul, s sown in Fig. 5 wit = = 50 W=m 2 K. T fin sistncs lso clcultd fo diffnt limiting css of Biot numbs nd ty compd wit t nlyticl xpssions givn blow: R = ln( o= i ) 4ßkt R = ln( o= i ) ρ Bic! Bi! Bi! 0 4ßkt 4ß o t ρ Bic! 0 <Bi < Bi! 0 (20) (2) 3of5 Amicn Institut of Aonutics nd Astonutics Pp

5 Tbl 2 Compison of fin sistnc t diffnt limiting css. (n =3) Biot Numb Exct Rsistnc Solution Mtod (K/W) (K/W) Bi! 0 Bi! Bi c! Bi! 0 0 <Bi < Bi c! Bi! 0 0 <Bi < <Bi c < θ k o c i b Fig. 6 Scmtic digm of vibl ticknss nnul fin. R = ln( o= i ) 4ßkt 4ß o t c 4ß o t ρ 0 <Bic < 0 <Bi < Bi! 0 (22) Tbl 2 summizs t sults nd it is found tt by using only t contol volums, t sistnc mtod yilds solutions sm s tos obtind nlyticlly. Vibl Ticknss Fin Rsistnc Mtod So f, it is obsvd tt t psnt sistnc mtod vluts t fin sistnc ccutly fo constnt ticknss nnul fin. As nxt stp, tis ppoc is xtndd to stimt t sistnc of vibl ticknss fin fo wic nlyticl solutions not vilbl in littu. Figu 6 sows scmtic digm fo vibl ticknss nnul fin wos tip nd bs ticknsss nd b spctivly nd is smi-tpd ngl of t fin. By pplying t sistnc mtod to tis gomty, t plcmnt of t contol volums nd t ssocitd tml sistncs min t sm s bfo. T min difficulty wit vibl ticknss fin is to obtin xpssions fo sistncs du to conduction witin t fin, wic diffnt fom tos sttd in Eqs. (2)-(4). To ovcom tis difficulty, Foui's w of t conduction is usd, wic is s follows: Q = ka T w Q is t t flow toug coss-sction A nd ovticknss of wit tmptu diffnc of T. By using t dfinition of sistnc, it cn b sown tt R = T Q = ka (23) w R is t conduction sistnc fo t ticknss. Tis is good ppoximtion, s wit t incs in t numb of contol volums, bcoms smll nd tfo in t limiting cs, t conduction sistnc ppocs t xct vlu. Hnc, xpssions fo t sistncs du to conduction witin t fin, bs conductnc nd tip convction tk t following fom: R s(j) = R s = R s2 = R = R c = =n 4ßk o j n 2 j i (24) n tn (fo j =;:::(n )) =(2n) 4ßk o 4n i 2 4n tn (25) 4ßk i 4n 2ß o 2ß c i b =(2n) 2 4n i(26) tn (27) (28) It is to b notd tt fo sistncs du to convction, t ffctiv t tnsf is tkn s t pojction of t cosponding fo constnt ticknss nnul fin. Tfo, t convctiv sistncs obtind by multiplying t cosponding sistncs of t constnt ticknss fin, givn in Eqs. (0)-(), wit t cosin of t smi-tpd ngl of t fin. T finl xpssion fo t fin sistnc cn b obtind in simil mnn s sown in Eqs. (5)-(9). Rsults nd Discussions In cs of vibl ticknss fin, two dditionl gomticl pmts, nd b, quid long wit tos listd in Tbl. T typicl vlus usd fo nd b 2mm nd 4mm, spctivly. Figu 7 sows t vition of t fin sistnc wit t numb of contol volums, stting wit n = 3. It is obsvd tt t fin sistnc symptoticlly ppocs to constnt vlu witin 20 contol volums. It is lso found tt t diffnc btwn t symptotic vlu nd tt obtind wit t contol volums is only 4of5 Amicn Institut of Aonutics nd Astonutics Pp

6 Fin Rsistnc (K/W) N0. of Contol Volums Fig. 7 Fin sistnc fo vibl ticknss nnul fin. Rfncs W. M. Muy. Ht dissiption toug n nnul disk o fin of unifom ticknss. J. Appl. Mc., 5:A 78, F. P. Incop nd D. P. DWitt. Fundmntls of Ht nd Mss Tnsf. Jon Wily & Sons, Nw Yok, M. M. Yovnovic, J. R. Culm, nd T. F. mczyk. Simplifid nlyticl solutions nd numicl computtion of on nd two-dimnsionl cicul fins wit contct conductnc nd nd cooling. AIAA 24t Aospc Scincs Mting, AIAA : 0, A. J. Cpmn. Ht Tnsf. T Mcmilln Compny, Nw Yok, G. E. Mys. Anlyticl Mtods in Conduction Ht Tnsf. McGw-Hill Book Compny, Nw Yok, M. M. Yovnovic. Non-ittiv contol volum ppoc to on-dimnsionl stdy conduction wit convction: pplictions to xtndd sufcs. ASME Wint Annul Mting, 28:59 69, D. Q. Kn nd A. D. Kus. Extndd Sufc Ht Tnsf. McGw-Hill Book Compny, Nw Yok, 972. Tbl 3 Compison of t fin sistnc fo = 2mm; b =2mm;2t =2mm nd =0(n =30). Constnt Vibl Ticknss Ticknss (mm) (K=W) (K=W) 5 7:5208 7: :455 38:4437 0:02%. Sinc, no closd fom nlyticl solution is possibl fo tis cs, tfo t ccucy of t solution could not b climd wit ctinty. Howv, t solution fo t vibl ticknss fin cn b cckd wit t limiting cs, wn t tpd fin ppocs constnt ticknss fin. Tfo, t vibl ticknss fin solution sould ppoc t constnt ticknss sult by stting = 0 in Eqs. (24) - (26). Tbl 2 sows xcllnt gmnt btwn t constnt ticknss fin nd t vibl ticknss fin fo = 0. Hnc, tis ppoc psnts simpl wy of finding fin sistncs fo diffnt complx gomtis, fo wic only numicl solutions possibl. Conclusion A sistnc ppoc, involving contol volums, is dvlopd fo clculting t fin sistncs of nnul fins wit contct conductnc nd nd cooling. T mtod is fist pplid to constnt ticknss fin nd it is found tt n ccut nd quick solution cn b obtind wit only fw numb of contol volums. Vious limiting css of Biot numbs lso clcultd nd xcllnt gmnts obtind wit nlyticl sults. Tis ppoc is fut xtndd to vibl ticknss fins fo wic no closd fom solution is vilbl. It is obsvd tt t sistnc mtod cn lso b pplid succssfully fo suc vibl ticknss nnul fins. 5of5 Amicn Institut of Aonutics nd Astonutics Pp

C-Curves. An alternative to the use of hyperbolic decline curves S E R A F I M. Prepared by: Serafim Ltd. P. +44 (0)

C-Curves. An alternative to the use of hyperbolic decline curves S E R A F I M. Prepared by: Serafim Ltd. P. +44 (0) An ltntiv to th us of hypolic dclin cuvs Ppd y: Sfim Ltd S E R A F I M info@sfimltd.com P. +44 (02890 4206 www.sfimltd.com Contnts Contnts... i Intoduction... Initil ssumptions... Solving fo cumultiv...

More information

Mid Year Examination F.4 Mathematics Module 1 (Calculus & Statistics) Suggested Solutions

Mid Year Examination F.4 Mathematics Module 1 (Calculus & Statistics) Suggested Solutions Mid Ya Eamination 3 F. Matmatics Modul (Calculus & Statistics) Suggstd Solutions Ma pp-: 3 maks - Ma pp- fo ac qustion: mak. - Sam typ of pp- would not b countd twic fom wol pap. - In any cas, no pp maks

More information

E. Computation of Permanent Magnetic Fields

E. Computation of Permanent Magnetic Fields E. Computtion of Pmnnt Mgntic Filds Th following pssgs should giv n impssion, how pmnnt mgnts cn b clcultd in spct of thi fild distibution. This ovviw ctinl cnnot cov ll subjcts. It will ml intoduc th

More information

Part II, Measures Other Than Conversion I. Apr/ Spring 1

Part II, Measures Other Than Conversion I. Apr/ Spring 1 Pt II, Msus Oth hn onvsion I p/7 11 Sping 1 Pt II, Msus Oth hn onvsion II p/7 11 Sping . pplictions/exmpls of th RE lgoithm I Gs Phs Elmnty Rction dditionl Infomtion Only fd P = 8. tm = 5 K =. mol/dm 3

More information

Chapter 7 Electrodynamics

Chapter 7 Electrodynamics Cpt 7 Elctonics 7. Elctootiv Foc 7.. O s Lw Cunt Dnsity: ( n ) q ( n l) Q q qnv Fo lcton: n( )v nd d qnv Fo ost sustncs, t cunt dnsity is popotionl to t foc p unit cg: F ( E + v B) q. : conductivity, pfct

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September ISSN Intntinl Junl f Scintific & Engining Rsch, Vlum, Issu 9, Sptmb- bstct: Jcbin intgl nd Stbility f th quilibium psitin f th cnt f mss f n xtnsibl cbl cnnctd stllits systm in th lliptic bit. Vijy Kum ssistnt

More information

Path (space curve) Osculating plane

Path (space curve) Osculating plane Fo th cuilin motion of pticl in spc th fomuls did fo pln cuilin motion still lid. But th my b n infinit numb of nomls fo tngnt dwn to spc cu. Whn th t nd t ' unit ctos mod to sm oigin by kping thi ointtions

More information

The Angular Momenta Dipole Moments and Gyromagnetic Ratios of the Electron and the Proton

The Angular Momenta Dipole Moments and Gyromagnetic Ratios of the Electron and the Proton Journl of Modrn hysics, 014, 5, 154-157 ublishd Onlin August 014 in SciRs. htt://www.scir.org/journl/jm htt://dx.doi.org/.436/jm.014.51415 Th Angulr Momnt Diol Momnts nd Gyromgntic Rtios of th Elctron

More information

E F. and H v. or A r and F r are dual of each other.

E F. and H v. or A r and F r are dual of each other. A Duality Thom: Consid th following quations as an xampl = A = F μ ε H A E A = jωa j ωμε A + β A = μ J μ A x y, z = J, y, z 4π E F ( A = jω F j ( F j β H F ωμε F + β F = ε M jβ ε F x, y, z = M, y, z 4π

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

PAVEMENT DESIGN AND EVALUATION

PAVEMENT DESIGN AND EVALUATION THE REQUIRED MATHEMATICS AND ITS APPLICATIONS F. Vn Cuwlt Edito: Mc Stt Fdtion of th Blgin Cmnt Industy B-7 Bussls, Ru Volt 9. i ii INTRODUCTION Pvmnt Dsign nd Evlution: Th Rquid Mthmtics nd Its Applictions

More information

Theory of Spatial Problems

Theory of Spatial Problems Chpt 7 ho of Sptil Polms 7. Diffntil tions of iliim (-D) Z Y X Inol si nknon stss componnts:. 7- 7. Stt of Stss t Point t n sfc ith otd noml N th sfc componnts ltd to (dtmind ) th 6 stss componnts X N

More information

Extinction Ratio and Power Penalty

Extinction Ratio and Power Penalty Application Not: HFAN-.. Rv.; 4/8 Extinction Ratio and ow nalty AVALABLE Backgound Extinction atio is an impotant paamt includd in th spcifications of most fib-optic tanscivs. h pupos of this application

More information

STAFF SELECTION COMMISSION COMPLETE EXAM DETAILS

STAFF SELECTION COMMISSION COMPLETE EXAM DETAILS STAFF SELECTION COMMISSION COMPLETE EXAM DETAILS SSC MTS Pp-1 Exm Pttn Pp-1 i n onlin pp hving multipl choic qution in ction: Roning, Englih Lngug, Numicl Aptitud nd Gnl Awn Th nti pp i of totl 1 m nd

More information

1. Viscosities: μ = ρν. 2. Newton s viscosity law: 3. Infinitesimal surface force df. 4. Moment about the point o, dm

1. Viscosities: μ = ρν. 2. Newton s viscosity law: 3. Infinitesimal surface force df. 4. Moment about the point o, dm 3- Fluid Mecnics Clss Emple 3: Newton s Viscosit Lw nd Se Stess 3- Fluid Mecnics Clss Emple 3: Newton s Viscosit Lw nd Se Stess Motition Gien elocit field o ppoimted elocit field, we wnt to be ble to estimte

More information

Elliptical motion, gravity, etc

Elliptical motion, gravity, etc FW Physics 130 G:\130 lctur\ch 13 Elliticl motion.docx g 1 of 7 11/3/010; 6:40 PM; Lst rintd 11/3/010 6:40:00 PM Fig. 1 Elliticl motion, grvity, tc minor xis mjor xis F 1 =A F =B C - D, mjor nd minor xs

More information

Modelling of Fission Chambers in Current Mode Analytical Approach

Modelling of Fission Chambers in Current Mode Analytical Approach Modlling of Fission Chmbs in Cunt Mod Anlyticl Appoch Sébstin Chbod,, Gbil Fioni, Alin Ltounu, Fédéic Mi DSM/DAPNIA/SPhN, CA-Scly, 99 Gif-Su-Yvtt, Fnc DSM, CA-Scly, 99 Gif-Su-Yvtt, Fnc Abstct A comphnsiv

More information

GAUSS PLANETARY EQUATIONS IN A NON-SINGULAR GRAVITATIONAL POTENTIAL

GAUSS PLANETARY EQUATIONS IN A NON-SINGULAR GRAVITATIONAL POTENTIAL GAUSS PLANETARY EQUATIONS IN A NON-SINGULAR GRAVITATIONAL POTENTIAL Ioannis Iaklis Haanas * and Michal Hany# * Dpatmnt of Physics and Astonomy, Yok Univsity 34 A Pti Scinc Building Noth Yok, Ontaio, M3J-P3,

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

is an appropriate single phase forced convection heat transfer coefficient (e.g. Weisman), and h

is an appropriate single phase forced convection heat transfer coefficient (e.g. Weisman), and h For t BWR oprating paramtrs givn blow, comput and plot: a) T clad surfac tmpratur assuming t Jns-Lotts Corrlation b) T clad surfac tmpratur assuming t Tom Corrlation c) T clad surfac tmpratur assuming

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

1 Using Integration to Find Arc Lengths and Surface Areas

1 Using Integration to Find Arc Lengths and Surface Areas Novembe 9, 8 MAT86 Week Justin Ko Using Integtion to Find Ac Lengths nd Sufce Aes. Ac Length Fomul: If f () is continuous on [, b], then the c length of the cuve = f() on the intevl [, b] is given b s

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLMNTARY INFORMATION. Dtmin th gat inducd bgap cai concntation. Th fild inducd bgap cai concntation in bilay gaphn a indpndntly vaid by contolling th both th top bottom displacmnt lctical filds D t

More information

Kinetics. Central Force Motion & Space Mechanics

Kinetics. Central Force Motion & Space Mechanics Kintics Cntal Foc Motion & Spac Mcanics Outlin Cntal Foc Motion Obital Mcanics Exampls Cntal-Foc Motion If a paticl tavls un t influnc of a foc tat as a lin of action ict towas a fix point, tn t motion

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

Solutions to Midterm Physics 201

Solutions to Midterm Physics 201 Solutions to Midtem Physics. We cn conside this sitution s supeposition of unifomly chged sphee of chge density ρ nd dius R, nd second unifomly chged sphee of chge density ρ nd dius R t the position of

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 301 Signls & Systms Pf. Mk Fwl Discussin #1 Cmplx Numbs nd Cmplx-Vlud Functins Rding Assignmnt: Appndix A f Kmn nd Hck Cmplx Numbs Cmplx numbs is s ts f plynmils. Dfinitin f imginy # j nd sm sulting

More information

This immediately suggests an inverse-square law for a "piece" of current along the line.

This immediately suggests an inverse-square law for a piece of current along the line. Electomgnetic Theoy (EMT) Pof Rui, UNC Asheville, doctophys on YouTube Chpte T Notes The iot-svt Lw T nvese-sque Lw fo Mgnetism Compe the mgnitude of the electic field t distnce wy fom n infinite line

More information

9.4 The response of equilibrium to temperature (continued)

9.4 The response of equilibrium to temperature (continued) 9.4 The esponse of equilibium to tempetue (continued) In the lst lectue, we studied how the chemicl equilibium esponds to the vition of pessue nd tempetue. At the end, we deived the vn t off eqution: d

More information

ADDITIVE INTEGRAL FUNCTIONS IN VALUED FIELDS. Ghiocel Groza*, S. M. Ali Khan** 1. Introduction

ADDITIVE INTEGRAL FUNCTIONS IN VALUED FIELDS. Ghiocel Groza*, S. M. Ali Khan** 1. Introduction ADDITIVE INTEGRAL FUNCTIONS IN VALUED FIELDS Ghiocl Goza*, S. M. Ali Khan** Abstact Th additiv intgal functions with th cofficints in a comlt non-achimdan algbaically closd fild of chaactistic 0 a studid.

More information

CHAPTER TWO MULTIPLE INTEGRAL

CHAPTER TWO MULTIPLE INTEGRAL CHAPTE TWO MULTIPLE INTEGAL Aft complting ths tutoils, stunts shoul b bl to: vlut th oubl intgl ov th givn ctngul gion fin th volum of th soli boun b th plns fin th of th gion boun b th cuvs ug oubl intgl

More information

Trigonometric functions

Trigonometric functions Robrto s Nots on Diffrntial Calculus Captr 5: Drivativs of transcndntal functions Sction 5 Drivativs of Trigonomtric functions Wat you nd to know alrady: Basic trigonomtric limits, t dfinition of drivativ,

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d)

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d) Functions nd Grps. () () (c) - - - O - - - O - - - O - - - - (d) () (f) - - O - 7 6 - - O - -7-6 - - - - - O. () () (c) (d) - - - O - O - O - - O - -. () G() f() + f( ), G(-) f( ) + f(), G() G( ) nd G()

More information

8 - GRAVITATION Page 1

8 - GRAVITATION Page 1 8 GAVITATION Pag 1 Intoduction Ptolmy, in scond cntuy, gav gocntic thoy of plantay motion in which th Eath is considd stationay at th cnt of th univs and all th stas and th plants including th Sun volving

More information

:9 :9. Public Water Crossings - DE NORTHERN PASS PROJECT. Ashland. Bridgewater

:9 :9. Public Water Crossings - DE NORTHERN PASS PROJECT. Ashland. Bridgewater Lgnd ol/ Loction Nothn ss Nothn ss nsission Lins Nub - - - kv Lin Evsouc Lins 5 kv Hight (in ft oss Sction 75-4 -4 5-4 Evsouc 5 kv Lin E5-8 E5- E5- E5-. Rf to Nothn ss nsission LL ublic Wt ossings SE ockt

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

THE CARTAN GEOMETRY OF THE PLANE POLAR COORDINATES: ROTATIONAL DYNAMICS IN TERMS OF THE CARTAN SPIN CONNECTION

THE CARTAN GEOMETRY OF THE PLANE POLAR COORDINATES: ROTATIONAL DYNAMICS IN TERMS OF THE CARTAN SPIN CONNECTION Jounl of Foundtions of Physics nd Chmisty 3 HE CARAN GEOMERY OF HE PLANE POLAR COORDINAES: ROAIONAL DYNAMICS IN ERMS OF HE CARAN SPIN CONNECION M. W. Evns nd H. Eck Alph Institut fo Advncd Studis (www.wbchiv.og.uk,

More information

Physics 111. Lecture 38 (Walker: ) Phase Change Latent Heat. May 6, The Three Basic Phases of Matter. Solid Liquid Gas

Physics 111. Lecture 38 (Walker: ) Phase Change Latent Heat. May 6, The Three Basic Phases of Matter. Solid Liquid Gas Physics 111 Lctu 38 (Walk: 17.4-5) Phas Chang May 6, 2009 Lctu 38 1/26 Th Th Basic Phass of Matt Solid Liquid Gas Squnc of incasing molcul motion (and ngy) Lctu 38 2/26 If a liquid is put into a sald contain

More information

An Elementary Approach to a Model Problem of Lagerstrom

An Elementary Approach to a Model Problem of Lagerstrom An Elmntay Appoach to a Modl Poblm of Lagstom S. P. Hastings and J. B. McLod Mach 7, 8 Abstact Th quation studid is u + n u + u u = ; with bounday conditions u () = ; u () =. This modl quation has bn studid

More information

Theoretical Extension and Experimental Verification of a Frequency-Domain Recursive Approach to Ultrasonic Waves in Multilayered Media

Theoretical Extension and Experimental Verification of a Frequency-Domain Recursive Approach to Ultrasonic Waves in Multilayered Media ECNDT 006 - Post 99 Thotical Extnsion and Expimntal Vification of a Fquncy-Domain Rcusiv Appoach to Ultasonic Wavs in Multilayd Mdia Natalya MANN Quality Assuanc and Rliability Tchnion- Isal Institut of

More information

STATISTICAL MECHANICS OF DIATOMIC GASES

STATISTICAL MECHANICS OF DIATOMIC GASES Pof. D. I. ass Phys54 7 -Ma-8 Diatomic_Gas (Ashly H. Cat chapt 5) SAISICAL MECHAICS OF DIAOMIC GASES - Fo monatomic gas whos molculs hav th dgs of fdom of tanslatoy motion th intnal u 3 ngy and th spcific

More information

Unsteady Casson Fluid Flow through Parallel Plates with Hall Current, Joule Heating and Viscous Dissipation

Unsteady Casson Fluid Flow through Parallel Plates with Hall Current, Joule Heating and Viscous Dissipation AMSE JOURNALS 015-Sis: Modlling B; Vol. 84; N 1; pp 1- Submittd Aug. 014; Rvisd Fb. 015; Aptd Fb. 8 015 Unstdy Csson Fluid Flow though Plll Plts with Hll Cunt Joul Hting nd Visous issiption *Md. Fisl Kbi

More information

An action with positive kinetic energy term for general relativity. T. Mei

An action with positive kinetic energy term for general relativity. T. Mei An ton wt post nt ny t fo n tty T (Dptnt of Jon Cnt Cn o Unsty Wn H PRO Pop s Rp of Cn E-: to@nn tow@pwn ) Astt: At fst w stt so sts n X: 7769 n tn sn post nt ny oont onton n y X: 7769 w psnt n ton wt

More information

Energy Dissipation Gravitational Potential Energy Power

Energy Dissipation Gravitational Potential Energy Power Lectue 4 Chpte 8 Physics I 0.8.03 negy Dissiption Gvittionl Potentil negy Powe Couse wesite: http://fculty.uml.edu/andiy_dnylov/teching/physicsi Lectue Cptue: http://echo360.uml.edu/dnylov03/physicsfll.html

More information

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x, Clculus for Businss nd Socil Scincs - Prof D Yun Finl Em Rviw vrsion 5/9/7 Chck wbsit for ny postd typos nd updts Pls rport ny typos This rviw sht contins summris of nw topics only (This rviw sht dos hv

More information

Estimating effective damping introduced by a Pendulum Tuned Mass Damper using the Extended Kalman Filter

Estimating effective damping introduced by a Pendulum Tuned Mass Damper using the Extended Kalman Filter Pocdings of th 9th Intntionl Confnc on Stuctul Dynmics, EURODYN 4 Poto, Potugl, 3 Jun - July 4 A. Cunh, E. Ctno, P. Ribio, G. Müll (ds. ISSN: 3-9; ISBN: 978-97-75-65-4 Estimting ffctiv dmping intoducd

More information

Current Status of Orbit Determination methods in PMO

Current Status of Orbit Determination methods in PMO unt ttus of Obit Dtintion thods in PMO Dong Wi, hngyin ZHO, Xin Wng Pu Mountin Obsvtoy, HINEE DEMY OF IENE bstct tit obit dtintion OD thods hv vovd ot ov th st 5 ys in Pu Mountin Obsvtoy. This tic ovids

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

PH672 WINTER Problem Set #1. Hint: The tight-binding band function for an fcc crystal is [ ] (a) The tight-binding Hamiltonian (8.

PH672 WINTER Problem Set #1. Hint: The tight-binding band function for an fcc crystal is [ ] (a) The tight-binding Hamiltonian (8. PH67 WINTER 5 Poblm St # Mad, hapt, poblm # 6 Hint: Th tight-binding band function fo an fcc cstal is ( U t cos( a / cos( a / cos( a / cos( a / cos( a / cos( a / ε [ ] (a Th tight-binding Hamiltonian (85

More information

While flying from hot to cold, or high to low, watch out below!

While flying from hot to cold, or high to low, watch out below! STANDARD ATMOSHERE Wil flying fom ot to cold, o ig to low, watc out blow! indicatd altitud actual altitud STANDARD ATMOSHERE indicatd altitud actual altitud STANDARD ATMOSHERE Wil flying fom ot to cold,

More information

ELEC 351 Notes Set #18

ELEC 351 Notes Set #18 Assignmnt #8 Poblm 9. Poblm 9.7 Poblm 9. Poblm 9.3 Poblm 9.4 LC 35 Nots St #8 Antnns gin nd fficincy Antnns dipol ntnn Hlf wv dipol Fiis tnsmission qution Fiis tnsmission qution Do this ssignmnt by Novmb

More information

Two dimensional polar coordinate system in airy stress functions

Two dimensional polar coordinate system in airy stress functions I J C T A, 9(9), 6, pp. 433-44 Intentionl Science Pess Two dimensionl pol coodinte system in iy stess functions S. Senthil nd P. Sek ABSTRACT Stisfy the given equtions, boundy conditions nd bihmonic eqution.in

More information

Fourier transforms (Chapter 15) Fourier integrals are generalizations of Fourier series. The series representation

Fourier transforms (Chapter 15) Fourier integrals are generalizations of Fourier series. The series representation Pof. D. I. Nass Phys57 (T-3) Sptmb 8, 03 Foui_Tansf_phys57_T3 Foui tansfoms (Chapt 5) Foui intgals a gnalizations of Foui sis. Th sis psntation a0 nπx nπx f ( x) = + [ an cos + bn sin ] n = of a function

More information

Modeling Diameter Growth and Self-Thinning in Planted Sugi (Cryptomeria japonica) Stands

Modeling Diameter Growth and Self-Thinning in Planted Sugi (Cryptomeria japonica) Stands Th Opn Fost Scinc Jounl, 211, 4, 49-56 49 Opn Accss Modling imt Gowth nd Slf-Thinning in Plntd Sugi (Cyptomi jponic) Stnds Tohu Nkjim *,1, Mitsuo Mtsumoto 2 nd Noihiko Shiishi 3 1 Lbotoy of Globl Fost

More information

The local orthonormal basis set (r,θ,φ) is related to the Cartesian system by:

The local orthonormal basis set (r,θ,φ) is related to the Cartesian system by: TIS in Sica Cooinats As not in t ast ct, an of t otntias tat w wi a wit a cnta otntias, aning tat t a jst fnctions of t istanc btwn a atic an so oint of oigin. In tis cas tn, (,, z as a t Coob otntia an

More information

sin sin 1 d r d Ae r 2

sin sin 1 d r d Ae r 2 Diffction k f c f Th Huygn-Fnl Pincil tt: Evy unobtuct oint of vfont, t givn intnt, v ouc of hicl cony vlt (ith th m funcy tht of th imy v. Th mlitu of th oticl fil t ny oint byon i th uoition of ll th

More information

Elements of Statistical Thermodynamics

Elements of Statistical Thermodynamics 24 Elmnts of Statistical Thrmodynamics Statistical thrmodynamics is a branch of knowldg that has its own postulats and tchniqus. W do not attmpt to giv hr vn an introduction to th fild. In this chaptr,

More information

Aakash. For Class XII Studying / Passed Students. Physics, Chemistry & Mathematics

Aakash. For Class XII Studying / Passed Students. Physics, Chemistry & Mathematics Aakash A UNIQUE PPRTUNITY T HELP YU FULFIL YUR DREAMS Fo Class XII Studying / Passd Studnts Physics, Chmisty & Mathmatics Rgistd ffic: Aakash Tow, 8, Pusa Road, Nw Dlhi-0005. Ph.: (0) 4763456 Fax: (0)

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

GRAVITATION 4) R. max. 2 ..(1) ...(2)

GRAVITATION 4) R. max. 2 ..(1) ...(2) GAVITATION PVIOUS AMCT QUSTIONS NGINING. A body is pojctd vtically upwads fom th sufac of th ath with a vlocity qual to half th scap vlocity. If is th adius of th ath, maximum hight attaind by th body

More information

Problem 1. Solution: = show that for a constant number of particles: c and V. a) Using the definitions of P

Problem 1. Solution: = show that for a constant number of particles: c and V. a) Using the definitions of P rol. Using t dfinitions of nd nd t first lw of trodynis nd t driv t gnrl rltion: wr nd r t sifi t itis t onstnt rssur nd volu rstivly nd nd r t intrnl nrgy nd volu of ol. first lw rlts d dq d t onstnt

More information

GEOMETRY Properties of lines

GEOMETRY Properties of lines www.sscexmtuto.com GEOMETRY Popeties of lines Intesecting Lines nd ngles If two lines intesect t point, ten opposite ngles e clled veticl ngles nd tey ve te sme mesue. Pependicul Lines n ngle tt mesues

More information

[2009] IEEE. Reprinted, with permission, from Xu, Wei; Zhu, Jianguo; Tan, Longcheng; Guo, Youguang; Wang, Shuhong; Wang, Yi. 2009, 'Optimal Design of

[2009] IEEE. Reprinted, with permission, from Xu, Wei; Zhu, Jianguo; Tan, Longcheng; Guo, Youguang; Wang, Shuhong; Wang, Yi. 2009, 'Optimal Design of [9] IEEE. Rpintd, with pmission, fom Xu, Wi; Zhu, Jinguo; Tn, Longchng; Guo, Yougung; Wng, Shuhong; Wng, Yi. 9, Dsign of Lin Induction Moto Applid in Tnspottion, Pocdings of Intntionl onfnc on Industil

More information

( V ) 0 in the above equation, but retained to keep the complete vector identity for V in equation.

( V ) 0 in the above equation, but retained to keep the complete vector identity for V in equation. Cuvlna Coodnats Outln:. Otogonal cuvlna coodnat systms. Dffntal opatos n otogonal cuvlna coodnat systms. Dvatvs of t unt vctos n otogonal cuvlna coodnat systms 4. Incompssbl N-S quatons n otogonal cuvlna

More information

Classical Theory of Fourier Series : Demystified and Generalised VIVEK V. RANE. The Institute of Science, 15, Madam Cama Road, Mumbai

Classical Theory of Fourier Series : Demystified and Generalised VIVEK V. RANE. The Institute of Science, 15, Madam Cama Road, Mumbai Clssil Thoy o Foi Sis : Dmystii Glis VIVEK V RANE Th Istitt o Si 5 Mm Cm Ro Mmbi-4 3 -mil ss : v_v_@yhoooi Abstt : Fo Rim itgbl tio o itvl o poit thi w i Foi Sis t th poit o th itvl big ot how wh th tio

More information

U>, and is negative. Electric Potential Energy

U>, and is negative. Electric Potential Energy Electic Potentil Enegy Think of gvittionl potentil enegy. When the lock is moved veticlly up ginst gvity, the gvittionl foce does negtive wok (you do positive wok), nd the potentil enegy (U) inceses. When

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Physics 111. Uniform circular motion. Ch 6. v = constant. v constant. Wednesday, 8-9 pm in NSC 128/119 Sunday, 6:30-8 pm in CCLIR 468

Physics 111. Uniform circular motion. Ch 6. v = constant. v constant. Wednesday, 8-9 pm in NSC 128/119 Sunday, 6:30-8 pm in CCLIR 468 ics Announcements dy, embe 28, 2004 Ch 6: Cicul Motion - centipetl cceletion Fiction Tension - the mssless sting Help this week: Wednesdy, 8-9 pm in NSC 128/119 Sundy, 6:30-8 pm in CCLIR 468 Announcements

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c.

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c. AP CALCULUS BC SUMMER ASSIGNMENT DO NOT SHOW YOUR WORK ON THIS! Complt ts problms during t last two wks of August. SHOW ALL WORK. Know ow to do ALL of ts problms, so do tm wll. Itms markd wit a * dnot

More information

ALLEN. è ø = MB = = (1) 3 J (2) 3 J (3) 2 3 J (4) 3J (1) (2) Ans. 4 (3) (4) W = MB(cosq 1 cos q 2 ) = MB (cos 0 cos 60 ) = MB.

ALLEN. è ø = MB = = (1) 3 J (2) 3 J (3) 2 3 J (4) 3J (1) (2) Ans. 4 (3) (4) W = MB(cosq 1 cos q 2 ) = MB (cos 0 cos 60 ) = MB. at to Succss LLEN EE INSTITUTE KT (JSTHN) HYSIS 6. magntic ndl suspndd paalll to a magntic fild quis J of wok to tun it toug 60. T toqu ndd to mata t ndl tis position will b : () J () J () J J q 0 M M

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 3 Due on Sep. 14, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

Chapter 6 Perturbation theory

Chapter 6 Perturbation theory Ct 6 Ptutio to 6. Ti-iddt odgt tutio to i o tutio sst is giv to fid solutios of λ ' ; : iltoi of si stt : igvlus of : otool igfutios of ; δ ii Rlig-Södig tutio to ' λ..6. ; : gl iltoi ': tutio λ : sll

More information

Fourier-Bessel Expansions with Arbitrary Radial Boundaries

Fourier-Bessel Expansions with Arbitrary Radial Boundaries Applied Mthemtics,,, - doi:./m.. Pulished Online My (http://www.scirp.og/jounl/m) Astct Fouie-Bessel Expnsions with Aity Rdil Boundies Muhmmd A. Mushef P. O. Box, Jeddh, Sudi Ai E-mil: mmushef@yhoo.co.uk

More information

5- Scattering Stationary States

5- Scattering Stationary States Lctu 19 Pyscs Dpatmnt Yamou Unvsty 1163 Ibd Jodan Pys. 441: Nucla Pyscs 1 Pobablty Cunts D. Ndal Esadat ttp://ctaps.yu.du.jo/pyscs/couss/pys641/lc5-3 5- Scattng Statonay Stats Rfnc: Paagaps B and C Quantum

More information

CDS 101/110: Lecture 7.1 Loop Analysis of Feedback Systems

CDS 101/110: Lecture 7.1 Loop Analysis of Feedback Systems CDS 11/11: Lctu 7.1 Loop Analysis of Fdback Systms Novmb 7 216 Goals: Intoduc concpt of loop analysis Show how to comput closd loop stability fom opn loop poptis Dscib th Nyquist stability cition fo stability

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000 Highr Mthmtics UNIT Mthmtics HSN000 This documnt ws producd spcilly for th HSN.uk.nt wbsit, nd w rquir tht ny copis or drivtiv works ttribut th work to Highr Still Nots. For mor dtils bout th copyright

More information

Chapter 4 Circular and Curvilinear Motions

Chapter 4 Circular and Curvilinear Motions Chp 4 Cicul n Cuilin Moions H w consi picls moing no long sigh lin h cuilin moion. W fis su h cicul moion, spcil cs of cuilin moion. Anoh mpl w h l sui li is h pojcil..1 Cicul Moion Unifom Cicul Moion

More information

Physics 240: Worksheet 15 Name

Physics 240: Worksheet 15 Name Physics 40: Woksht 15 Nam Each of ths poblms inol physics in an acclatd fam of fnc Althouh you mind wants to ty to foc you to wok ths poblms insid th acclatd fnc fam (i.. th so-calld "won way" by som popl),

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is:

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is: . Homewok 3 MAE 8C Poblems, 5, 7, 0, 4, 5, 8, 3, 30, 3 fom Chpte 5, msh & Btt Point souces emit nuetons/sec t points,,, n 3 fin the flux cuent hlf wy between one sie of the tingle (blck ot). The flux fo

More information

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface Genel Physics II Chpte 3: Guss w We now wnt to quickly discuss one of the moe useful tools fo clculting the electic field, nmely Guss lw. In ode to undestnd Guss s lw, it seems we need to know the concept

More information

Derivation of Annular Plate Sector Element for General Bending Analysis

Derivation of Annular Plate Sector Element for General Bending Analysis Jounl of Engining nd Dvlopmnt, Vol. 9, No., Jnuy 05, ISSN 8-78 Divtion of Annul Plt Scto Elmnt fo Gnl Bnding Anlysis Lctu D. Hyd Abdulm Mhdi Civil ngining dptmnt, Engining collg, Al_ Mustnsiiyh Univsity

More information

Solutions to Supplementary Problems

Solutions to Supplementary Problems Solution to Supplmntay Poblm Chapt Solution. Fomula (.4): g d G + g : E ping th void atio: G d 2.7 9.8 0.56 (56%) 7 mg Fomula (.6): S Fomula (.40): g d E ping at contnt: S m G 0.56 0.5 0. (%) 2.7 + m E

More information

ABREVIATION BLK(24) BLU(24) BRN(24) GRN(24) GRN/YEL(24) GRY(24) ORG(24) RED(24) YEL(24) BLK

ABREVIATION BLK(24) BLU(24) BRN(24) GRN(24) GRN/YEL(24) GRY(24) ORG(24) RED(24) YEL(24) BLK MGNTIC DOO INTLOCK / N/O 4677: INTLOCK 4676: KY STIK GY MGY ST COOLING FNS 85: VDC FN 60MM T: FN OINTTION SHOULD XTCT WM I FOM CS. V VITION (4) LU(4) N(4) (4) /(4) GY(4) OG(4) (4) (4) LU N / GY GY/ GY/

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

Estimation of a Random Variable

Estimation of a Random Variable Estimation of a andom Vaiabl Obsv and stimat. ˆ is an stimat of. ζ : outcom Estimation ul ˆ Sampl Spac Eampl: : Pson s Hight, : Wight. : Ailin Company s Stock Pic, : Cud Oil Pic. Cost of Estimation Eo

More information

Homework #3. 1 x. dx. It therefore follows that a sum of the

Homework #3. 1 x. dx. It therefore follows that a sum of the Danil Cannon CS 62 / Luan March 5, 2009 Homwork # 1. Th natural logarithm is dfind by ln n = n 1 dx. It thrfor follows that a sum of th 1 x sam addnd ovr th sam intrval should b both asymptotically uppr-

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 4 Due on Sep. 1, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

The angle between L and the z-axis is found from

The angle between L and the z-axis is found from Poblm 6 This is not a ifficult poblm but it is a al pain to tansf it fom pap into Mathca I won't giv it to you on th quiz, but know how to o it fo th xam Poblm 6 S Figu 6 Th magnitu of L is L an th z-componnt

More information

Accretion disks around rotating black holes. (c)2017 van Putten 1

Accretion disks around rotating black holes. (c)2017 van Putten 1 Acction disks ond otting blck hols (c)07 vn Pttn Contnts Bod X-spctm of ion-lins fom n inn cction disk Spcil Rltivity: Doppl shifts nd ltivistic bming Gnl Rltivity: Rdshift nd fm-dgging Inn ost Stbl Cicl

More information

Chapter 18 Two-Port Circuits

Chapter 18 Two-Port Circuits Cpter 8 Two-Port Circuits 8. Te Terminl Equtions 8. Te Two-Port Prmeters 8.3 Anlysis of te Terminted Two-Port Circuit 8.4 nterconnected Two-Port Circuits Motivtion Tévenin nd Norton equivlent circuits

More information

Green Dyadic for the Proca Fields. Paul Dragulin and P. T. Leung ( 梁培德 )*

Green Dyadic for the Proca Fields. Paul Dragulin and P. T. Leung ( 梁培德 )* Gn Dyadic fo th Poca Filds Paul Dagulin and P. T. Lung ( 梁培德 )* Dpatmnt of Physics, Potland Stat Univsity, P. O. Box 751, Potland, OR 9707-0751 Abstact Th dyadic Gn functions fo th Poca filds in f spac

More information

Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues BocDPm 9 h d Ch 7.6: Compl Egvlus Elm Dffl Equos d Boud Vlu Poblms 9 h do b Wllm E. Boc d Rchd C. DPm 9 b Joh Wl & Sos Ic. W cosd g homogous ssm of fs od l quos wh cos l coffcs d hus h ssm c b w s ' A

More information