PAVEMENT DESIGN AND EVALUATION

Size: px
Start display at page:

Download "PAVEMENT DESIGN AND EVALUATION"

Transcription

1 THE REQUIRED MATHEMATICS AND ITS APPLICATIONS F. Vn Cuwlt Edito: Mc Stt Fdtion of th Blgin Cmnt Industy B-7 Bussls, Ru Volt 9. i

2 ii

3 INTRODUCTION Pvmnt Dsign nd Evlution: Th Rquid Mthmtics nd Its Applictions Kywods: ttbook fo pvmnt ngins, high od mthmticl solutions fo, igid nd flibl pvmnt, mchnistic mthods, pcticl pplictions in th fild of pvmnt ngining Pfc This book is intndd fo Civil Engins nd mo spcific fo Pvmnt Engins, who intstd in th mo dvncd fild of pvmnt ngining md vilbl though th thoy of high mthmtics. In my tnsiv ci s Civil Engin by pofssion, I noticd tht som of my collgus fl unsy whn it coms to high-lvl thoticl nd computtionl wok. Phps this is bcus of th fct tht s soon s thy gdutd, thy confontd with mny nd impotnt pcticl poblms wh divtivs nd intgls do not pp vy usful t fist sight. Howv, t mny occsions, confncs, smins nd oth mtings, I lisd tht Civil Engins min citd bout th mthmticl fundmntls of thi t. Slow but su gw th id of witing ttbook on High Mthmtics concivbl fo pctising Pvmnt Engins. Th pimy objctiv of this book is to sv two puposs: fist, to intoduc th bsic pincipls which must b known by popl dling with pvmnts; nd scondly to psnt th thois nd mthods in pvmnt dsign nd vlution tht my b usd by studnts, dsigns ngining consultnts, highwy nd ipot gncis, nd schs t univsitis. In ddition, som of th nw concpts dvlopd in cnt ys to impov th mthods of pvmnt systms plind. This book is wittn in ltivly simpl wy so tht it my b followd by popl fmili with bsic ngining couss in mthmtics nd pvmnt dsign. This book consists of 6 chpts nd is dividd into two pts. Th fist pt, which includ chpts -9, covs th mthmtics quid by most of th poblms ltd to pvmnt ngining. Th ssumd mthmticl knowldg is tht of high school lvl plus som bsic lmnts of tigonomty nd nlysis. Th scond pt, which includs chpts -6, is concnd with pcticl solutions s fcd by Pvmnt Engins in th ssssmnt of igid nd flibl pvmnts. Th igoous mthmticl solutions psntd in th Appndi, plining on compl vibls. Gtful cknowldgmnt is offd to th Fédétion d l Industi Cimntiè, Blgium (th Fdtion of th Blgin Cmnt Industy fo thi intllctul nd finncil suppot in th pocss of th listion of this book. Thnks is du to my d find, Mc Stt, fo poof-ding nd diting th mnuscipt. His hlpful commnts to th mthmticl nd ditoil contnt highly ppcitd. Fns Vn Cuwlt Bussls, Dcmb 3. iii

4 Pt : Th Rquid Mthmtics Chpt covs th Lplc diffntil qution; th solution of fo gt sis of pplictions: it psnts th Bssl function of o od, solution of th Lplc qution in isymmtic co-odints tht s usd in gt pts of this book. Th Lplcin with cofficints diffnt fom will b pplid in poblms of nisotopic lsticity, th doubl Lplcin in most of th poblms of multi-ly thoy nd th tndd Lplcin in th poblms of igid pvmnt on Winkl o Pstnk foundtions. Chpt psnts th gmm function, th fctoil function fo non-intgs, quid fo th dfinition of Bssl functions of non-intg od. Chpt 3 givs th gnl solutions of th diffnt Bssl qutions, th B nd Bi functions, nd th modifid fom of th Bssl qution. Bssl functions solutions of th Lplcin in pol o cylind co-odints, usd fo pplictions with il symmty,.g. in multilyd stuctus. Tigonomtic functions solutions of th Lplcin in Ctsin co-odints, pplid in css of bms nd ctngul slbs. Chpt 4 dls with th most impotnt poptis of Bssl functions: - divtivs, functions of hlf od, - symptotic vlus quid to pss boundy conditions tht must min vlid t infinit distncs, - indfinit intgls, qutions btwn Bssl functions of diffnt kind (quid fo intgtions in th compl pln. Chpt 5 psnts th bt function quid fo th solution of dfinit intgls of Bssl functions. Chpt 6 givs th solutions fo sis of impotnt dfinit intgls of Bssl functions; mong oths th Poisson intgl giving n intgl psnttion of ny Bssl function of th fist kind. Chpt 7 psnts th hypgomtic function of Guss quid fo th solution of th infinit intgls of Bssl functions. Chpt 8 psnts th most impotnt infinit intgls of Bssl functions of dict ppliction in pvmnt nlysis, spcilly in multi-ly thoy. Chpt 9 psnts th most impotnt infinit intgls of Bssl functions solvd in th compl pln. Thy ssntilly of ppliction in slb thoy. Pt : Th Applictions Th scond pt focuss on th pplictions in th fild of pvmnt ngining: igid n flibl pvmnts. Chpt givs th bsic solutions (quilibium qutions fo igid pvmnts (thoy of stngth of mtils nd flibl pvmnts (thoy of lsticity.this chpt givs th bsic qutions on continuum mchnics in diffnt co-odint systms. Chpt psnts th intgl tnsfoms, Foui s pnsion, Foui s intgl, Hnkl s intgl, quid fo th pssion of discontinuous functions: th lods in pvmnt pplictions. Chpts to 9 concn mostly igid pvmnts. Chpt givs 3 simpl pplictions on n lstic subgd: bm subjctd to singl lod, bm subjctd to distibutd lod, slb subjctd to singl lod. Chpt 3 givs th complt nlyticl solution fo bm on Pstnk foundtion (both of infinit nd finit tnt. Chpt 4 givs th nlyticl solution fo cicul slb on Pstnk foundtion subjctd to n i-symmtic lod (both of infinit nd finit tnt. Chpt 5 givs th complt nlyticl solution fo ctngul slb on Pstnk foundtion (both of infinit nd finit tnt. Chpt 6 givs th nlyticl solution fo supposition of svl slbs includd th nlysis of th dhsion btwn th slbs. Chpt 7 givs bck-clcultion mthod fo igid pvmnt bsd on Pstnk s thoy. Chpt 8 psnts solution fo th computtion of thml stsss in igid slbs on Pstnk foundtion. Chpt 9 psnts two pcticl tsts of intst with igid slbs: th dimtl tst nd tst fo th dtmintion of k nd G in situ. Chpts to 6 concn mostly flibl pvmnts. Chpts nd psnt th complt thoy fo smi-infinit bodis subjctd to ll sots of lods. Chpt psnts th Boussinsq poblm: stsss iv

5 INTRODUCTION nd displcmnts in smi-infinit body und cicul flibl plt unifomly lodd. It gnliss th solution to diffnt vticl lods (isoltd, igid, ctngul nd to othotopic bodis. Chpt psnts th solution smi-infinit body subjctd to sh stsss: dil nd on-dictionl. Chpt givs th nlyticl solution fo multi-lyd stuctu, includd th poblm of th dhsion btwn th lys, tht of n vntul fid bottom nd tht of n nisotopic subgd. Chpt 3 psnts th numicl pocdu quid fo th solution of multi-lyd stuctu. Chpt 4 psnts th thoy t th bs of th bck-clcultion mthods fo flibl pvmnts. Chpt 5 psnts th numicl pocdu quid fo th bck-clcultion mthod fo flibl pvmnts. Chpt 6 psnts pcticl tst of intst with both typs of od stuctus (igid o flibl multilyd stuctus: th ovlistion tst. Th Appndics givs th bsic thoy of compl numbs, spcilly th intgtion in th compl pln. v

6 . vi

7 CONTENTS Tbl of Contnts Pg Pfc... iii PART : THE REQUIRED MATHEMATICS... Chpt Th Lplc Eqution.... Intoductoy not.... Divtion of th Lplc qution in pol co-odints fom th Lplc qution in Ctsin co-odints....3 Equtions ltd to th Lplc qution Th Lplcin with cofficints diffnt fom Th doubl Lplcin Th tndd Lplcin Rsolution of th Lplc qution Rsolution by sption of th vibls Rsolution by mns of th chctistic qution (Spigl, Rsolution by mns of indicil qutions... 6 Chpt Th Gmm Function Intoductoy not Hlpful ltions Dfinition of th Gmm Function....4 Vlus of Γ(/ nd Γ(-/... Chpt 3 Th Gnl Solution of th Bssl Eqution Intoductoy not Hlpful ltions Rsolution of th Bssl qution (Bssl functions of th fist kind Rsolution of th Bssl qution fo p n intg (Bssl functions of th scond nd thid kind Fo n intg, J n (- n J -n Bssl functions of th scond kind Bssl functions of th thid kind Th modifid Bssl qution Th b nd bi functions Th k nd ki functions Rsolution of th qution w w Th modifid fom of th Bssl qution...5 Chpt 4 Poptis of th Bssl Functions Intoductoy not Hlpful ltions Divtivs of Bssl functions Divtiv of (t p J p (t Divtiv of (t-pjp(t...9 vii

8 4.3.3 Divtiv of J p (t Bssl functions of hlf od Vlus of J / (t, J -/ (t, J 3/ (t, J -3/ (t Asymptotic vlus Asymptotic vlus fo Jp nd J-p Asymptotic vlus fo Y p nd Y -p Asymptotic vlus fo H ( p nd H ( p Asymptotic vlus fo I p nd I -p Asymptotic vlu fo K n Asymptotic vlus fo b nd bi Asymptotic vlus fo k nd ki Indfinit intgls of Bssl functions Fundmntl ltions Th intgl n J (td Rltions btwn Bssl functions of diffnt kind Bssl functions with gumnt t Rltions btwn th th kinds of Bssl functions Bssl functions of puly imginy gumnt...39 Chpt 5 Th Bt Function Intoductoy not Hlpful ltions Dfinition of th bt function Rltion btwn bt nd gmm functions Th dupliction fomul fo gmm functions...4 Chpt 6 Dfinit intgls of Bssl functions Hlpful ltions Ggnbu s intgl Sonin s fist finit intgl Sonin s scond finit intgl Poisson s intgl...48 Chpt 7 Th hypgomtic typ of sis Intoductoy not Hlpful ltions Dfinition Poptis of th multipl poduct (α m A ltion fo ( - b - m m-n A ltion fo (bm m / m A ltion fo Γ(-n Th thom of Vndmond Th poduct of two Bssl functions with th sm gumnt Th hypgomtic sis of Guss F [,b;c;] Elmnty poptis Intgl psnttion of th hypgomtic function Vlu of F[,b;c;] fo Convgnc of th sis F[,b;c;] Th poduct of two Bssl functions with diffnt gumnts...56 viii

9 CONTENTS Chpt 8 Infinit Intgls of Bssl Functions Intoductoy not Usful ltions Th intgl -t J (btt - dt Rsolution of th intgl Pticul vlu Th intgl -t cos(btdt Th intgl -t sin(btdt Th intgl -t cos(btsin(bt dt Th intgl -t sin(bt/tdt Th intgl -t sin(bttdt Th intgl -t J (btj (ctt - dt Tnsfomtion of th intgl Th intgl -t sin(btsin(ctt - dt Th intgl -t sin(btsin(ctdt Th intgl -m sin(btsin(cs/(tsdsdt Th intgl m -m sin(btsin(cs/(tsdsdt Th intgl -t J (btj (ctt λ- dt Th discontinuous intgl J (tj (btt -λ dt Rsolution of th intgl Th intgl J (tj (tt -λ dt Th intgl J (tj -k- (btdt Pticul solutions of th intgl J (tj (btt -λ dt Pticul solution of th intgl J (tj (bt/t λ dt...73 Chpt 9 Bssl functions in th compl pln Intoductoy not Hlpful ltions Poof of Γ(Γ(- /sin( Th Hnkl s contou intgl fo /Γ( Th intgl psnttion of J ( Th intgl psnttion of I ( Th intgl psnttion of K ( Th intgl psnttion of K v ( Rsolution of J (/( k d Rsolution of ρ- J (bj (/( k d Rsolution of sin(bcos(//( 4 k 4 d...9 PART : THE APPLICATIONS...93 Chpt Lplc Eqution in Pvmnt Engining Equilibium qution fo bms in pu bnding Sign convntions Assumptions Bnding momnt nd bnding stss Th dius of cuvtu Equilibium...96 i

10 . Equilibium qution fo bnt plts Bnding momnt nd sh focs Equilibium Comptibility qution fo homognous, lstic, isotopic body submittd to focs pplid on its sufc Pincipl of quilibium Th pincipl of continuity Th pincipl of lsticity Stss potntil....4 Comptibility qution fo homognous, lstic, nisotopic body submittd to focs pplid on its sufc Bsic qutions of continuum mchnics in diffnt co-odint systms Pln pol co-odints Ai-symmtic Cylindicl Co-odints Non symmtic cylindicl co-odints Ctsin volum co-odints Ai-symmtic Cylindicl Co-odints fo n othotopic body...9 Chpt Th Intgl Tnsfoms.... Intoductoy not.... Hlpful ltions....3 Th Foui pnsion (Spigl, Dfinitions Poof of th Foui pnsion Empl Th Foui intgl Dfinition Poof of Foui s intgl thom Empl Th Hnkl s tnsfom Dfinition Empl Appliction of th discontinuous intgl of Wb nd Schfhitlin...8 Chpt Simpl Applictions of Bms nd Slbs on n Elstic Subgd.... Th lstic subgd.... Th bm on n lstic subgd subjctd to n isoltd lod: 4 w/ 4 Cw Th bm on n lstic subgd subjctd to distibutd lod: 4 w/ 4 Cw Th infinit slb subjctd to n isoltd lod: w Cw...5 Chpt 3 Th Bm Subjctd to Distibutd Lod nd Rsting on Pstnk Foundtion Th bsic diffntil qutions Cs of bm of infinit lngth Solution of th diffntil qution Appliction Cs of bm of finit lngth with f dg Solution # Appliction Solution # Appliction...37

11 CONTENTS 3.4 Cs of finit bm with joint Solution # Appliction Solution# Appliction Poof tht, in d cs of Winkl foundtion, t joint Q γ T...43 Chpt 4 Th Cicul Slb Subjctd to Distibutd Lod nd Rsting on Pstnk Foundtion Th bsic diffntil qutions Cs of slb of infinit tnt Solution of th diffntil qution Appliction Appliction Cs of slb of finit tnt with f dg Solution # Solution # Appliction of solution # Cs of slb of finit tnt with joint Solution # Solution # Appliction of solution #...53 Chpt 5 Th Rctngul Slb Subjctd to Distibutd Lod nd Rsting on Pstnk Foundtion Th bsic diffntil qutions Rsolution of th dflction qution Boundy conditions Cs of slb of finit tnt with f dg Solution # Solution # Cs of slb of finit tnt with joint Solution # Solution # Appliction...6 Chpt 6 Th Multislb Thoticl justifiction Gnl modl Full slip t ch of th intfcs Full fiction t th fist intfc, full slip t th scond intfc Full fiction t both intfcs Ptil fiction Appliction...68 Chpt 7 Bck-clcultion of Conct Slbs Bck-clcultion of moduli Cs wh th lod cn b considd s point lod Computtions Cs whn th lod is considd s distibutd Compison of th two mthods...75 i

12 7.6 Influnc of th fnc dflction Anlysis of fild dt Empl of bck-clcultion...77 Chpt 8 Thml Stsss in Conct Slbs Thml stsss Slb of gt lngth Diffntil quilibium qution Solution of th quilibium qution fo g < Solution of th quilibium qution fo g Solution of th quilibium qution fo g > Boundy conditions Epssion of th momnt fo g < Epssion of th momnt fo g Epssion of th momnt fo g > Vifiction of th pssion of th mimum momnt fo g Eqution of th thml stss Empl Rctngul slb Diffntil qution of quilibium Boundy conditions Empls Cicul slb Equilibium qution Solution of th quilibium qution Boundy conditions Rsulting momnt Compison btwn th modls fo ctngul nd cicul slbs Etnsion to multi-slb systm...89 Chpt 9 Dtmintion of th Pmts of Rigid Stuctu Dtmintion of th Young s modulus of conct slb Rsolution of th comptibility qution Equtions fo th stsss Boundy conditions Stsss nd displcmnts Tngntil noml stss long th vticl dimt Dtmintion of th chctistics k nd G of th subgd Equilibium qution fo Pstnk subgd Eccnticlly lodd plt-bing tst Vticl lod Momnt Dtmintion of k nd G... Chpt Th Smi-Infinit Body Subjctd to Vticl Lod Intoductoy not...3. Th smi-infinit body subjctd to vticl unifom cicul pssu Th smi-infinit body subjctd to n isoltd vticl lod Th smi-infinit body subjctd to cicul vticl igid lod Th smi-infinit body subjctd to vticl unifom ctngul pssu Compison btwn th vticl stsss. Pincipl of d Sint-Vnnt... ii

13 CONTENTS.7 Th othotopic body subjctd to vticl unifom cicul pssu....8 Th othotopic body subjctd to vticl unifom ctngul pssu...5 Chpt Th Smi-Infinit Body Subjctd to Sh Lods Th smi-infinit body subjctd to dil sh stsss...7. Th smi-infinit body subjctd to on-dictionl symmtic sh lod Th smi-infinit body subjctd to sh lod symmtic to on of its is s... Chpt Th Multilyd Stuctu Th multilyd stuctu...5. Solutions of th continuity qutions Boundy conditions Dtmintion of th boundy constnts Th fid bottom condition Th othotopic subgd...3 Chpt 3 Th Rsolution of Multilyd Stuctu Choic of th intgtion fomul Vlus t th oigin Th gomticl scl of th stuctu Width of th intgtion stps Influnc of th moduli on th intgtion stp Influnc of th dii of th lods on th intgtion stp Influnc of th offst distnc on th intgtion stp Modifiction of th stp width Stsss nd displcmnts t th sufc Stsss nd displcmnts in th fist l y...37 Chpt 4 Th Thoy of th Bck-Clcultion of Multilyd Stuctu Th sufc modulus Equivlnt lys Equivlnt smi-infinit body Anlysis of dflction bsin Anlysis of th-ly on lin lstic subgd Anlysis of th-ly with vy stiff bs cous Anlysis of th ly with vy wk bs cous Anlysis of two-ly on subgd with incsing stiffnss with dpth Algoithm of Al Bush III ( Chpt 5 Th Numicl Pocdu of th Bck-clcultion of Multilyd Stuctu Th nlysis of bck-clcultion pogm fo th-lyd stuctu Th snsitivity of th bck-clcultion pocdu fo th ly stuctu Th snsitivity to ounding off th vlus of th msud dflctions Th snsitivity to th psnc of soft intmdit ly Th influnc of fiing bfohnd th vlu of on modulus Th snsitivity of th bck-clcultion pocdu fo fou ly stuctu Vlu of th infomtion givn by th sufc modulus Th influnc of fiing bfohnd th vlu of on modulus Th influnc of dg of nisotopy nd Poisson s tio on th sults of bck-clcultion pocdu in th cs of smi-infinit subgd Influnc of th dg of nisotopy on th bck-clcultd moduli...57 iii

14 5.4. Influnc of Poisson s tio of th subgd on th dflctions (n Th influnc of Poisson s tio nd dg of nisotopy on th sults of bck-clcultion pocdu in th cs of subgd of finit thicknss Influnc of th dg of nisotopy on th bck-clcultd moduli Influnc of Poisson s tio of th subgd on th dflctions (n...59 Chpt 6 Th Ovlistion Tst Dsciption of th ovlistion tst Intpttion of th sults of th ovlistion tst Slb with cvity on n lstic subgd subjctd to symmticl lod Rsolution in th cs of plin slb Rsolution in th cs of slb with cvity Stins in th cs of non-symmticl lod Stsss in hollow cylind subjctd to unifom tnl pssu Stsss in hollow plt Appliction of th ovlistion tst....7 Rfncs Appndi Compl Functions iv

15 THE LAPLACE EQUATION PART : THE REQUIRED MATHEMATICS Chpt Th Lplc Eqution. Intoductoy not. In mchnicl ngining nd thus lso in th mchnics of civil ngining, on lwys stts with th fundmntl quimnt of quilibium: quilibium of th noml focs nd quilibium of th momnts cting on th nlysd body. Focs sultnts of stsss. In od to loct ctly thos focs nd dtmin, t lst nlyticlly, thi mplitud, it is convnint to stt fom n infinitsiml sction of th body. On such n infinitsiml sction, th stsss ncssily infinitly smll nd, hnc, cn b considd s constnt nd unifomly distibutd ov th of th infinitly smll sction. Hnc th sulting foc is simply th poduct of th constnt stss by th of th sction nd its point of ppliction is th cnt of gvity of th sction, i.. th midpoint of th sction. All th sulting qutions will thn ncssily b diffntil qutions nd, nly in lmost ll pplictions, th diffntil qution pssing quilibium is Lplc o n ssimiltd qution. Th dvlopmnt of ths qutions psntd in chpt, th fist chpt of Pt Applictions. As in mny filds of ngining, lso in Pvmnt ngining th diffntil qution of Lplc is th solution of gt sis of pplictions. Symboliclly, Lplc qution is wittn s follows: Φ (. It is homognous diffntil qution with scond od ptil divtivs. Function of th co-odint systm, th qution is dvlopd: in pln Ctsin co-odints in volum Ctsin co-odints in pol co-odints in cylindicl co-odints Φ Φ y Φ Φ Φ y Φ Φ Φ θ Φ Φ Φ Φ θ In cs of il symmty, Φ/θ nd qutions (.4 nd (.5 simplify in: Φ Φ Φ Φ Φ Eqution (. is pplid in chpt.3.4. Eqution (.4 will b utilisd in chpt s.5. nd 9.. Eqution (.7 will b utilisd in chpt s.5.,.6,.,.,.3 nd.4. (. (.3 (.4 (.5 (.6 (.7

16 . Divtion of th Lplc qution in pol co-odints fom th Lplc qution in Ctsin co-odints. Consid th ltions btwn Ctsin nd pol co-odints: Hnc Epss th ptil divtivs θ cosθ y sin θ y tn ( ( y y / cosθ / y sinθ y θ y sinθ y θ cosθ y y Thn Φ Φ Φ θ θ Φ Φ sinθ Φ cosθ θ Φ Φ Φ θ θ Φ Φ Φ Φ Φ Φ cos θ sin θ sin θ sinθ cosθ sinθ cosθ θ θ θ In th sm wy, obtin: Φ Φ Φ Φ Φ Φ sin θ cos θ cos θ sinθ cosθ sinθ cosθ y θ θ θ Mk th sum: Φ Φ Φ Φ Φ (.8 y θ

17 THE LAPLACE EQUATION.3 Equtions ltd to th Lplc qution. Bsids th poply so clld Lplc diffntil qution, th ists sis of usful diffntil qutions closly ltd to th Lplc qution..3. Th Lplcin with cofficints diffnt fom. Fo mpl in pln Ctsin co-odints Φ Eqution (.9 is utilisd in chpt s.3.5 nd.6. Φ C y (.9.3. Th doubl Lplcin Th doubl Lplcin, o th Lplc opto pplid to Lplc qution, is lso solution of n impotnt sis of pplictions. It wits Φ (. Dvlopd, fo mpl in volum co-odints, th doubl Lplcin is Φ Φ Φ (. y y Eqution (. is pplid in chpt s.3,.5.,.5.,.5.3,.5.4,.,.,.3 nd Th tndd Lplcin Oftn th Lplcin qution is compltd by divtivs of n od low thn th scond. H in pol co-odints: Φ Φ Φ kφ (. θ o mo gnlly Φ A Φ BΦ C (.3 Th tndd Lplcin is usd in chpts..5,.. nd in chpt s to 9. 3

18 .4 Rsolution of th Lplc qution Th vy gnl mthods pplid in this book..4. Rsolution by sption of th vibls Solution in volum Ctsin co-odints: Consid qution (.3 nd ssum solution such s Φ f (f (yf 3 (. Applying (.3 yilds f ( f ( y f ( f ( y f ( f ( 3 3 f3( f( f ( y y nd dividing by f (f (yf 3 ( f ( y f ( f 3( y f( f ( y f 3( Ech of th 3 tms of th sum is function of on singl vibl; this sults in f( f ( y f 3( C f( C f ( y C3 f 3( y C C C3 systm with lg sis of solutions of th diffntil qution. Fo mpl: f ( cos(, f (y cos(y, f 3 (. Solution in i-symmtic cylind co-odints ( Bowmn,958: Consid qution (.7 nd pply solution such s Φ f(g(. Applying (.7 yilds f ( f ( g( g( g( f ( nd dividing by f(g( f ( f ( g( f ( f ( g( Thus f ( f g( Cf( Cg( Choos Cg(. Hnc f( must b solution of f ( f ( f ( Eqution (.4 is clld th Bssl qution of o od. (.4 4

19 THE LAPLACE EQUATION Th function known s Bssl s function of th fist kind nd of n- th od nd dnotd J n ( is dfind s follows (Bowmn, 958: n n 4 n 6 n ( / ( / ( / ( / J n (... (.5! n!!( n!!( n! 3!( n 3! Hnc 4 6 ( / ( / ( / J (... (.6!!!! 3!3! nd ( / ( / ( / J (... (.7!!!3! 3!4! Diffntiting th sis fo J ( nd comping th sult with th sis fo J ( sults in: dj ( J( (.8 d Also, ft multiplying th sis fo J ( by nd diffntiting: d ( J ( J ( (.9 d Using (.8, (.9 cn b wittn in th fom: d dj ( J ( d d d J ( dj ( J( (. d d Hnc J ( is solution of (.4 nd Φ J ( is solution of (.7. This pticul solution ws dvlopd to intoduc, fom th fist chpt on, th Bssl functions. Bssl functions fquntly usd nd discussd thoughout this book..4. Rsolution by mns of th chctistic qution (Spigl, 97 This solution pplis to homognous lin diffntil qutions with constnt cofficints dfind s n n d Φ d Φ dφ... n n n n Φ (. d d d It is convnint to dopt th nottions DΦ, D Φ,..., D n Φ to dnot dφ/d, d Φ/d,...d n Φ/d n, wh D, D,..., D n clld diffntil optos. Using this nottion, (. tnsfoms n n D D... nd n Φ (. Lt Φ m, m constnt, in (. to obtin n n m m... n (.3 tht is clld th chctistic qution. It cn b fctod into ( m m ( m m...( m mn (.4 which oots m, m,...m n. 5

20 On must consid th css: Cs. Roots ll l nd distinct. Thn m, m,... mn n linly indpndnt solutions so tht th quid solution is: Cs. Som oots compl. m m mn Φ C C... Cn (.5 If,,..., n l, thn whn bi is oot of (.3 so lso is -bi (wh nd b l nd i (-. Thn solution cosponding to th oots bi nd -bi is: Φ ( C cosb C sin b (.6 wh us is md of Eul s fomul iu cos u i sin u (s Appndi. Cs 3. Som oots ptd. If m is oot of multiplicity k, thn solution is givn by: k m Φ ( C C C3... Ck (.7 Empl Consid th doubl Lplcin in pln Ctsin co-odints: Φ Φ Φ ( y y Choos s solution Φ f( y. Hnc (.8 ducs in 4 f ( f ( f ( (.9 4 Eqution (.9 is homognous lin diffntil qution of od 4. Th chctistic qution wits: nd cn b fctod in: ( m 4 m Bsd on (.6 nd (.7, th solution of (.9 bcoms: f ( Acos Bsin ( C cos Dsin nd th solution of (.8:.4.3 Rsolution by mns of indicil qutions m (.3 i ( m i (.3 [ A cos B sin ( Ccos D sin ] y Φ (, y (.3 Consid th diffntil qution: d w k w (.33 d Assum solution in th fom of indicil sis 3 4 f ( 3 4 L Apply (.33 6

21 THE LAPLACE EQUATION L k k k L This qution must b qul o fo ll vlus of. Hnc th sum of th cofficints of ch ponnt of must b individully o. Fist lt nd Hnc.. k k k 4 p k k p k 4 p (! 4! ( p! (.34 3 L p L (.35 Th succssiv tms of (.34 th tms of th cosin sis. Hnc, th fist solution of (.33 is f( cos(k. Th scond solution is obtind by stting nd k. Obviously, th scond solution of (.33 is f( sin(k. 7

22 8

23 THE GAMMA FUNCTION Chpt Th Gmm Function. Intoductoy not In chpt, w hv dfind th Bssl function of th fist kind nd of od o s: k k ( / J( ( k!k! This qution cn b gnlisd, fo n n intg, in: k n k ( / J n( ( k!( k n! Whn p is not n intg, th Bssl function of od p wits: k p k ( / J p( ( k! Γ ( k p wh Γ(kp is clld th gmm function of kp. Fo ou pupos, th gmm function is ssntilly quid to pss Bssl functions of non-intg od: it is th fctoil function fo non-intgs. Obsv tht with ths dfinitions Γ(n n!. Hlpful ltions Γ ( p o p Γ ( p pγ ( p Γ ( Γ ( n n! d Γ ( / Γ ( n ± dγ ( n Γ ' dn ( n Γ ( n γ... 3 n γ (Eul s constnt 9

24 .3 Dfinition of th Gmm Function Th gmm function is dfind by: which is convgnt fo p >. p Γ ( p d (. o Applying th dfinition p p p p Γ ( p d ( ( p d p d pγ ( p o o o o on obtins th cunc fomul: Γ ( p pγ ( p (. By tking (. s th dfinition of Γ(p fo p >, w cn gnlis th gmm function to p < by us of (. in th fom ( p Γ ( p Γ (.3 p This pocss is clld nlytic continution. Applying (. w dtmin th vlu of Γ( Γ ( d (.4 o o Hnc, pplying (. Γ ( Γ ( Γ ( 3 Γ (! Γ ( 4 3Γ ( 3 3 Γ ( 3 3! Γ ( n n! Fo n bing positiv intg..3. Vlus of gmm functions. Th vlus of Γ(p fo non-intg vlus of p must b computd numiclly. On obtins fo p p Γ(p Tbl Vlus of G(p fo non-intg vlus of p Th vlu of Γ(p cn b computd fo ny vlu of p using (. Γ( Γ( *.3 * Γ( *.3 *.3 * Γ ( *.3 *.3 *

25 THE GAMMA FUNCTION.4 Vlus of G(/ nd G(-/. Two pticul vlus of th gmm function, Γ(/ nd Γ(-/, pp in mny pplictions. By dfinition: / Γ ( / d o Wit u nd d udu / u Γ ( du o Thn [ ] u v ( u v Γ ( / du dv 4 o o o o Wit u cos θ, v sin θ, du dv d dθ / / [ ] Γ ( / 4 ddθ dθ o o o Hnc dudv Γ ( / (.5 nd by (.3 Γ ( / Γ ( / (.6 /.5. Vlus of G(n fo n, -, -,... By dfinition tht w wit Div Hnc d d Γ ( o (... d... d 3 3! 3!! 3! Γ! o 3! 3! 3! Γ (... 3! 3! o d 3 o! 3!! 3... d 3! 3

26 ... d 3 o! 3! Γ (... 3! 3! o Γ (... 3!! 3!! o / Γ ( (.7! o Γ ( Γ ( (.8 Γ ( n ± (.9 Th gmm function is undfind whn th vlu of th gumnt is o o ngtiv intg..6. Divtiv of G(n. W cll Γ (n th divtiv of Γ(n with spct to n. Fo simplicity w consid only th cs of n bing n intg, which bsids is th only cs quid fo ou pupos. By dfinition d n d n Γ ' ( n d ( dn dn o o W fist comput Γ ( Γ' ( log o Intgting by pts Futh d d o n log d log d log log d d log n n n n log d log d log n n n ( log log d log d log d log d log log d n n d!.!!.! d

27 THE GAMMA FUNCTION log d log log d d! 3! 3.3! 3! 3.3!... n n n n n log d log log d d ( n! n! n.n! n! n.n! Assmbling: 3 n 3 n log d... log...!! 3! n!.!.! 3.3! n.n! 3 n d d d... d.!.! 3.3! n.n! 3 n ( log d log....!.! 3.3! n.n! 3 n d d d... d.!.! 3.3! n.n! Intgting btwn nd yilds log d log log o o o o log d.! lim log 3....! 3.3! lim log lim o Γ( Γ ( 3 Γ( 4....!.! 3.3! ( log lim ( log... ( log d lim log lim log 3 Γ ' ( log d lim log M... γ (. M 3 M o wh γ is clld Eul s constnt. 3 By tnt: o log d ( log log d o o o d log d log d o o o d 3

28 Γ' ( o log d γ Γ( Γ ' ( n Γ ' ( 3! γ Γ ( 3... ( n! γ Γ ( n... 3 n Γ '( n γ... Γ ( n 3 n (. 4

29 THE GENERAL SOLUTION OF THE BESSEL EQUATION Chpt 3 Th Gnl Solution of th Bssl Eqution. 3. Intoductoy not. In th wy tigonomtic functions solutions of Lplc qution in Ctsin co-odints, Bssl functions solutions of Lplc qution in pol o cylindicl co-odints. On could sy tht Bssl functions is th dimnsionl function whs tigonomtic functions two dimnsionl functions. Th fundmntl chctistics of both functions idnticl: d f ( - if f( cos( f ( d d f ( df ( - if f( J ( f ( d d Bssl functions ssntilly utilisd in poblms psnting n il symmty: in pvmnt ngining, th common cs of cicul lod on lyd stuctu, i.. nly ll pplictions of chpts to 6. J p nd J -p th two solutions of th fist kind of Bssl s qution d φ dφ φ p t φ d d Howv, whn p n, J n (- n J -n. In tht cs, Bssl s qution quis noth scond solution, solution of th scond kind, Y p, which will not b utilisd in this book. I p nd I -p th two modifid solutions of th fist kind of Bssl s modifid qution: d φ dφ φ p t φ d d Ths lso, n t usd in this book. Howv, thy llow intoducing th K nd Ki functions, solutions of: d φ dφ it φ d d which is pplid in th poblm of slb subjctd to n isoltd lod (chpt.4 nd in th ovlistion tst (chpt 6.4. Th modifid fom of Bssl s qution: d F df α p γ ( γ ( α F β γ F d d pmits us to illustt th istnc of ltions btwn Bssl functions of od ½ nd tigonomtic functions (chpt 4.3 Thos ltions llow us to stblish symptotic ppoimtions fo Bssl functions (chpt 4.5, quid fo th numicl computtions of functions of high gumnts. 5

30 3. Hlpful ltions ( t / p k k J p( t ( k! Γ ( p k p k k ( t / J p ( t ( k! Γ ( p k n J n( t ( J n( t fo n intg n [ ( ] k n ( n k!( t / Yn( t J n( t log( t / γ k! k n k ( t / ( k 3 n k k!( n k! ( H p ( t J p( t iy p( t ( H p ( t J p( t iy p( t p k p ( t / I p( t i J p( it k! Γ ( k p n k ( n k! Kn ( t ( nk k!( t / n k n ( t / ( log( t / Ψ ( k Ψ ( n k k!( n k! Ψ ( γ Ψ ( k γ... 3 k J ( ti ± i I( t ± i b( t ± ibi( t 4k 4k k ( t / k ( t / b( t ( bi( t ( ( k!( k! ( k!( k! ki( t k( t bi( t K ( t ± i k( t ± ki( t b( t [ log( t / γ ] 4 [ log( t / γ ] bi( t 4 bi( t ( t / 4...!! 6 t /... 3!3! 3 ( t / (!! 6

31 THE GENERAL SOLUTION OF THE BESSEL EQUATION 3.3 Rsolution of th Bssl qution (Bssl functions of th fist kind Rcll th dfinition of th Lplcin in cylind co-odints givn by.5: Φ Φ Φ Φ (3. θ Consid nt solution obtind by th mthod of sption of th vibls t Φ F( cos( pθ nd pply it to (3. tht tnsfoms into: F F p F t F (3. Th gnl solution of qution (3. cn b found by th mthod of th indicil qutions (Wylnd, 97. Thfo ssum tht th solution cn b wittn s sis such s: Hnc n α F n F n ( n n α α F n α ( n α ( n α Rplc th tms in (3. by (3,3, (3.4 nd (3.5: n n {[( n ( n ( n p ] n α α α α t n α } Tk out th fist two tms of th fist summtion: α ( α p ( α p ( α p n n ( n α p ( n α p n t n If th tms in nd qul o, th ltion bcoms homognous gding th ponnts of. Thfo choos bity, nd α ± p. Rng th indics n [( n ( n ± p n nt ] α (3.6 If (3.6 hs to b idnticl o whtv th vlu of m, ch tm of th summtion hs to b qul o. Hnc th cunc fomul ( n ( n ± p n nt (3.7 nd bcus, ll th tms with n odd ind lso qul o. Finlly sulting in: (3.3 (3.4 (3.5 7

32 t t t ( ± p (± p ( ± p 4 t t 4 4( 4 ± p ( ± p ( ± p 6 4t t 6 6( 6 ± p 3(± p ( ± p ( 3 ± p... s s ( t s s!( ± p ( ± p...( s ± p If p is diffnt fom o o not n intg, on obtins two linly indpndnt solutions p k p k k ( t / k ( t F A ( B ( k! Γ ( p k k! Γ ( p k Th cosponding sis clld Bssl functions of th fist kind nd notd p k k ( t / J p( t ( k! Γ ( p k p k k ( t / J p ( t ( k! Γ ( p k (3.8 (3.9 (3. Th Bssl functions of th fist kind nd of od nd psntd in Figu 3.. Figu 3. Bssl functions of th fist kind nd of od nd 8

33 THE GENERAL SOLUTION OF THE BESSEL EQUATION 3.4 Rsolution of th Bssl qution fo p n intg (Bssl functions of th scond nd thid kind 3.4. Fo n intg, J n (- n J -n Whn p is n intg, lt sy n, solutions (3.9 nd (3. not linly indpndnt ny mo. Indd whn p -n n k n n k n k k ( t / k ( t / k ( t / J n ( t ( ( ( k!( n k! k!( n k! k!( n k! n Whn,,, 3,..., k n-, (-nk! ± nd n k ( t / k!( n k! Wit k n j n k n j k ( t / n j ( t / J n ( t ( ( k!( n k! ( n j! j! n n j n j ( t / n J n ( t ( ( ( J n( t j!( n j! Hnc th two solutions not linly indpndnt Bssl functions of th scond kind In od to find scond linly indpndnt solution, w dfin th function J p ( t cos( p J p ( t Y p ( t (3. sin( p which is vlid fo p not n intg. Thn w dfin fo p n J p( t cos( p J p ( t Yn ( t lim p n sin( p W sch th solution fo n. J p (t cos( p J p ( t Y( t lim p sin( p Apply d L Hospitl s ul J p( t J p( t cos( p J p( t sin( p p p Y( t cos( p J p ( t J p ( t Y( t p p Comput th divtivs of J p (t nd J -p (t: J p k p( t k ( t / Γ '( p k ( log( t / p k! Γ ( p k Γ ( p k 9

34 J p k p ( t k ( t / Γ ' ( p k ( log( t / p k! Γ ( p k Γ ( p k nd fo p k k ( t / Γ' ( k Y ( t ( log( t / k!k! Γ ( k By (. Hnc Y ( t J ( t γ Fo n, (3. is tndd to Yn( t Γ '( k γ Γ ( k [ log( t / ] ( t /!! 3 4 ( t /!!... k 6 ( t / 3!3! n { [ ]} k ( n k!( t / J ( t log( t / γ n k! k n k ( t / ( k 3 n k k!( n k! Th functions Y p (t clld functions of th scond kind. Th Bssl functions of th scond kind nd of od nd psntd in Figu 3.. n... 3 (3. (3.3 Figu 3. Bssl functions of th scond kind nd of od nd

35 THE GENERAL SOLUTION OF THE BESSEL EQUATION Bssl functions of th thid kind Hnkl intoducd nt pi of conjugt compl functions, with i (-: ( H p ( t J p( t iy p( t (3.4 ( H p ( t J p( t iy p( t (3.5 Ths functions clld Hnkl functions o Bssl functions of th thid kind. 3.5 Th modifid Bssl qution. If in 3.3 w chos: Φ F( cos( pθ cos( t s solution of th Lplc qution, qution (3. would modify into: F F p F t F (3.6 Eqution (3.6 is clld th modifid Bssl qution. Its solution cn immditly b dducd fom th oiginl solution (3.8 F( t AJ p( it BJ p(it (3.7 wh k p p k k i ( t / J p (it ( k! Γ ( p k p k p ( t / J p( it i k! Γ ( p k Hnc w dfin th function I p, modifid Bssl function of th fist kind, s l function, solution of th modifid Bssl qution. p k p ( t / I p i J p( it (3.8 k! Γ ( p k F( t AI p BI p (3.9 It is sy to dduc fom (3.8 tht whn p is n intg, lt sy p n, I n I -n. In tht cs, th scond solution is usully dfind by n ( I ( t I ( t K n p p ( t lim p n p n (3. which is clld th modifid Bssl function of th scond kind. Th function K p (t is dfind fo unstictd vlus of p by th qution I p ( t I p( t K p ( t sin p Applying d L Hospitl s ul on (3. nd (3., on vifis tht Kn( t lim K p( t p n In simil wy s givn in 3.4. on obtins: (3.

36 n k Kn( t ( ( n k!( t k! n k / n k n ( t / ( ln( t / Ψ ( k Ψ k!( n k! Ψ ( γ Ψ ( k γ... 3 k ( n k (3. Th modifid Bssl functions of th fist kind nd of od nd psntd in Figu 3.3. Figu 3.3 Modifid Bssl functions of th fist kind of od nd Th modifid Bssl functions of th scond kind nd of od nd givn in Figu 3.4. Figu 3.4 Modifid Bssl functions of th scond kind nd of od nd

37 THE GENERAL SOLUTION OF THE BESSEL EQUATION 3.6 Th b nd bi functions. Consid nt modifid Bssl qution: F F ( ± i t F which solutions of th fist kind i( t / ( t / i( t / ( t / I ( t i...!!!! 3!3! 4!4! i( t / ( t / i( t / ( t / I ( t i...!!!! 3!3! 4!4! (3.3 W dfin: wh Notic tht: b( t bi( t I ( t ± i b( t ± ibi( t ( ( t / ( t / ( t / b( t... (3.5!! 4!4! 6!6! 6 ( t / ( t / ( t / bi( t... (3.6!! 3!3! 5!5! ( t i I ( t i J ( ti i J ( ti i J ( t i J ( t i I (3.7 I ( t i I ( t i J ( ti i J ( ti i J ( t i J ( t i (3.8 i i i Th b nd bi functions cn b dpictd in Figu 3.5 Figu 3.5 Th b nd bi functions 3

38 3.7 Th k nd ki functions. Agin consid qution (3.3, which solutions of th scond kind : 4 6 t i t i t i t i K ( t i I ( t i log γ...!!!! 3!3! 3 Rcll tht: t i t t t i / t log log log i log log i log log i 4 nd pplying ( t t t t K ( t i [ b( t ibi( t ] log i i i γ... 4!!!! 3!3! t t t t K ( t i [ b( t ibi( t ] log i i i γ... 4!!!! 3!3! 3 W dfin: k( t ( t i K ( t i K (3.9 ( t i K ( t i K ki( t (3.3 i 4 [ ] ( t / k( t b( t log( t / γ bi( t... (3.3 4!! 6 [ ] ( t / ( t / ki( t bi( t log( t / γ b( t... (3.3 4!! 3!3! 3 Th k nd ki functions givn in figu 3.6. Figu 3.6 Th k nd ki functions 4

39 THE GENERAL SOLUTION OF THE BESSEL EQUATION 3.8 Rsolution of th qution w w Consid th nt qution: d d d w dw w d d d d (3.33 Th solution cn b obtind by splitting (3.33 into two simultnous diffntil qutions d w dw d d (3.34 d d w d d (3.35 Both qutions vifid togth if miw. Indd, if, fo mpl, iw d w dw (3.34 bcoms iw, nd d d d w dw d w dw (3.35 bcoms i i w o iw d d d d Hnc th solution of (3.33 is givn by th solution of d w dw ( ± i w d d (3.36 Th qutions (3.5, (3.6, (3.3 nd (3.3 giv th solution of (3.36, fo its two signs w Ab( Bbi( C k( Dki( ( Th modifid fom of th Bssl qution Consid th nt diffntil qution: F F α p γ ( γ ( α F β γ F (3.38 which hs fo solutions, s cn b vifid by substitution, α γ F( A J p( β α γ B J p( β (3.39 o, if p is n intg, α γ α γ F( A J p( β B Yp( β (3.4 An intsting ppliction of (3.38 is th solution of th Lplc qution in two- dimnsionl Ctsin co-odints Φ Φ Φ y Consid solution such s Φ F( ty 5

40 Hnc Comping (3.4 with (3.38 yilds: Hnc Howv F( ty Φ t F( (3.4 α / γ β t α p γ p / / / F( A J / (t B J / ( t (3.4 F ( Acos( t B sin( t (3.43 is lso solution of (3.4. Thfo, on must conclud tht th ists ltion btwn Bssl functions of od ± / nd tigonomtic functions. 6

41 PROPERTIES OF THE BESSEL FUNCTIONS Chpt 4 Poptis of th Bssl Functions. 4. Intoductoy not This chpt dls with th most impotnt poptis of Bssl functions: divtivs, functions of hlf od, symptotic vlus, indfinit intgls nd ltions btwn functions of diffnt kind. 4. Hlpful ltions d d d p p [( t J p ( t ] t( t J p( t p p [( t J p( t ] t( t J p ( t d d p J p ( t tj p( t J p( t d d p J p ( t tj p ( t J p ( t d p J p ( t J p ( t J p ( t t J( t J ( t d t J( t J( t d t J / ( t sin( t t J ( t / t cos( t t [ t ] t [ t ] I / ( t t I / ( t t K/ K / t t J p ( t J p Y p ( t ( t p cost t 4 fo high vlus of t p sint t 4 fo high vlus of t p sint t 4 fo high vlus of t 7

42 p ( t cost fo high vlus of t t 4 ( i( t p / / 4 H p fo high vlus of t t ( i( t p / / 4 H p fo high vlus of t t t t ( p / i I p( t ( fo high vlus of t t Y p b( t bi( t k( t t / t t / t cos sin t / t t fo high vlus of t 8 t fo high vlus of t 8 cos t / t ki( t sin t 8 i ip J ± p ( J ± p ( J ± p( mi mip ( J ( J ± p ± p ( ( H p ( t H p ( t J p( t Y p( t Y p( t cos( p J p( t sin( p J ( t J ( t ( p p H p ( t i sin( p t fo high vlus of t 8 ip fo high vlus of t ip ( J p( t J p( t H p ( t i sin( p ( mi mpi ( pi sin( mp H p ( t H p ( t J p( t sin( p ( mi mp i ( pi sin( mp H p ( t H p ( t J p( t sin( p I p ( t i J i ( t pi / / p pi / ( K p( t i H p ( ti pi / ( K p( t i H p ( ti 8

43 PROPERTIES OF THE BESSEL FUNCTIONS 4.3 Divtivs of Bssl functions 4.3. Divtiv of (t p J p (t By dfinition of th Bssl function d d p [( t J p( t ] d d p k d k ( t ( d p k k! Γ ( p k p k k ( p k ( t t ( p k k! Γ ( p k p k k ( t t ( p k k! Γ ( p k ( p k p k ( t t( t ( ( p k k! Γ ( p k p p [( t J p( t ] t( t J p( t [ ] ( Divtiv of (t-pjp(t On finds similly d d p p [( t J p ( t ] t( t J p ( t ( Divtiv of J p (t Diving th lft mmb of (4. by pts yilds d p [ J p( t ] tj p ( t J p ( t (4.3 d diving th lft mmb of (4. by pts yilds d p [ J p ( t ] tj p ( t J p ( t (4.4 d Pticully d [ J ( t ] tj ( t tj( t (4.5 d Adding (4.3 nd (4.4 yilds d t [ J p ( t ] [ J p( t J p ( t ] (4.6 d nd subtcting yilds th cunc fomul fo Bssl functions p J p ( t J p ( t J p( t (4.7 t 9

44 4.4 Bssl functions of hlf od 4.4. Vlus of J / (t, J -/ (t, J 3/ (t, J -3/ (t Epnding th Bssl functions in thi sis nd clling tht Γ(/ yilds: J / ( t sin( t (4.8 t Vlus of I / (t, I -/ (t J / ( t cos( t (4.9 t J 3 / ( t sin( t cos( t t t J 3 / ( t cos( t sin( t t t (4. (4. Epnding th Bssl functions in thi sis yilds I / ( t t I / ( t t Vlus of K / (t, K -/ (t t [ t ] t [ t ] (4. (4.3 By dfinition (3. Hnc I / ( t I / ( t t K / ( t sin( / t I / ( t I / ( t t K / ( t sin( / t (4.4 (4.5 K / ( t K / ( t ( Vlus of K (t nd K n (t By dfinition (3. I p ( t I p( t K ( t lim p sin p Applying d l Hospitl s ul yilds nd omitting th lim sign di p( t di p( t dp dp di p( t di p( t K ( t cos p dp dp 3

45 PROPERTIES OF THE BESSEL FUNCTIONS k p k p d ( t / d ( t / K( t dp k! Γ ( k p dp k! Γ ( k p k p p ( t / ( t / log( t / Γ ( k p ( t / Γ ' ( k p K ( t k! Γ ( k p Γ ( k p p p ( t / log( t / Γ ( k p ( t / Γ '( k p Γ ( k p Γ ( k p Ltting p k ( t / Γ' ( k K ( t log( t / k!k! Γ ( k Dvloping Γ (k s in 3.3. yilds 4 ( t / ( t / K ( t I( t [ log( t / γ ]!!!! 6 ( t / (4.7 3!3! 3 Fo n, (4.7 is ltivly sily tndd to n k n ( ( n k! k n Kn ( t ( I n( t [ log( t / γ ] ( t / k! k [ ] n n ( t / ( Φ ( k Φ( n k (4.8 k!( k n! 4.5 Asymptotic vlus 4.5. Asymptotic vlus fo Jp nd J-p Tnsfom Bssl qution (3.: by witing F(t G(t/(t / Whn p ½, th qution ducs to whos gnl solution is givn by Hnc F F p F t F G t p / 4 G G t G G A cos( t B sin( t (4.9 (4. / / F A( t cos( t B( t sin( t (4. 3

46 but lso: F CJ / ( t DJ / ( t (4. Equtions (4. nd (4. confim, s w knw by (4.8 nd (4.9, tht th ists ltion btwn th Bssl functions of hlf od nd th tigonomtic functions, nd tht this ltion is vlid fo ll vlus of th gumnt, thus in pticul fo high vlus of th gumnt. Hnc th qutions: J ( t / J ( t / t t sin( t cos( t cn b considd s th symptotic qutions fo th Bssl functions of hlf od. Thus (4.9 must hv, fo p not bing n intg, two ppoimt vlus fo high vlus of th gumnt such s J p( t / Ap ( t cos( t α p (4.3 / J p( t Bp( t sin( t β p (4.4 Th cofficints α p nd β p must b dtmind in such wy tht qutions (4.3 nd (4.4 linly indpndnt nd comptibl with th dfinitions of J p nd J -p. Div, with spct to, J p in (4.3 ' t 3 / / J p ( t Ap ( t cos( t α p Ap( t t sin( t α p Fo high vlus of th gumnt th fist tm cn b nglctd ginst th scond ' / J p ( t Ap( t t sin( t α p Futh (4.3 nd (4.4 simplify fo high vlus of th gumnt ' J p ( t tj p ( t Hnc ' J p ( t tj p ( t / / Ap( t t sin( t α p tap( t cos( t α p (4.5 / / Ap ( t t sin( t α p tap ( t cos( t α p (4.6 If w choos A p A p- A p A nd α p k - p/ in such wy tht A nd k indpndnt fom p, w notic tht qutions (4.5 nd (4.6 stisfid. Indd p ( p Asin t k Acost k Thn / p J p( t A( t cost k This qution must b stisfid fo ll vlus of p, thus lso fo p/ fo which J / ( t Hnc A ( / nd k - /4 t sin( t t cost 4 4 3

47 PROPERTIES OF THE BESSEL FUNCTIONS Finlly Rplcing p by p in (4.7 yilds J p ( t J p ( t t t cost 4 sint 4 p p (4.7 ( Asymptotic vlus fo Y p nd Y -p Sinc Y p nd Y -p th pid scond solutions with J p nd J -p w shll dmit implicitly th following symptotic qutions Y p ( t Y p Asymptotic vlus fo H p ( nd H p ( ( t t t p sint 4 p cost 4 By ppliction of th dfinitions (3.4 nd (3.5, on immditly finds: H H t (4.9 (4.3 ( i( t / 4 p / p (4.3 t ( i( t / 4 p / p ( Asymptotic vlus fo I p nd I -p Tnsfom Bssl qution (3.6 F F p F t F by witing F(t G(t/(t / G p / 4 t G (4.33 Whn p ½, th qution ducs to G t G (4.34 whos gnl solution is givn by t t G A B Hnc / t / t F A( t B( t (4.35 but lso 33

48 F CI / ( t DI / ( t (4.36 Eqution (4.35 is vlid fo ll vlus of th gumnt, thus in pticul fo high vlus of th gumnt. Hnc th qutions: t [ t ] t [ t ] I / ( t t I / ( t t cn b considd s th symptotic qutions fo th modifid Bssl functions of hlf od. Hnc (4.33 must hv, fo p not n intg, two ppoimt vlus fo high vlus of th gumnt such s / t α( p / t β( p / I p( t Ap( t (4.37 / t α( p / t β ( p / I p ( t B p( t (4.38 Th cofficints α nd β must b dtmind in such wy tht qutions (4.37 nd (4.38 linly indpndnt nd comptibl with th dfinitions of I p nd I -p. Div, with spct to, I p in (4.37 ' t 3 / t α( p / t β ( p / I p ( t Ap( t [ ] / t α( p / t β ( p / Ap( t t Fo high vlus of th gumnt th fist tm cn b nglctd ginst th scond / t α( p / t β ( p / I' p ( t Ap ( t t Futh simplify th divtivs of I p (t fo high vlus of th gumnt ' I p ( t tj p ( t Hnc ' I p ( t tj p ( t / t α( p / t β ( p / Ap( t t / t α( p / t β ( p / Ap( t t (4.39 / t α( p / t β ( p / Ap( t t / t α ( p 3 / t β ( p 3 / Ap ( t t (4.4 If w choos A p A p- A p A nd α, β i in such wy tht A nd β indpndnt fom p, w notic tht qutions (4.39 nd (4.4 stisfid. 34

49 PROPERTIES OF THE BESSEL FUNCTIONS A( t A( t / t / t t ( p / i t ( p / i Hnc / t t ( p / i I p( t A( t This qution must b stisfid fo ll vlus of p, thus lso fo p/ fo which t t I / ( t [ ] t Hnc A ( / Finlly t t ( p / i I p( t t Rplcing p by p in (4.4 yilds t t ( p / i I p ( t t (4.4 ( Asymptotic vlu fo K n Consid dfinition (3.: K Fo lg vlus of th gumnt n ( Kn( t n ( t t lim p n t n ( Kn( t Applying d l Hospitl s ul yilds n ( Kn( t In this fom K n (t my b gnlisd into wh p not n intg nd lso ( n I p ( t I p n t( p / i t p p n ( t t pi pi i t p n t cos( n t t Kn( t t K p ( t t t t ( p / i (4.43 (4.44 (

50 K t t ( t ( Asymptotic vlus fo b nd bi Fo high vlus of th gumnt (4.7 yilds J With (i -/4 -i/8 nd i ( i/ Similly Hnc cost i 4 J ( t i cost i t i / i( t / / 4 t / i( t / cost J b( t bi( t i Asymptotic vlus fo k nd ki Rcll qutions (3.9 nd (3.3 Apply (4.46 i( t / / 4 4 t / t / t / 8 ( t i i( J t / 4 t / t / t t ( t i cos i sin t 8 8 t / t t ( t i cos i sin t 8 8 ( ( t / t i J t i t cos J t 8 ( ( t / t i J t i t sin J i t 8 k( t ki( t ( t i K ( t i (4.47 (4.48 (4.49 (4.5 K (4.5 ( t i K ( t i K (4.5 i t K( t i t i i 36

51 PROPERTIES OF THE BESSEL FUNCTIONS Similly obtin K ( t i t i / 8 t( i / t / i( t / t t t / K( t i t Adding nd subtcting (4.53 nd (4.54 yilds t / cos cos t 8 t 8 / 8 t i sin 8 t i sin 8 (4.53 (4.54 k( t ki( t 4.6 Indfinit intgls of Bssl functions t / t t / t cos sin t 8 t 8 (4.55 ( Fundmntl ltions In 4..w hv divd th following divtivs of Bssl functions: d [ tj ( t ] t( t J ( t d d [ J ( t ] tj( t d Fom thos qutions w sily dduc nt fundmntl intgls J( t J ( t d (4.57 t J( t J ( t d (4.58 t 4.6. Th intgl n J (td Intgting by pts solvs th intgl: n n J( t ( n n J ( t d J ( t d t t n n ( n n J( t d J ( t J ( t d t t Hnc n n J( t ( n n ( n n J ( t d J( t J ( t d (4.59 t t t If n is odd, fomul (4.59 lds to (4.57. If n is vn, fomul (4.59 lds to J (td, which is tbultd. 37

52 4.7 Rltions btwn Bssl functions of diffnt kind 4.7. Bssl functions with gumnt t Sinc Bssl s qution is unltd if t is plcd by t, w must pct th functions J ±p (-t to b solutions of th qutions stisfid by J ±p (t. Considing th ltion i -, w my wit i J p( t J p( t W cn vn consid th mo gnl function J p ( mi t wh m is n intg. mi p k mi k ( t / J p( t ( k! Γ( k p Rsticting th compl ponnt to its pincipl vlu w gt mi p k m p mk im p ( i( Hnc p k mi imp k ( t / im p J p ( t ( J p( t k! Γ ( k p ( Rltions btwn th th kinds of Bssl functions Consid (3.4 nd (3.5 ( H p ( t J p( t iyp ( t ( H p ( t J p( t iyp ( t Hnc by multiplying Yp(t by cos(p nd subtcting fom Y-p(t ( ( H p ( t H p ( t J p( t (4.6 Consid (3. J p( t cos( p J p( t Y p( t sin( p Rplc p by p J p( t cos( p J p( t Y p( t sin( p Hnc by subtcting nd dividing by Y p( t Yp( t cos( p J p( t (4.6 sin( p Consid (3.4 togth with (3. ( H p ( t J p( t iyp ( t ( J p( t cos( p J p( t H p ( t J p( t i sin( p 38

53 PROPERTIES OF THE BESSEL FUNCTIONS [ cos( p i sin( p ] ( J p( t H p ( t i sin( p J p( t ip ( J p ( t J p( t H p ( t (4.63 i sin( p nd similly ip ( J p( t J p( t H p ( t (4.64 i sin( p Add qutions (4.63 nd (4.64 togth ( ( H p H p J p( t (4.65 Multiply qution (4.63 by ip nd (4.64 by -ip nd dd togth ( ip ( ip H p ( t H p ( t J p( t (4.66 In qution (4.63 plc t by t mi mi mi ip ( mi J p( t J p( t H p ( t i sin( p togth with qution (4.6 H ( p ( t mi mpi J p ( t mpi J isin( p p ( t ip ip ip mpi mpi ( J ( t J ( t J ( t ( mp i ( mi p p p H p ( t i sin( p i sin( p pplying qution (4.63 ( mi mpi ( pi sin( mp H p ( t H p ( t J p( t (4.67 sin( p nd similly ( mi mp i ( pi sin( mp H p ( t H p ( t J p( t (4.68 sin( p Bssl functions of puly imginy gumnt Consid (3.8 Rcll tht i/ i, 3i/ -i. Hnc Apply (3. p k p ( t / I p( t i J p( it k! Γ ( p k pi / I p( t J p( it (

54 4 p sin t ( I t ( I t ( K p p p p sin (it J it ( J t ( K p / i p p / i p p p sin i it ( J (it J i t ( K p i p p / i p p Hnc by (4.63 it ( H i t ( K ( p / i p p (4.7 nd similly (it H i t ( K ( p / i p p (4.7

55 THE BETA FUNCTION Chpt 5 Th Bt Function 5. Intoductoy not Th gmm function, Γ(n, is function with on vibl. Th bt function, B(m,n, is function with two vibls. Th function cn b dfind s poduct of Γ- functions. It is usful in th pssion of solutions of dfinit intgls of Bssl functions, which, fo pticul vlus of thi pmts, cn b wittn in simpl closd-foms. 5. Hlpful ltions B( m,n B( m,n B ( m,n B( m,n m / cos B( n,m ( m Γ ( m Γ ( n Γ ( m n n ϑ sin d n ϑdϑ p Γ p Γ ( p Γ ( p Γ 5.3 Dfinition of th bt function Th bt function is dfind by Eul s intgl of th fist kind m n B ( m,n ( d (5. which is convgnt fo m > nd n >. Witing cos θ nd - sin θ, (5. tnsfoms into / m n B( m,n cos ϑ sin ϑdϑ (5. Rplcing by - y in (5. yilds B ( m,n B( n,m (5.3 4

56 5.4 Rltion btwn bt nd gmm functions By dfinition: Hnc, on my wit Γ ( m Γ ( m Γ( n m m d Wit χ, y η χ m Γ ( m Γ( n 4 χ dχ Wit χ cosϑ, η sinϑ Wit ρ Hnc Γ ( m Γ( n 4 Γ ( m Γ( n 4 Γ ( m Γ( n 4 d y χ η m ( m n m n d Γ ( m Γ( n B( m,n Γ ( m Γ ( n B( m,n ρ ρ B( m,n χ cos m / m n cos y η η n η n ϑ sin m dy n dη dχdη n ϑ sin m n d ϑddϑ n ϑdϑ dρ B( m,n Γ ( m n Γ ( m Γ ( n Γ ( m n ( Th dupliction fomul fo gmm functions Consid th function Wit u ϑ J / sin p ( ϑ dϑ 4

57 DEFINITE INTEGRALS OF BESSEL FUNCTIONS / / J p p sin udu sin udu sin Howv, on lso hs Hnc J p J / / sin p ( ϑ dϑ p / u cos ( sinϑ cosϑ Γ( / Γ( p / udu Γ( p p dϑ p p p Γ ( p / Γ ( p / cos ϑ sin ϑdϑ Γ( p p Γ ( p / Γ ( p / J pγ ( p p Γ ( p / Γ ( p Γ (/ Γ ( p (5.5 Eqution (5.5, clld th dupliction fomul fo gmm functions, will oftn b usd in futh dvlopmnts. 43

58 44

59 DEFINITE INTEGRALS OF BESSEL FUNCTIONS Chpt 6 Dfinit intgls of Bssl functions 6. Hlpful ltions J ( ωt sin ( ωt ϑdϑ Γ J ( t J ( bt Γ ( t ( bt J ω b bcosϑ / ( J ( sinϑ sin ϑ cos ϑdϑ Γ ( / / y J ( y J ( sinϑ J ( ycosϑ sin ϑ cos ϑdϑ ( / ( y / ( / J( cos( sinϑ cos ϑdϑ Γ ( / Γ(/ 6. Ggnbu s intgl Th impotnt intgl: J ( ω J ( t J ( bt sin ϑdϑ Γ Γ ω ( t ( bt ω b bcosϑ which is vlid fo > -/, hs bn fist povd by Ggnbu (Wtson, 966, hnc its nm. (6. Dvlop th Bssl function in its sis J ( ωt sin ϑdϑ ( ωt Intgt th sis tm by tm. k ( ( ωt / ( ωt k! Γ t k sin ( k ( k! Γ ( k k k ( ω k sin k k k! j k j ( ω ( b ( b cos k ( ω ϑ j!( k j! j Consid th intgl m cos ϑ sin ϑdϑ ϑdϑ ϑdϑ 45

Theory of Spatial Problems

Theory of Spatial Problems Chpt 7 ho of Sptil Polms 7. Diffntil tions of iliim (-D) Z Y X Inol si nknon stss componnts:. 7- 7. Stt of Stss t Point t n sfc ith otd noml N th sfc componnts ltd to (dtmind ) th 6 stss componnts X N

More information

E. Computation of Permanent Magnetic Fields

E. Computation of Permanent Magnetic Fields E. Computtion of Pmnnt Mgntic Filds Th following pssgs should giv n impssion, how pmnnt mgnts cn b clcultd in spct of thi fild distibution. This ovviw ctinl cnnot cov ll subjcts. It will ml intoduc th

More information

Path (space curve) Osculating plane

Path (space curve) Osculating plane Fo th cuilin motion of pticl in spc th fomuls did fo pln cuilin motion still lid. But th my b n infinit numb of nomls fo tngnt dwn to spc cu. Whn th t nd t ' unit ctos mod to sm oigin by kping thi ointtions

More information

C-Curves. An alternative to the use of hyperbolic decline curves S E R A F I M. Prepared by: Serafim Ltd. P. +44 (0)

C-Curves. An alternative to the use of hyperbolic decline curves S E R A F I M. Prepared by: Serafim Ltd. P. +44 (0) An ltntiv to th us of hypolic dclin cuvs Ppd y: Sfim Ltd S E R A F I M info@sfimltd.com P. +44 (02890 4206 www.sfimltd.com Contnts Contnts... i Intoduction... Initil ssumptions... Solving fo cumultiv...

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

be two non-empty sets. Then S is called a semigroup if it satisfies the conditions

be two non-empty sets. Then S is called a semigroup if it satisfies the conditions UZZY SOT GMM EGU SEMIGOUPS V. Chinndi* & K. lmozhi** * ssocit Pofsso Dtmnt of Mthmtics nnmli Univsity nnmling Tmilnd ** Dtmnt of Mthmtics nnmli Univsity nnmling Tmilnd bstct: In this w hv discssd bot th

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

Part II, Measures Other Than Conversion I. Apr/ Spring 1

Part II, Measures Other Than Conversion I. Apr/ Spring 1 Pt II, Msus Oth hn onvsion I p/7 11 Sping 1 Pt II, Msus Oth hn onvsion II p/7 11 Sping . pplictions/exmpls of th RE lgoithm I Gs Phs Elmnty Rction dditionl Infomtion Only fd P = 8. tm = 5 K =. mol/dm 3

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September ISSN Intntinl Junl f Scintific & Engining Rsch, Vlum, Issu 9, Sptmb- bstct: Jcbin intgl nd Stbility f th quilibium psitin f th cnt f mss f n xtnsibl cbl cnnctd stllits systm in th lliptic bit. Vijy Kum ssistnt

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

E F. and H v. or A r and F r are dual of each other.

E F. and H v. or A r and F r are dual of each other. A Duality Thom: Consid th following quations as an xampl = A = F μ ε H A E A = jωa j ωμε A + β A = μ J μ A x y, z = J, y, z 4π E F ( A = jω F j ( F j β H F ωμε F + β F = ε M jβ ε F x, y, z = M, y, z 4π

More information

ELEC 351 Notes Set #18

ELEC 351 Notes Set #18 Assignmnt #8 Poblm 9. Poblm 9.7 Poblm 9. Poblm 9.3 Poblm 9.4 LC 35 Nots St #8 Antnns gin nd fficincy Antnns dipol ntnn Hlf wv dipol Fiis tnsmission qution Fiis tnsmission qution Do this ssignmnt by Novmb

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 301 Signls & Systms Pf. Mk Fwl Discussin #1 Cmplx Numbs nd Cmplx-Vlud Functins Rding Assignmnt: Appndix A f Kmn nd Hck Cmplx Numbs Cmplx numbs is s ts f plynmils. Dfinitin f imginy # j nd sm sulting

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

CONIC SECTIONS. MODULE-IV Co-ordinate Geometry OBJECTIVES. Conic Sections

CONIC SECTIONS. MODULE-IV Co-ordinate Geometry OBJECTIVES. Conic Sections Conic Sctions 16 MODULE-IV Co-ordint CONIC SECTIONS Whil cutting crrot ou might hv noticd diffrnt shps shown th dgs of th cut. Anlticll ou m cut it in thr diffrnt ws, nml (i) (ii) (iii) Cut is prlll to

More information

Mid Year Examination F.4 Mathematics Module 1 (Calculus & Statistics) Suggested Solutions

Mid Year Examination F.4 Mathematics Module 1 (Calculus & Statistics) Suggested Solutions Mid Ya Eamination 3 F. Matmatics Modul (Calculus & Statistics) Suggstd Solutions Ma pp-: 3 maks - Ma pp- fo ac qustion: mak. - Sam typ of pp- would not b countd twic fom wol pap. - In any cas, no pp maks

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

Multi-Section Coupled Line Couplers

Multi-Section Coupled Line Couplers /0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

More information

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface Genel Physics II Chpte 3: Guss w We now wnt to quickly discuss one of the moe useful tools fo clculting the electic field, nmely Guss lw. In ode to undestnd Guss s lw, it seems we need to know the concept

More information

40th AIAA Aerospace Sciences Meeting and Exhibit January 14 17, 2002/Reno, NV

40th AIAA Aerospace Sciences Meeting and Exhibit January 14 17, 2002/Reno, NV AIAA 2002 0788 Rsistnc Appoc fo Annul Fins wit Contct Conductnc nd End Cooling Susnt K. Mit nd M. Micl Yovnovic Dptmnt of Mcnicl Engining, Univsity of Wtloo, Wtloo, Cnd, N2 3G 40t AIAA Aospc Scincs Mting

More information

PEP 332: Mathematical Methods for Physicists. Math Methods (Hassani 2009) Ch 15 Applied Vector Analysis. (1) E = ρ ϵ 0 ; (2) B =0; (3) E = B (1) ; (2)

PEP 332: Mathematical Methods for Physicists. Math Methods (Hassani 2009) Ch 15 Applied Vector Analysis. (1) E = ρ ϵ 0 ; (2) B =0; (3) E = B (1) ; (2) PEP 33: Mmticl Mthods fo Phsicts Mth Mthods (Hsni 9 Ch 5 pplid c nls doul dl options mgntic multipols plcin s ( E d Q ϵ ; ( d ; (3 C E d dφ m dt ; (4 C d µ I ( E ρ ϵ ; ( ; (3 E ; (4 µ J µ ϵ E Φ( (53 ov

More information

1 Using Integration to Find Arc Lengths and Surface Areas

1 Using Integration to Find Arc Lengths and Surface Areas Novembe 9, 8 MAT86 Week Justin Ko Using Integtion to Find Ac Lengths nd Sufce Aes. Ac Length Fomul: If f () is continuous on [, b], then the c length of the cuve = f() on the intevl [, b] is given b s

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

Lecture 35. Diffraction and Aperture Antennas

Lecture 35. Diffraction and Aperture Antennas ctu 35 Dictin nd ptu ntnns In this lctu u will ln: Dictin f lctmgntic ditin Gin nd ditin pttn f ptu ntnns C 303 Fll 005 Fhn Rn Cnll Univsit Dictin nd ptu ntnns ptu ntnn usull fs t (mtllic) sht with hl

More information

Lecture 10. Solution of Nonlinear Equations - II

Lecture 10. Solution of Nonlinear Equations - II Fied point Poblems Lectue Solution o Nonline Equtions - II Given unction g : R R, vlue such tht gis clled ied point o the unction g, since is unchnged when g is pplied to it. Whees with nonline eqution

More information

Derivation of Annular Plate Sector Element for General Bending Analysis

Derivation of Annular Plate Sector Element for General Bending Analysis Jounl of Engining nd Dvlopmnt, Vol. 9, No., Jnuy 05, ISSN 8-78 Divtion of Annul Plt Scto Elmnt fo Gnl Bnding Anlysis Lctu D. Hyd Abdulm Mhdi Civil ngining dptmnt, Engining collg, Al_ Mustnsiiyh Univsity

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

PH672 WINTER Problem Set #1. Hint: The tight-binding band function for an fcc crystal is [ ] (a) The tight-binding Hamiltonian (8.

PH672 WINTER Problem Set #1. Hint: The tight-binding band function for an fcc crystal is [ ] (a) The tight-binding Hamiltonian (8. PH67 WINTER 5 Poblm St # Mad, hapt, poblm # 6 Hint: Th tight-binding band function fo an fcc cstal is ( U t cos( a / cos( a / cos( a / cos( a / cos( a / cos( a / ε [ ] (a Th tight-binding Hamiltonian (85

More information

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x, Clculus for Businss nd Socil Scincs - Prof D Yun Finl Em Rviw vrsion 5/9/7 Chck wbsit for ny postd typos nd updts Pls rport ny typos This rviw sht contins summris of nw topics only (This rviw sht dos hv

More information

EECE 260 Electrical Circuits Prof. Mark Fowler

EECE 260 Electrical Circuits Prof. Mark Fowler EECE 60 Electicl Cicuits Pof. Mk Fowle Complex Numbe Review /6 Complex Numbes Complex numbes ise s oots of polynomils. Definition of imginy # nd some esulting popeties: ( ( )( ) )( ) Recll tht the solution

More information

Current Status of Orbit Determination methods in PMO

Current Status of Orbit Determination methods in PMO unt ttus of Obit Dtintion thods in PMO Dong Wi, hngyin ZHO, Xin Wng Pu Mountin Obsvtoy, HINEE DEMY OF IENE bstct tit obit dtintion OD thods hv vovd ot ov th st 5 ys in Pu Mountin Obsvtoy. This tic ovids

More information

This immediately suggests an inverse-square law for a "piece" of current along the line.

This immediately suggests an inverse-square law for a piece of current along the line. Electomgnetic Theoy (EMT) Pof Rui, UNC Asheville, doctophys on YouTube Chpte T Notes The iot-svt Lw T nvese-sque Lw fo Mgnetism Compe the mgnitude of the electic field t distnce wy fom n infinite line

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

THE CARTAN GEOMETRY OF THE PLANE POLAR COORDINATES: ROTATIONAL DYNAMICS IN TERMS OF THE CARTAN SPIN CONNECTION

THE CARTAN GEOMETRY OF THE PLANE POLAR COORDINATES: ROTATIONAL DYNAMICS IN TERMS OF THE CARTAN SPIN CONNECTION Jounl of Foundtions of Physics nd Chmisty 3 HE CARAN GEOMERY OF HE PLANE POLAR COORDINAES: ROAIONAL DYNAMICS IN ERMS OF HE CARAN SPIN CONNECION M. W. Evns nd H. Eck Alph Institut fo Advncd Studis (www.wbchiv.og.uk,

More information

Lecture 4. Conic section

Lecture 4. Conic section Lctur 4 Conic sction Conic sctions r locus of points whr distncs from fixd point nd fixd lin r in constnt rtio. Conic sctions in D r curvs which r locus of points whor position vctor r stisfis r r. whr

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by Clss Summy.5 Eponentil Functions.6 Invese Functions nd Logithms A function f is ule tht ssigns to ech element D ectly one element, clled f( ), in. Fo emple : function not function Given functions f, g:

More information

Elastic Analysis of Pavement Structure with Application of Vertical and Centripetal Surface Forces

Elastic Analysis of Pavement Structure with Application of Vertical and Centripetal Surface Forces Elstic nlysis of Pvmnt Stct with ppliction of Vticl nd ntiptl Sfc Focs Min. W. SIR ilt Envionmnt Ptoi Soth fic Fjinmi K. & Mtsi K. ptmnt of ivil nd Envionmntl Engining Tokyo nki Univsity Sitm pn Tkmi Ino

More information

Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin

Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin 1 1 Electic Field + + q F Q R oigin E 0 0 F E ˆ E 4 4 R q Q R Q - - Electic field intensity depends on the medium! Electic Flux Density We intoduce new vecto field D independent of medium. D E So, electic

More information

Two dimensional polar coordinate system in airy stress functions

Two dimensional polar coordinate system in airy stress functions I J C T A, 9(9), 6, pp. 433-44 Intentionl Science Pess Two dimensionl pol coodinte system in iy stess functions S. Senthil nd P. Sek ABSTRACT Stisfy the given equtions, boundy conditions nd bihmonic eqution.in

More information

Physics 202, Lecture 5. Today s Topics. Announcements: Homework #3 on WebAssign by tonight Due (with Homework #2) on 9/24, 10 PM

Physics 202, Lecture 5. Today s Topics. Announcements: Homework #3 on WebAssign by tonight Due (with Homework #2) on 9/24, 10 PM Physics 0, Lctu 5 Today s Topics nnouncmnts: Homwok #3 on Wbssign by tonight Du (with Homwok #) on 9/4, 10 PM Rviw: (Ch. 5Pat I) Elctic Potntial Engy, Elctic Potntial Elctic Potntial (Ch. 5Pat II) Elctic

More information

Review of Mathematical Concepts

Review of Mathematical Concepts ENEE 322: Signls nd Systems view of Mthemticl Concepts This hndout contins ief eview of mthemticl concepts which e vitlly impotnt to ENEE 322: Signls nd Systems. Since this mteil is coveed in vious couses

More information

4.2 Boussinesq s Theory. Contents

4.2 Boussinesq s Theory. Contents 00477 Pvement Stuctue 4. Stesses in Flexible vement Contents 4. Intoductions to concet of stess nd stin in continuum mechnics 4. Boussinesq s Theoy 4. Bumiste s Theoy 4.4 Thee Lye System Weekset Sung Chte

More information

An Elementary Approach to a Model Problem of Lagerstrom

An Elementary Approach to a Model Problem of Lagerstrom An Elmntay Appoach to a Modl Poblm of Lagstom S. P. Hastings and J. B. McLod Mach 7, 8 Abstact Th quation studid is u + n u + u u = ; with bounday conditions u () = ; u () =. This modl quation has bn studid

More information

Elliptical motion, gravity, etc

Elliptical motion, gravity, etc FW Physics 130 G:\130 lctur\ch 13 Elliticl motion.docx g 1 of 7 11/3/010; 6:40 PM; Lst rintd 11/3/010 6:40:00 PM Fig. 1 Elliticl motion, grvity, tc minor xis mjor xis F 1 =A F =B C - D, mjor nd minor xs

More information

New Advanced Higher Mathematics: Formulae

New Advanced Higher Mathematics: Formulae Advcd High Mthmtics Nw Advcd High Mthmtics: Fomul G (G): Fomul you must mmois i od to pss Advcd High mths s thy ot o th fomul sht. Am (A): Ths fomul giv o th fomul sht. ut it will still usful fo you to

More information

Week 8. Topic 2 Properties of Logarithms

Week 8. Topic 2 Properties of Logarithms Week 8 Topic 2 Popeties of Logithms 1 Week 8 Topic 2 Popeties of Logithms Intoduction Since the esult of ithm is n eponent, we hve mny popeties of ithms tht e elted to the popeties of eponents. They e

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

Hydrogen atom. Energy levels and wave functions Orbital momentum, electron spin and nuclear spin Fine and hyperfine interaction Hydrogen orbitals

Hydrogen atom. Energy levels and wave functions Orbital momentum, electron spin and nuclear spin Fine and hyperfine interaction Hydrogen orbitals Hydogn atom Engy lvls and wav functions Obital momntum, lcton spin and nucla spin Fin and hypfin intaction Hydogn obitals Hydogn atom A finmnt of th Rydbg constant: R ~ 109 737.3156841 cm -1 A hydogn mas

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Radial geodesics in Schwarzschild spacetime

Radial geodesics in Schwarzschild spacetime Rdil geodesics in Schwzschild spcetime Spheiclly symmetic solutions to the Einstein eqution tke the fom ds dt d dθ sin θdϕ whee is constnt. We lso hve the connection components, which now tke the fom using

More information

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000 Highr Mthmtics UNIT Mthmtics HSN000 This documnt ws producd spcilly for th HSN.uk.nt wbsit, nd w rquir tht ny copis or drivtiv works ttribut th work to Highr Still Nots. For mor dtils bout th copyright

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 3 Due on Sep. 14, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

Data Structures. Element Uniqueness Problem. Hash Tables. Example. Hash Tables. Dana Shapira. 19 x 1. ) h(x 4. ) h(x 2. ) h(x 3. h(x 1. x 4. x 2.

Data Structures. Element Uniqueness Problem. Hash Tables. Example. Hash Tables. Dana Shapira. 19 x 1. ) h(x 4. ) h(x 2. ) h(x 3. h(x 1. x 4. x 2. Element Uniqueness Poblem Dt Stuctues Let x,..., xn < m Detemine whethe thee exist i j such tht x i =x j Sot Algoithm Bucket Sot Dn Shpi Hsh Tbles fo (i=;i

More information

Chapter 4 Circular and Curvilinear Motions

Chapter 4 Circular and Curvilinear Motions Chp 4 Cicul n Cuilin Moions H w consi picls moing no long sigh lin h cuilin moion. W fis su h cicul moion, spcil cs of cuilin moion. Anoh mpl w h l sui li is h pojcil..1 Cicul Moion Unifom Cicul Moion

More information

Classical Theory of Fourier Series : Demystified and Generalised VIVEK V. RANE. The Institute of Science, 15, Madam Cama Road, Mumbai

Classical Theory of Fourier Series : Demystified and Generalised VIVEK V. RANE. The Institute of Science, 15, Madam Cama Road, Mumbai Clssil Thoy o Foi Sis : Dmystii Glis VIVEK V RANE Th Istitt o Si 5 Mm Cm Ro Mmbi-4 3 -mil ss : v_v_@yhoooi Abstt : Fo Rim itgbl tio o itvl o poit thi w i Foi Sis t th poit o th itvl big ot how wh th tio

More information

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9 Lctur contnts Bloch thorm -vctor Brillouin zon Almost fr-lctron modl Bnds ffctiv mss Hols Trnsltionl symmtry: Bloch thorm On-lctron Schrödingr qution ch stt cn ccommo up to lctrons: If Vr is priodic function:

More information

Section 35 SHM and Circular Motion

Section 35 SHM and Circular Motion Section 35 SHM nd Cicul Motion Phsics 204A Clss Notes Wht do objects do? nd Wh do the do it? Objects sometimes oscillte in simple hmonic motion. In the lst section we looed t mss ibting t the end of sping.

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

Optimization. x = 22 corresponds to local maximum by second derivative test

Optimization. x = 22 corresponds to local maximum by second derivative test Optimiztion Lectue 17 discussed the exteme vlues of functions. This lectue will pply the lesson fom Lectue 17 to wod poblems. In this section, it is impotnt to emembe we e in Clculus I nd e deling one-vible

More information

π,π is the angle FROM a! TO b

π,π is the angle FROM a! TO b Mth 151: 1.2 The Dot Poduct We hve scled vectos (o, multiplied vectos y el nume clled scl) nd dded vectos (in ectngul component fom). Cn we multiply vectos togethe? The nswe is YES! In fct, thee e two

More information

Solutions to Midterm Physics 201

Solutions to Midterm Physics 201 Solutions to Midtem Physics. We cn conside this sitution s supeposition of unifomly chged sphee of chge density ρ nd dius R, nd second unifomly chged sphee of chge density ρ nd dius R t the position of

More information

The Angular Momenta Dipole Moments and Gyromagnetic Ratios of the Electron and the Proton

The Angular Momenta Dipole Moments and Gyromagnetic Ratios of the Electron and the Proton Journl of Modrn hysics, 014, 5, 154-157 ublishd Onlin August 014 in SciRs. htt://www.scir.org/journl/jm htt://dx.doi.org/.436/jm.014.51415 Th Angulr Momnt Diol Momnts nd Gyromgntic Rtios of th Elctron

More information

The Formulas of Vector Calculus John Cullinan

The Formulas of Vector Calculus John Cullinan The Fomuls of Vecto lculus John ullinn Anlytic Geomety A vecto v is n n-tuple of el numbes: v = (v 1,..., v n ). Given two vectos v, w n, ddition nd multipliction with scl t e defined by Hee is bief list

More information

ADDITIVE INTEGRAL FUNCTIONS IN VALUED FIELDS. Ghiocel Groza*, S. M. Ali Khan** 1. Introduction

ADDITIVE INTEGRAL FUNCTIONS IN VALUED FIELDS. Ghiocel Groza*, S. M. Ali Khan** 1. Introduction ADDITIVE INTEGRAL FUNCTIONS IN VALUED FIELDS Ghiocl Goza*, S. M. Ali Khan** Abstact Th additiv intgal functions with th cofficints in a comlt non-achimdan algbaically closd fild of chaactistic 0 a studid.

More information

sin sin 1 d r d Ae r 2

sin sin 1 d r d Ae r 2 Diffction k f c f Th Huygn-Fnl Pincil tt: Evy unobtuct oint of vfont, t givn intnt, v ouc of hicl cony vlt (ith th m funcy tht of th imy v. Th mlitu of th oticl fil t ny oint byon i th uoition of ll th

More information

8 - GRAVITATION Page 1

8 - GRAVITATION Page 1 8 GAVITATION Pag 1 Intoduction Ptolmy, in scond cntuy, gav gocntic thoy of plantay motion in which th Eath is considd stationay at th cnt of th univs and all th stas and th plants including th Sun volving

More information

IFYFM002 Further Maths Appendix C Formula Booklet

IFYFM002 Further Maths Appendix C Formula Booklet Ittol Foudto Y (IFY) IFYFM00 Futh Mths Appd C Fomul Booklt Rltd Documts: IFY Futh Mthmtcs Syllbus 07/8 Cotts Mthmtcs Fomul L Equtos d Mtcs... Qudtc Equtos d Rmd Thom... Boml Epsos, Squcs d Ss... Idcs,

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Equations from The Relativistic Transverse Doppler Effect at Distances from One to Zero Wavelengths. Copyright 2006 Joseph A.

Equations from The Relativistic Transverse Doppler Effect at Distances from One to Zero Wavelengths. Copyright 2006 Joseph A. Equtins m Th Rltiisti Tnss ppl Et t istns m On t Z Wlngths Cpyight 006 Jsph A. Rybzyk Psntd is mplt list ll th qutin usd in did in Th Rltiisti Tnss ppl Et t istns m On t Z Wlngths pp. Als inludd ll th

More information

Chapter 6 Techniques of Integration

Chapter 6 Techniques of Integration MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

STAFF SELECTION COMMISSION COMPLETE EXAM DETAILS

STAFF SELECTION COMMISSION COMPLETE EXAM DETAILS STAFF SELECTION COMMISSION COMPLETE EXAM DETAILS SSC MTS Pp-1 Exm Pttn Pp-1 i n onlin pp hving multipl choic qution in ction: Roning, Englih Lngug, Numicl Aptitud nd Gnl Awn Th nti pp i of totl 1 m nd

More information

Study Material with Classroom Practice solutions. To Electromagnetic Theory CONTENTS. 01 Static Fields Maxwell Equations & EM Waves 06 11

Study Material with Classroom Practice solutions. To Electromagnetic Theory CONTENTS. 01 Static Fields Maxwell Equations & EM Waves 06 11 Pg No. Stud Mtil with lssoom Pctic solutions To lctomgntic Tho ONTNTS hpt No. Nm of th hpt Pg No. Sttic Filds 5 Mwll qutions & M Wvs 6 Tnsmission ins Wvguids 5 6 5 lmnts of ntnns 7 hpt. ns: V cos cos î

More information

Shor s Algorithm. Motivation. Why build a classical computer? Why build a quantum computer? Quantum Algorithms. Overview. Shor s factoring algorithm

Shor s Algorithm. Motivation. Why build a classical computer? Why build a quantum computer? Quantum Algorithms. Overview. Shor s factoring algorithm Motivation Sho s Algoith It appas that th univs in which w liv is govnd by quantu chanics Quantu infoation thoy givs us a nw avnu to study & tst quantu chanics Why do w want to build a quantu coput? Pt

More information

Physics 1502: Lecture 2 Today s Agenda

Physics 1502: Lecture 2 Today s Agenda 1 Lectue 1 Phsics 1502: Lectue 2 Tod s Agend Announcements: Lectues posted on: www.phs.uconn.edu/~cote/ HW ssignments, solutions etc. Homewok #1: On Mstephsics this Fid Homewoks posted on Msteingphsics

More information

ELEG 413 Lecture #6. Mark Mirotznik, Ph.D. Professor The University of Delaware

ELEG 413 Lecture #6. Mark Mirotznik, Ph.D. Professor The University of Delaware LG 43 Lctur #6 Mrk Mirtnik, Ph.D. Prfssr Th Univrsity f Dlwr mil: mirtni@c.udl.du Wv Prpgtin nd Plritin TM: Trnsvrs lctrmgntic Wvs A md is prticulr fild cnfigurtin. Fr givn lctrmgntic bundry vlu prblm,

More information

Solid state physics. Lecture 3: chemical bonding. Prof. Dr. U. Pietsch

Solid state physics. Lecture 3: chemical bonding. Prof. Dr. U. Pietsch Solid stat physics Lctu 3: chmical bonding Pof. D. U. Pitsch Elcton chag dnsity distibution fom -ay diffaction data F kp ik dk h k l i Fi H p H; H hkl V a h k l Elctonic chag dnsity of silicon Valnc chag

More information

U>, and is negative. Electric Potential Energy

U>, and is negative. Electric Potential Energy Electic Potentil Enegy Think of gvittionl potentil enegy. When the lock is moved veticlly up ginst gvity, the gvittionl foce does negtive wok (you do positive wok), nd the potentil enegy (U) inceses. When

More information

The practical version

The practical version Roerto s Notes on Integrl Clculus Chpter 4: Definite integrls nd the FTC Section 7 The Fundmentl Theorem of Clculus: The prcticl version Wht you need to know lredy: The theoreticl version of the FTC. Wht

More information

(, ) which is a positively sloping curve showing (Y,r) for which the money market is in equilibrium. The P = (1.4)

(, ) which is a positively sloping curve showing (Y,r) for which the money market is in equilibrium. The P = (1.4) ots lctu Th IS/LM modl fo an opn conomy is basd on a fixd pic lvl (vy sticky pics) and consists of a goods makt and a mony makt. Th goods makt is Y C+ I + G+ X εq (.) E SEK wh ε = is th al xchang at, E

More information

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations.

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations. Dy : Mondy 5 inuts. Ovrviw of th PH47 wsit (syllus, ssignnts tc.). Coupld oscilltions W gin with sss coupld y Hook's Lw springs nd find th possil longitudinl) otion of such syst. W ll xtnd this to finit

More information

10.3 The Quadratic Formula

10.3 The Quadratic Formula . Te Qudti Fomul We mentioned in te lst setion tt ompleting te sque n e used to solve ny qudti eqution. So we n use it to solve 0. We poeed s follows 0 0 Te lst line of tis we ll te qudti fomul. Te Qudti

More information

CHAPTER TWO MULTIPLE INTEGRAL

CHAPTER TWO MULTIPLE INTEGRAL CHAPTE TWO MULTIPLE INTEGAL Aft complting ths tutoils, stunts shoul b bl to: vlut th oubl intgl ov th givn ctngul gion fin th volum of th soli boun b th plns fin th of th gion boun b th cuvs ug oubl intgl

More information

Mark Scheme (Results) January 2008

Mark Scheme (Results) January 2008 Mk Scheme (Results) Jnuy 00 GCE GCE Mthemtics (6679/0) Edecel Limited. Registeed in Englnd nd Wles No. 4496750 Registeed Office: One90 High Holbon, London WCV 7BH Jnuy 00 6679 Mechnics M Mk Scheme Question

More information

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane.

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane. CBSE CBSE SET- SECTION. Gv tht d W d to fd 7 7 Hc, 7 7 7. Lt,. W ow tht.. Thus,. Cosd th vcto quto of th pl.. z. - + z = - + z = Thus th Cts quto of th pl s - + z = Lt d th dstc tw th pot,, - to th pl.

More information

13.5. Torsion of a curve Tangential and Normal Components of Acceleration

13.5. Torsion of a curve Tangential and Normal Components of Acceleration 13.5 osion of cuve ngentil nd oml Components of Acceletion Recll: Length of cuve '( t) Ac length function s( t) b t u du '( t) Ac length pmetiztion ( s) with '( s) 1 '( t) Unit tngent vecto '( t) Cuvtue:

More information

Physics 111. Lecture 38 (Walker: ) Phase Change Latent Heat. May 6, The Three Basic Phases of Matter. Solid Liquid Gas

Physics 111. Lecture 38 (Walker: ) Phase Change Latent Heat. May 6, The Three Basic Phases of Matter. Solid Liquid Gas Physics 111 Lctu 38 (Walk: 17.4-5) Phas Chang May 6, 2009 Lctu 38 1/26 Th Th Basic Phass of Matt Solid Liquid Gas Squnc of incasing molcul motion (and ngy) Lctu 38 2/26 If a liquid is put into a sald contain

More information

Physics 111. Uniform circular motion. Ch 6. v = constant. v constant. Wednesday, 8-9 pm in NSC 128/119 Sunday, 6:30-8 pm in CCLIR 468

Physics 111. Uniform circular motion. Ch 6. v = constant. v constant. Wednesday, 8-9 pm in NSC 128/119 Sunday, 6:30-8 pm in CCLIR 468 ics Announcements dy, embe 28, 2004 Ch 6: Cicul Motion - centipetl cceletion Fiction Tension - the mssless sting Help this week: Wednesdy, 8-9 pm in NSC 128/119 Sundy, 6:30-8 pm in CCLIR 468 Announcements

More information

Overview. 1 Recall: continuous-time Markov chains. 2 Transient distribution. 3 Uniformization. 4 Strong and weak bisimulation

Overview. 1 Recall: continuous-time Markov chains. 2 Transient distribution. 3 Uniformization. 4 Strong and weak bisimulation Rcall: continuous-tim Makov chains Modling and Vification of Pobabilistic Systms Joost-Pit Katon Lhstuhl fü Infomatik 2 Softwa Modling and Vification Goup http://movs.wth-aachn.d/taching/ws-89/movp8/ Dcmb

More information

Molecules and electronic, vibrational and rotational structure

Molecules and electronic, vibrational and rotational structure Molculs and ctonic, ational and otational stuctu Max on ob 954 obt Oppnhim Ghad Hzbg ob 97 Lctu ots Stuctu of Matt: toms and Molculs; W. Ubachs Hamiltonian fo a molcul h h H i m M i V i fs to ctons, to

More information

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick

More information

Equations from Relativistic Transverse Doppler Effect. The Complete Correlation of the Lorentz Effect to the Doppler Effect in Relativistic Physics

Equations from Relativistic Transverse Doppler Effect. The Complete Correlation of the Lorentz Effect to the Doppler Effect in Relativistic Physics Equtins m Rltiisti Tnss ppl Et Th Cmplt Cltin th Lntz Et t th ppl Et in Rltiisti Physis Cpyight 005 Jsph A. Rybzyk Cpyight Risd 006 Jsph A. Rybzyk Fllwing is mplt list ll th qutins usd in did in th Rltiisti

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS MASTER CLASS PROGRAM UNIT SPECIALIST MATHEMATICS SEMESTER TWO WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES QUESTION () Lt p ( z) z z z If z i z ( is

More information

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is:

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is: . Homewok 3 MAE 8C Poblems, 5, 7, 0, 4, 5, 8, 3, 30, 3 fom Chpte 5, msh & Btt Point souces emit nuetons/sec t points,,, n 3 fin the flux cuent hlf wy between one sie of the tingle (blck ot). The flux fo

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

Chapter 2 Reciprocal Lattice. An important concept for analyzing periodic structures

Chapter 2 Reciprocal Lattice. An important concept for analyzing periodic structures Chpt Rcpocl Lttc A mpott cocpt o lyzg podc stuctus Rsos o toducg cpocl lttc Thoy o cystl dcto o x-ys, utos, d lctos. Wh th dcto mxmum? Wht s th tsty? Abstct study o uctos wth th podcty o Bvs lttc Fou tsomto.

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1 G( x)] = θp( R) + ( θ R)[1 G( R)] pg 15, problm 6: dmnd of

More information

Physics 240: Worksheet 15 Name

Physics 240: Worksheet 15 Name Physics 40: Woksht 15 Nam Each of ths poblms inol physics in an acclatd fam of fnc Althouh you mind wants to ty to foc you to wok ths poblms insid th acclatd fnc fam (i.. th so-calld "won way" by som popl),

More information