# 1. Viscosities: μ = ρν. 2. Newton s viscosity law: 3. Infinitesimal surface force df. 4. Moment about the point o, dm

Size: px
Start display at page:

Download "1. Viscosities: μ = ρν. 2. Newton s viscosity law: 3. Infinitesimal surface force df. 4. Moment about the point o, dm"

Transcription

1 3- Fluid Mecnics Clss Emple 3: Newton s Viscosit Lw nd Se Stess 3- Fluid Mecnics Clss Emple 3: Newton s Viscosit Lw nd Se Stess Motition Gien elocit field o ppoimted elocit field, we wnt to be ble to estimte te esultnt foce nd/o toque due to wll se stess on solid bod in pplictions suc s dulic clutc, iscomete, jounl being, etc Bsic Equtions Viscosities: μ ρν Newton s iscosit lw: du τ μ, d du τ t nt μ dn 3 Infinitesiml sufce foce iˆ + ˆ j + kˆ iˆ + ˆj + kˆ : τ τ τ + τ + τ + τ + τ + τ + τ due to stess on te infinitesiml sufce ˆ j τ If ligns long n one coodinte is, eg, τ τ τ Moment bout te point o, dm o, of te foce : ( se ( se j, ten ( noml ˆ foce) foce) foce) dm o o

2 3- Fluid Mecnics Clss Emple 3: Newton s Viscosit Lw nd Se Stess Poblem Two pltes, nd B, e septed b n oil-filled gp of widt 3 mm Te oil is SE-W-3 t o C Te pltes nd B e moing to te igt t te speeds of m/s nd m/s, espectiel ssume line elocit distibution coss te gp U B m/s B U m/s Sketc te elocit pofile on te figue boe lso, find te eqution fo te elocit pofile u (), u in m/s nd in m, using te gien coodintes b Find te se stess on te sufce of te uppe plte B Be sue to get te sign of te stess (not foce) igt c If te plte B s te totl e of m, find te net foce due to te oil on te plte B Be sue to get te sign/diection of te foce (not stess) igt d If te plte is insted moing to te left t te cuent speed (ie, m/s to te left), will te mgnitude of te stess cting on plte B incese o decese nd w is it so? Detemine te lue of tis new stess

3 3- Fluid Mecnics Clss Emple 3: Newton s Viscosit Lw nd Se Stess 3 U B m/s B u() U m/s Sketc te elocit pofile on te figue boe lso, find te eqution fo te elocit pofile u (), u in m/s nd in m, using te gien coodintes u( ) U U B U u( ) ( U B U ) + U ( ) m / s B / NS 3m Tus, u( ) ( U U ) + U + m / s [ 6667 ( m) + ] m s b Find te se stess on te sufce of te uppe plte B Be sue to get te sign of te stess (not foce) igt constnt nd > tougout te cnnel d ( ) m / s :, / d 3 m s s N s τ ( ) μ μ P NS d m s c If te plte B s te totl e of m, find te net foce due to te oil on te plte B Be sue to get te sign/diection of te foce (not stess) igt F τ B τ ˆj F τ ( + P) ( m ) 8 N NS d If te plte is insted moing to te left t te cuent speed (ie, m/s to te left), will te mgnitude of te stess cting on plte B incese o decese nd w is it so? Detemine te lue of tis new stess Te mgnitude of te stess will incese since te mgnitude of te elocit gdient du / d will incese Tis cn be seen s follows du U B U constnt nd > tougout te cnnel d ( ( )) m / s : 6, / 3, d 3 m s s N s τ ( ) μ μ 6, + P NS d m s

4 3- Fluid Mecnics Clss Emple 3: Newton s Viscosit Lw nd Se Stess Poblem Te gp of eigt between te two disks nd B e filled wit oil Bot disks e dius R Te disk is sttion wile te disk B is otting wit te ngul elocit ω ω, ω > ssume tt ) te flow is ismmetic, ) te elocit pofile coss te gp is line, nd 3) te iscosit μ is constnt nswe te following questions ê ê ê Te oigin of te coodintes sstem is locted t te cente of te sufce of disk ω ω, ω > B In nsweing te following questions, use te gien coodintes sstem Wic component of stess (ie, τ?? ) eets te tngentil foce on te sufce of te solid disk? b Is te stess in Poblem positie o negtie? c In wic diection does te net toque due to te oil ct on te sufce of te solid disk? d Find te wll se stess distibution oe te sufce of te solid disk, ie, τ w ( )? Recognie tt stess is tenso, tus it is signed quntit

5 3- Fluid Mecnics Clss Emple 3: Newton s Viscosit Lw nd Se Stess Wic component of stess (ie, τ?? ) eets te tngentil foce on te sufce of te solid disk? 5 τ b Is te stess in Poblem positie o negtie? positie c In wic diection does te net toque due to te oil ct on te sufce of te solid disk? + d Find te wll se stess distibution oe te sufce of te solid disk, ie, τ w ( )? Recognie tt stess is tenso, tus it is signed quntit u ( ) u (, ) u B Tngentil elocit pofile ( u ) t n dius ( ) ω u (, ) ω Te tngentil elocit field cn be witten s u (, ) ω Tus, we e u ω, τ u ω μ μ, nd ω τ w ( ) τ μ NS

6 3- Fluid Mecnics Clss Emple 3: Newton s Viscosit Lw nd Se Stess Poblem 3 [dpted fom Çengel nd Cimbl, 6, Poblem -7, p 6] Te clutc sstem sown is used to tnsmit toque toug 3-mm-tick oil film [SE3(W) oil] between two identicl 3-cm-dimete disks Wen te diing sft ottes t speed of 5 pm, te dien sft is obseed to otte t 398 pm ssuming line elocit pofile fo te oil film Detemine te input nd output toques e te equl? Detemine te input nd output powes e te equl? If not, find te efficienc, η : Output Powe/Input Powe, of te clutc 3 Fom ou nswes in nd, biefl discuss te ccteistics of te clutc sstem in tems of (Mecnics/Foce/Toque iewpoint) te tnsmission of toque, nd b (Eneg/Powe iewpoint) te tnsmission of powe Is it possible to e te tnsmission of powe witout te slip (no diffeence in te ngul elocities of te input nd output sfts)? 6 Diing sft 3 cm 3 mm Dien sft SE 3W oil

7 3- Fluid Mecnics Clss Emple 3: Newton s Viscosit Lw nd Se Stess 7 Diing Disk Oigin o of te coodinte es ω ωˆ e, ω > V ( ω ) V V ( ω) ˆ (, ) u e ω + ( ω ω ) τ d d ( d d) ˆ e Velocit pofile t te tese t dius ê ê ê Nottion: Diing Disk, Dien Disk, gp between te two disks e d min ω 5 π 58 d / s min e 6 s e d min ω 398 π 6 d / s min e 6 s ssumptions: Newtonin fluid V (, ) u (onl component is pesent) is-smmetic flow: u u (,, t) Sted flow, o eluting t n one instnt Line elocit distibution coss te gp 3 μ constnt (unifom) Diing Disk : Infinitesiml e : Infinitesiml foce on + + ( )ˆ e ( τ )ˆ e + + ( )ˆ e ( τ )ˆ e ( d d) + + ( )ˆ e ( τ Since nd, een if te eist, do not contibute to te moment bout te -is, we cn concen ouself wit onl [ psses toug te is, nd is pllel to te is Tus, bot cnnot contibute to te moment bout te is] ( ), τ () 3 dt o : Infinitesiml moment bout point o due to on (Note tt + ) dto ( dto ) : Infinitesiml moment bout te is toug point o due to on )ˆ e () dt o ( + ) (( ) + ( ) + ( ) ) ( )ˆ e + ( )ˆ e + ( )ˆ e

8 3- Fluid Mecnics Clss Emple 3: Newton s Viscosit Lw nd Se Stess dt o [Fo simplicit, we sll dop te subscipt o ] (3) 8 Tus, fom Eqs ()-(3) dt τ ( dd) τ () 5 ssumption : Newtonin fluid Newton s iscosit lw: dut du τ nt μ τ μ (5) dn d 6 ssumption : V (, ) u (onl component is pesent) is-smmetic flow: u u (,, t) Sted flow, o eluting t n one instnt Line elocit distibution coss te gp Tus, u ω + ( ω, (6) du ( ω nd ω ) d fi 7 Wll se stess, foce, nd moment, on te sufce of Disk Fom Eqs (5) nd (6), we e du ( ω τ μ μ d τ, du μ d, ( ω μ, (7) fom () ( ω τ μ dd,, (8) fom (3) ( ω 3 dt μ dd (9) 8 Net toque due to wll se stess on te sufce of Disk Fom (9), we e ssumption 3: μ constnt (unifom) T dt ( ω πμ R π μ( ω R R π 3 ( ω 3 μ dd d μ( ω R { πr { R 3 e Se Lengt Tus, te toque due to fluid iscous stess on te diing disk is gien b ( ) R T π μ ω ω (since ω > ω, negtie diection) Consideing te ngul equilibium of te diing sft, we e te input toque t te sft (not te iscous toque due to fluid t te disk fce) gien b ( ) R T T π μ ω ω (since ω > ω, positie diection) NS () Fo μ 38 N s/m, we e π N s e d min T 38 (5 398) π 5 m 59 N m m min e 6 s 3m NS()

9 3- Fluid Mecnics Clss Emple 3: Newton s Viscosit Lw nd Se Stess Dien Disk Since te elocit pofile is line, te slopes du / d t ec dil position t te fces of te two disks e te sme Tus, te se stesses τ μ( du / d) t ec dil position t te fces of te two disks e lso te sme In ote wods, te two disks e te sme se stess distibution Note tt in tis cse ( ω ω ) τ μ < Since te fce of te diing disk is + ê fce wile tt of te dien disk is ê fce, te foce on te diing disk is in te ê diection wile tt of te dien disk is + ê diection Tus, te net toque due to oil on te dien disk s te sme mgnitude, but opposite in diection, s tt on te diing disk nd ( ) R T T π μ ω ω Consideing te ngul equilibium of te dien disk, we teefoe e te output toque t te sft ( ) R T T π μ ω ω (since ω > ω, negtie diection) NS () Tus, te input nd output toques t te sfts e equl NS () 9 Since te powe t sft is gien b P T ω, we e te input powe t te input sft ( ) π μ ω ω R P T ω ω > NS () P 83 3 W nd te output powe t te output sft ( ) π μ ω ω R P T ω ω < NS () P 8 3 W Te two e not equl nd we find tt te efficienc is gien b η P ω 96 P ω NS () Te clutc cn tnsmit te toque of equl mgnitude fom input to output, owee tee is cetin mount of loss in te tnsmission of powe Cetin mount of slip is equied to estblis te elocit gdient nd, ence, te se stess field suc tt te toque cn be tnsmitted, nd te clutc cnnot tnsmit powe witout te slip since in suc cse tee will be no toque NS (3)

### Section 35 SHM and Circular Motion

Section 35 SHM nd Cicul Motion Phsics 204A Clss Notes Wht do objects do? nd Wh do the do it? Objects sometimes oscillte in simple hmonic motion. In the lst section we looed t mss ibting t the end of sping.

More information

### ( ) ( ) ( ) ( ) ( ) # B x ( ˆ i ) ( ) # B y ( ˆ j ) ( ) # B y ("ˆ ( ) ( ) ( (( ) # ("ˆ ( ) ( ) ( ) # B ˆ z ( k )

Emple 1: A positie chge with elocit is moing though unifom mgnetic field s shown in the figues below. Use the ight-hnd ule to detemine the diection of the mgnetic foce on the chge. Emple 1 ˆ i = ˆ ˆ i

More information

### 1. The sphere P travels in a straight line with speed

1. The sphee P tels in stight line with speed = 10 m/s. Fo the instnt depicted, detemine the coesponding lues of,,,,, s mesued eltie to the fixed Oxy coodinte system. (/134) + 38.66 1.34 51.34 10sin 3.639

More information

### Physics 1502: Lecture 2 Today s Agenda

1 Lectue 1 Phsics 1502: Lectue 2 Tod s Agend Announcements: Lectues posted on: www.phs.uconn.edu/~cote/ HW ssignments, solutions etc. Homewok #1: On Mstephsics this Fid Homewoks posted on Msteingphsics

More information

### Chapter 21: Electric Charge and Electric Field

Chpte 1: Electic Chge nd Electic Field Electic Chge Ancient Gees ~ 600 BC Sttic electicit: electic chge vi fiction (see lso fig 1.1) (Attempted) pith bll demonsttion: inds of popeties objects with sme

More information

### (A) 6.32 (B) 9.49 (C) (D) (E) 18.97

Univesity of Bhin Physics 10 Finl Exm Key Fll 004 Deptment of Physics 13/1/005 8:30 10:30 e =1.610 19 C, m e =9.1110 31 Kg, m p =1.6710 7 Kg k=910 9 Nm /C, ε 0 =8.8410 1 C /Nm, µ 0 =4π10 7 T.m/A Pt : 10

More information

### Chapter 4 Two-Dimensional Motion

D Kinemtic Quntities Position nd Velocit Acceletion Applictions Pojectile Motion Motion in Cicle Unifom Cicul Motion Chpte 4 Two-Dimensionl Motion D Motion Pemble In this chpte, we ll tnsplnt the conceptul

More information

### Chapter 4 Kinematics in Two Dimensions

D Kinemtic Quntities Position nd Velocit Acceletion Applictions Pojectile Motion Motion in Cicle Unifom Cicul Motion Chpte 4 Kinemtics in Two Dimensions D Motion Pemble In this chpte, we ll tnsplnt the

More information

### DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3

DEPATMENT OF CIVIL AND ENVIONMENTAL ENGINEEING FLID MECHANICS III Solutions to Poblem Sheet 3 1. An tmospheic vote is moelle s combintion of viscous coe otting s soli boy with ngul velocity Ω n n iottionl

More information

### School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 4 Due on Sep. 1, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

### N for static friction and N

Fiction: Epeimentll the following fetues e obseed to be tue of the foce of fiction: ) Fiction lws opposes the motion. The foce is dissiptie nd its diection is pllel to the sufce of the object in motion.

More information

### ( ) ( ) Physics 111. Lecture 13 (Walker: Ch ) Connected Objects Circular Motion Centripetal Acceleration Centripetal Force Sept.

Physics Lectue 3 (Wlke: Ch. 6.4-5) Connected Objects Cicul Motion Centipetl Acceletion Centipetl Foce Sept. 30, 009 Exmple: Connected Blocks Block of mss m slides on fictionless tbletop. It is connected

More information

### Lecture 11: Potential Gradient and Capacitor Review:

Lectue 11: Potentil Gdient nd Cpcito Review: Two wys to find t ny point in spce: Sum o Integte ove chges: q 1 1 q 2 2 3 P i 1 q i i dq q 3 P 1 dq xmple of integting ove distiution: line of chge ing of

More information

### Assistant Professor: Zhou Yufeng. N , ,

Aitnt Pofeo: Zhou Yufeng N3.-0-5, 6790-448, yfzhou@ntu.edu.g http://www3.ntu.edu.g/home/yfzhou/coue.html . A pojectile i fied t flling tget hown. The pojectile lee the gun t the me intnt tht the tget dopped

More information

### (a) Counter-Clockwise (b) Clockwise ()N (c) No rotation (d) Not enough information

m m m00 kg dult, m0 kg bby. he seesw stts fom est. Which diection will it ottes? ( Counte-Clockwise (b Clockwise ( (c o ottion ti (d ot enough infomtion Effect of Constnt et oque.3 A constnt non-zeo toque

More information

### Physics 111. Uniform circular motion. Ch 6. v = constant. v constant. Wednesday, 8-9 pm in NSC 128/119 Sunday, 6:30-8 pm in CCLIR 468

ics Announcements dy, embe 28, 2004 Ch 6: Cicul Motion - centipetl cceletion Fiction Tension - the mssless sting Help this week: Wednesdy, 8-9 pm in NSC 128/119 Sundy, 6:30-8 pm in CCLIR 468 Announcements

More information

### Course Updates. Reminders: 1) Assignment #8 available. 2) Chapter 28 this week.

Couse Updtes http://www.phys.hwii.edu/~vne/phys7-sp1/physics7.html Remindes: 1) Assignment #8 vilble ) Chpte 8 this week Lectue 3 iot-svt s Lw (Continued) θ d θ P R R θ R d θ d Mgnetic Fields fom long

More information

### 1 Using Integration to Find Arc Lengths and Surface Areas

Novembe 9, 8 MAT86 Week Justin Ko Using Integtion to Find Ac Lengths nd Sufce Aes. Ac Length Fomul: If f () is continuous on [, b], then the c length of the cuve = f() on the intevl [, b] is given b s

More information

### Problem Set 5: Universal Law of Gravitation; Circular Planetary Orbits

Poblem Set 5: Univesal Law of Gavitation; Cicula Planetay Obits Design Engineeing Callenge: Te Big Dig.007 Contest Evaluation of Scoing Concepts: Spinne vs. Plowe PROMBLEM 1: Daw a fee-body-diagam of a

More information

### Solutions to Midterm Physics 201

Solutions to Midtem Physics. We cn conside this sitution s supeposition of unifomly chged sphee of chge density ρ nd dius R, nd second unifomly chged sphee of chge density ρ nd dius R t the position of

More information

### Solutions to Problems Integration in IR 2 and IR 3

Solutions to Problems Integrtion in I nd I. For ec of te following, evlute te given double integrl witout using itertion. Insted, interpret te integrl s, for emple, n re or n verge vlue. ) dd were is te

More information

### Fluids & Bernoulli s Equation. Group Problems 9

Goup Poblems 9 Fluids & Benoulli s Eqution Nme This is moe tutoil-like thn poblem nd leds you though conceptul development of Benoulli s eqution using the ides of Newton s 2 nd lw nd enegy. You e going

More information

### General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface

Genel Physics II Chpte 3: Guss w We now wnt to quickly discuss one of the moe useful tools fo clculting the electic field, nmely Guss lw. In ode to undestnd Guss s lw, it seems we need to know the concept

More information

### Electricity & Magnetism Lecture 6: Electric Potential

Electicity & Mgnetism Lectue 6: Electic Potentil Tody s Concept: Electic Potenl (Defined in tems of Pth Integl of Electic Field) Electicity & Mgnesm Lectue 6, Slide Stuff you sked bout:! Explin moe why

More information

### Continuous Charge Distributions

Continuous Chge Distibutions Review Wht if we hve distibution of chge? ˆ Q chge of distibution. Q dq element of chge. d contibution to due to dq. Cn wite dq = ρ dv; ρ is the chge density. = 1 4πε 0 qi

More information

### Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin

1 1 Electic Field + + q F Q R oigin E 0 0 F E ˆ E 4 4 R q Q R Q - - Electic field intensity depends on the medium! Electic Flux Density We intoduce new vecto field D independent of medium. D E So, electic

More information

### School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 3 Due on Sep. 14, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

### Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

Clss Summy.5 Eponentil Functions.6 Invese Functions nd Logithms A function f is ule tht ssigns to ech element D ectly one element, clled f( ), in. Fo emple : function not function Given functions f, g:

More information

### Algebra Based Physics. Gravitational Force. PSI Honors universal gravitation presentation Update Fall 2016.notebookNovember 10, 2016

Newton's Lw of Univesl Gvittion Gvittionl Foce lick on the topic to go to tht section Gvittionl Field lgeb sed Physics Newton's Lw of Univesl Gvittion Sufce Gvity Gvittionl Field in Spce Keple's Thid Lw

More information

### Chapter 28 Sources of Magnetic Field

Chpte 8 Souces of Mgnetic Field - Mgnetic Field of Moving Chge - Mgnetic Field of Cuent Element - Mgnetic Field of Stight Cuent-Cying Conducto - Foce Between Pllel Conductos - Mgnetic Field of Cicul Cuent

More information

### Part 2: CM3110 Transport Processes and Unit Operations I. Professor Faith Morrison. CM2110/CM Review. Concerned now with rates of heat transfer

CM30 anspot Pocesses and Unit Opeations I Pat : Pofesso Fait Moison Depatment of Cemical Engineeing Micigan ecnological Uniesity CM30 - Momentum and Heat anspot CM30 Heat and Mass anspot www.cem.mtu.edu/~fmoiso/cm30/cm30.tml

More information

### + r Position Velocity

1. The phee P tel in tight line with contnt peed of =100 m/. Fo the intnt hown, detemine the coeponding lue of,,,,, eltie to the fixed Ox coodinte tem. meued + + Poition Velocit e 80 e 45 o 113. 137 d

More information

### 10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = =

Chpte 1 nivesl Gvittion 11 *P1. () The un-th distnce is 1.4 nd the th-moon 8 distnce is.84, so the distnce fom the un to the Moon duing sol eclipse is 11 8 11 1.4.84 = 1.4 The mss of the un, th, nd Moon

More information

### MAGNETIC EFFECT OF CURRENT & MAGNETISM

TODUCTO MAGETC EFFECT OF CUET & MAGETM The molecul theo of mgnetism ws given b Webe nd modified lte b Ewing. Oested, in 18 obseved tht mgnetic field is ssocited with n electic cuent. ince, cuent is due

More information

### ELECTROSTATICS. 4πε0. E dr. The electric field is along the direction where the potential decreases at the maximum rate. 5. Electric Potential Energy:

LCTROSTATICS. Quntiztion of Chge: Any chged body, big o smll, hs totl chge which is n integl multile of e, i.e. = ± ne, whee n is n intege hving vlues,, etc, e is the chge of electon which is eul to.6

More information

### LA0011_11GB. Formulas and Units. Rotation 2 W. W = work in Ws = J = Nm. = ang. velocity in rad./sec. f = frequency in rev./sec.

Tnsmission technicl clcultions Min Fomuls Size designtions nd units ccoding to the SI-units Line moement: s m/s t s t m s 1 m t m/s t P F W F m N Rottion ω π f d/s ω π f m/s M F P M ω W M J ω J ω W Ws

More information

### On the Eötvös effect

On the Eötvös effect Mugu B. Răuţ The im of this ppe is to popose new theoy bout the Eötvös effect. We develop mthemticl model which loud us bette undestnding of this effect. Fom the eqution of motion

More information

### PX3008 Problem Sheet 1

PX38 Poblem Sheet 1 1) A sphee of dius (m) contins chge of unifom density ρ (Cm -3 ). Using Guss' theoem, obtin expessions fo the mgnitude of the electic field (t distnce fom the cente of the sphee) in

More information

### Special Vector Calculus Session For Engineering Electromagnetics I. by Professor Robert A. Schill Jr.

pecil Vect Clculus essin Engineeing Electmgnetics I Pfess et. cill J. pecil Vect Clculus essin f Engineeing Electmgnetics I. imple cmputtin f cul diegence nd gdient f ect. [peicl Cdinte stem] Cul Diegence

More information

### r a + r b a + ( r b + r c)

AP Phsics C Unit 2 2.1 Nme Vectos Vectos e used to epesent quntities tht e chcteized b mgnitude ( numeicl vlue with ppopite units) nd diection. The usul emple is the displcement vecto. A quntit with onl

More information

### Physics 604 Problem Set 1 Due Sept 16, 2010

Physics 64 Polem et 1 Due ept 16 1 1) ) Inside good conducto the electic field is eo (electons in the conducto ecuse they e fee to move move in wy to cncel ny electic field impessed on the conducto inside

More information

### U>, and is negative. Electric Potential Energy

Electic Potentil Enegy Think of gvittionl potentil enegy. When the lock is moved veticlly up ginst gvity, the gvittionl foce does negtive wok (you do positive wok), nd the potentil enegy (U) inceses. When

More information

### Chapter 6 Thermoelasticity

Chpte 6 Themoelsticity Intoduction When theml enegy is dded to n elstic mteil it expnds. Fo the simple unidimensionl cse of b of length L, initilly t unifom tempetue T 0 which is then heted to nonunifom

More information

### 12 Basic Integration in R

14.102, Mt for Economists Fll 2004 Lecture Notes, 10/14/2004 Tese notes re primrily bsed on tose written by Andrei Bremzen for 14.102 in 2002/3, nd by Mrek Pyci for te MIT Mt Cmp in 2003/4. I ve mde only

More information

### Physics 201 Lecture 18

Phsics 0 ectue 8 ectue 8 Goals: Define and anale toque ntoduce the coss poduct Relate otational dnamics to toque Discuss wok and wok eneg theoem with espect to otational motion Specif olling motion (cente

More information

### NARAYANA I I T / P M T A C A D E M Y. C o m m o n Pr a c t i c e T e s t 0 9 XI-IC SPARK Date: PHYSICS CHEMISTRY MATHEMATICS

. (D). (B). (). (). (D). (A) 7. () 8. (B) 9. (B). (). (A). (D). (B). (). (B) NAAYANA I I T / T A A D E Y XIS-I-IIT-SA (..7) o m m o n c t i c e T e s t 9 XI-I SA Dte:..7 ANSWE YSIS EISTY ATEATIS. (B).

More information

### Physics Courseware Electromagnetism

Pysics Cousewae lectomagnetism lectic field Poblem.- a) Find te electic field at point P poduced by te wie sown in te figue. Conside tat te wie as a unifom linea cage distibution of λ.5µ C / m b) Find

More information

### Chapter 2. Numerical Integration also called quadrature. 2.2 Trapezoidal Rule. 2.1 A basic principle Extending the Trapezoidal Rule DRAWINGS

S Cpter Numericl Integrtion lso clled qudrture Te gol of numericl integrtion is to pproximte numericlly. f(x)dx Tis is useful for difficult integrls like sin(x) ; sin(x ); x + x 4 Or worse still for multiple-dimensionl

More information

### Chapter 25: Current, Resistance and Electromotive Force. ~10-4 m/s Typical speeds ~ 10 6 m/s

Chpte 5: Cuent, esistnce nd lectomotive Foce Chge cie motion in conducto in two pts Constnt Acceletion F m q ndomizing Collisions (momentum, enegy) >esulting Motion http://phys3p.sl.psu.edu/phys_nim/m/ndom_wlk.vi

More information

### 7.2.1 Basic relations for Torsion of Circular Members

Section 7. 7. osion In this section, the geomety to be consideed is that of a long slende cicula ba and the load is one which twists the ba. Such poblems ae impotant in the analysis of twisting components,

More information

### Answers to test yourself questions

Answes to test youself questions opic Descibing fields Gm Gm Gm Gm he net field t is: g ( d / ) ( 4d / ) d d Gm Gm Gm Gm Gm Gm b he net potentil t is: V d / 4d / d 4d d d V e 4 7 9 49 J kg 7 7 Gm d b E

More information

### pancakes. A typical pancake also appears in the sketch above. The pancake at height x (which is the fraction x of the total height of the cone) has

Volumes One can epress volumes of regions in tree dimensions as integrals using te same strateg as we used to epress areas of regions in two dimensions as integrals approimate te region b a union of small,

More information

### CHAPTER 18: ELECTRIC CHARGE AND ELECTRIC FIELD

ollege Physics Student s Mnul hpte 8 HAPTR 8: LTRI HARG AD LTRI ILD 8. STATI LTRIITY AD HARG: OSRVATIO O HARG. ommon sttic electicity involves chges nging fom nnocoulombs to micocoulombs. () How mny electons

More information

### HYPERBOLA. AIEEE Syllabus. Total No. of questions in Ellipse are: Solved examples Level # Level # Level # 3..

HYPERBOLA AIEEE Sllus. Stndrd eqution nd definitions. Conjugte Hperol. Prmetric eqution of te Hperol. Position of point P(, ) wit respect to Hperol 5. Line nd Hperol 6. Eqution of te Tngent Totl No. of

More information

### Chapter 22 The Electric Field II: Continuous Charge Distributions

Chpte The lectic Field II: Continuous Chge Distibutions Conceptul Poblems [SSM] Figue -7 shows n L-shped object tht hs sides which e equl in length. Positive chge is distibuted unifomly long the length

More information

### Chapter 2: Electric Field

P 6 Genel Phsics II Lectue Outline. The Definition of lectic ield. lectic ield Lines 3. The lectic ield Due to Point Chges 4. The lectic ield Due to Continuous Chge Distibutions 5. The oce on Chges in

More information

### Eunil Won Dept. of Physics, Korea University 1. Ch 03 Force. Movement of massive object. Velocity, acceleration. Force. Source of the move

Eunil Won Dept. of Phsics, Kore Uniersit 1 Ch 03 orce Moement of mssie object orce Source of the moe Velocit, ccelertion Eunil Won Dept. of Phsics, Kore Uniersit m ~ 3.305 m ~ 1.8 m 1.8 m Eunil Won Dept.

More information

### Radial geodesics in Schwarzschild spacetime

Rdil geodesics in Schwzschild spcetime Spheiclly symmetic solutions to the Einstein eqution tke the fom ds dt d dθ sin θdϕ whee is constnt. We lso hve the connection components, which now tke the fom using

More information

### Static equilibrium requires a balance of forces and a balance of moments.

Static Equilibium Static equilibium equies a balance of foces and a balance of moments. ΣF 0 ΣF 0 ΣF 0 ΣM 0 ΣM 0 ΣM 0 Eample 1: painte stands on a ladde that leans against the wall of a house at an angle

More information

### This immediately suggests an inverse-square law for a "piece" of current along the line.

Electomgnetic Theoy (EMT) Pof Rui, UNC Asheville, doctophys on YouTube Chpte T Notes The iot-svt Lw T nvese-sque Lw fo Mgnetism Compe the mgnitude of the electic field t distnce wy fom n infinite line

More information

### ELECTRO - MAGNETIC INDUCTION

NTRODUCTON LCTRO - MAGNTC NDUCTON Whenee mgnetic flu linked with cicuit chnges, n e.m.f. is induced in the cicuit. f the cicuit is closed, cuent is lso induced in it. The e.m.f. nd cuent poduced lsts s

More information

### Physics 11b Lecture #11

Physics 11b Lectue #11 Mgnetic Fields Souces of the Mgnetic Field S&J Chpte 9, 3 Wht We Did Lst Time Mgnetic fields e simil to electic fields Only diffeence: no single mgnetic pole Loentz foce Moving chge

More information

### Dynamics of Rotational Motion

Dynamics of Rotational Motion Toque: the otational analogue of foce Toque = foce x moment am τ = l moment am = pependicula distance though which the foce acts a.k.a. leve am l l l l τ = l = sin φ = tan

More information

### Wave Generation by Oscillating Wall in Static Media

We Genetion by Oscillting Wll in Sttic Medi Hongbin Ju Deptment of Mthemtics Floid Stte Uniesity, Tllhssee, FL.3306 www.eocoustics.info Plese send comments to: hju@mth.fsu.edu Sound, oticity we nd entopy

More information

### Chapter 25: Current, Resistance and Electromotive Force. Charge carrier motion in a conductor in two parts

Chpte 5: Cuent, esistnce nd Electomotive Foce Chge cie motion in conducto in two pts Constnt Acceletion F m qe ndomizing Collisions (momentum, enegy) =>esulting Motion Avege motion = Dift elocity = v d

More information

### Electric Potential. and Equipotentials

Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

### Energy Dissipation Gravitational Potential Energy Power

Lectue 4 Chpte 8 Physics I 0.8.03 negy Dissiption Gvittionl Potentil negy Powe Couse wesite: http://fculty.uml.edu/andiy_dnylov/teching/physicsi Lectue Cptue: http://echo360.uml.edu/dnylov03/physicsfll.html

More information

### June : 2016 (CBCS) Body. Load

Engineering Mecanics st Semester : Common to all rances Note : Max. marks : 6 (i) ttempt an five questions (ii) ll questions carr equal marks. (iii) nswer sould be precise and to te point onl (iv) ssume

More information

### PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED TO DO SO THEN ENSURE THAT YOU HAVE THE CORRECT EXAM PAPER

OLLSCOIL NA ÉIREANN, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA OLLSCOILE, CORCAIGH UNIVERSITY COLLEGE, CORK 4/5 Autumn Suppement 5 MS Integ Ccuus nd Diffeenti Equtions Pof. P.J. Rippon

More information

### An Exact Solution of Navier Stokes Equation

An Exact Solution of Navie Stokes Equation A. Salih Depatment of Aeospace Engineeing Indian Institute of Space Science and Technology, Thiuvananthapuam, Keala, India. July 20 The pincipal difficulty in

More information

### SURFACE TENSION. e-edge Education Classes 1 of 7 website: , ,

SURFACE TENSION Definition Sufce tension is popety of liquid by which the fee sufce of liquid behves like stetched elstic membne, hving contctive tendency. The sufce tension is mesued by the foce cting

More information

### JEE(Advanced) 2018 TEST PAPER WITH SOLUTION PHYSICS. (HELD ON SUNDAY 20 th MAY, 2018) PART-1 : PHYSICS. (C) L = mkr ALLEN

JEE(Advnced) 08 TEST PAPE WITH SOUTION (HED ON SUNDAY 0 th MAY, 08) PAT- : JEE(Advnced) 08/Ppe-. The potentil enegy of pticle of mss m t distnce fom fixed point O is given by V () k /, whee k is positive

More information

### Prof. Anchordoqui Problems set # 12 Physics 169 May 12, 2015

Pof. Anchodoqui Poblems set # 12 Physics 169 My 12, 2015 1. Two concentic conducting sphees of inne nd oute dii nd b, espectively, cy chges ±Q. The empty spce between the sphees is hlf-filled by hemispheicl

More information

### Forging Analysis - 2. ver. 1. Prof. Ramesh Singh, Notes by Dr. Singh/ Dr. Colton

Foging Analysis - ve. 1 Pof. ames Sing, Notes by D. Sing/ D. Colton 1 Slab analysis fictionless wit fiction ectangula Cylindical Oveview Stain adening and ate effects Flas edundant wo Pof. ames Sing, Notes

More information

### Exam 3: Equation Summary

MAACHUETT INTITUTE OF TECHNOLOGY Depatment of Physics Physics 8. TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t = Exam 3: Equation ummay = Impulse: I F( t ) = p Toque: τ =,P dp F P τ =,P

More information

### of Technology: MIT OpenCourseWare). (accessed MM DD, YYYY). License: Creative Commons Attribution- Noncommercial-Share Alike.

MIT OpenouseWe http://ocw.mit.edu 6.1/ESD.1J Electomgnetics nd pplictions, Fll 25 Plese use the following cittion fomt: Mkus Zhn, Eich Ippen, nd Dvid Stelin, 6.1/ESD.1J Electomgnetics nd pplictions, Fll

More information

### Two dimensional polar coordinate system in airy stress functions

I J C T A, 9(9), 6, pp. 433-44 Intentionl Science Pess Two dimensionl pol coodinte system in iy stess functions S. Senthil nd P. Sek ABSTRACT Stisfy the given equtions, boundy conditions nd bihmonic eqution.in

More information

### Properties and Formulas

Popeties nd Fomuls Cpte 1 Ode of Opetions 1. Pefom ny opetion(s) inside gouping symols. 2. Simplify powes. 3. Multiply nd divide in ode fom left to igt. 4. Add nd sutt in ode fom left to igt. Identity

More information

### Chapter 23 Electrical Potential

hpte Electicl Potentil onceptul Polems [SSM] A poton is moved to the left in unifom electic field tht points to the ight. Is the poton moving in the diection of incesing o decesing electic potentil? Is

More information

### cos kd kd 2 cosθ = π 2 ± nπ d λ cosθ = 1 2 ± n N db

. (Balanis 6.43) You can confim tat AF = e j kd cosθ + e j kd cosθ N = cos kd cosθ gives te same esult as (6-59) and (6-6), fo a binomial aay wit te coefficients cosen as in section 6.8.. Tis single expession

More information

### SEE LAST PAGE FOR SOME POTENTIALLY USEFUL FORMULAE AND CONSTANTS

Cicle instucto: Moow o Yethiaj Name: MEMORIL UNIVERSITY OF NEWFOUNDLND DEPRTMENT OF PHYSICS ND PHYSICL OCENOGRPHY Final Eam Phsics 5 Winte 3:-5: pil, INSTRUCTIONS:. Do all SIX (6) questions in section

More information

### 232 Calculus and Structures

3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

### Chapter 3 Basic Crystallography and Electron Diffraction from Crystals. Lecture 9. CHEM 793, 2008 Fall

Cpte 3 Bsic Cystopy nd Eecton Diffction fom Cysts Lectue 9 Top of tin foi Cyst pne () Bottom of tin foi B Lw d sinθ n Equtions connectin te Cyst metes (,, ) nd d-spcin wit bem pmetes () ( ) ne B Lw d (nm)

More information

### SOLUTIONS TO CONCEPTS CHAPTER 11

SLUTINS T NEPTS HPTE. Gvittionl fce of ttction, F.7 0 0 0.7 0 7 N (0.). To clculte the gvittionl fce on t unline due to othe ouse. F D G 4 ( / ) 8G E F I F G ( / ) G ( / ) G 4G 4 D F F G ( / ) G esultnt

More information

### Electric Potential and Energy

Electic Potential and Enegy Te polem: A solid spee of te adius R is omogeneously caged wit te cage Q and put inside an infinite ollow cylinde. Te cylinde inne and oute adii ae a and, R < a

More information

### Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is:

. Homewok 3 MAE 8C Poblems, 5, 7, 0, 4, 5, 8, 3, 30, 3 fom Chpte 5, msh & Btt Point souces emit nuetons/sec t points,,, n 3 fin the flux cuent hlf wy between one sie of the tingle (blck ot). The flux fo

More information

### Winter 2004 OSU Sources of Magnetic Fields 1 Chapter 32

Winte 4 OSU 1 Souces Of Mgnetic Fields We lened two wys to clculte Electic Field Coulomb's Foce de 4 E da 1 dq Q enc ˆ ute Foce Clcultion High symmety Wht e the nlogous equtions fo the Mgnetic Field? Winte

More information

### Chapter 8. Ch.8, Potential flow

Ch.8, Voticit (epetition) Velocit potentil Stem function Supeposition Cicultion -dimensionl bodies Kutt-Joukovskis lift theoem Comple potentil Aismmetic potentil flow Rotting fluid element Chpte 4 Angul

More information

### Chapter 25 Electric Potential

Chpte 5 lectic Potentil consevtive foces -> potentil enegy - Wht is consevtive foce? lectic potentil = U / : the potentil enegy U pe unit chge is function of the position in spce Gol:. estblish the eltionship

More information

### Physics 207 Lecture 5

Phsics 07 Lecture 5 Agend Phsics 07, Lecture 5, Sept. 0 Chpter 4 Kinemtics in or 3 dimensions Independence of, nd/or z components Circulr motion Cured pths nd projectile motion Frmes of reference dil nd

More information

### GEOMETRY Properties of lines

www.sscexmtuto.com GEOMETRY Popeties of lines Intesecting Lines nd ngles If two lines intesect t point, ten opposite ngles e clled veticl ngles nd tey ve te sme mesue. Pependicul Lines n ngle tt mesues

More information

### From Newton to Einstein. Mid-Term Test, 12a.m. Thur. 13 th Nov Duration: 50 minutes. There are 20 marks in Section A and 30 in Section B.

Fom Newton to Einstein Mid-Tem Test, a.m. Thu. 3 th Nov. 008 Duation: 50 minutes. Thee ae 0 maks in Section A and 30 in Section B. Use g = 0 ms in numeical calculations. You ma use the following epessions

More information

### Area. Ⅱ Rectangles. Ⅲ Parallelograms A. Ⅳ Triangles. ABCD=a 2 The area of a square of side a is a 2

Ⅰ Sques e Letue: iu ng Mtemtis dution oundtion Pesident Wen-Hsien SUN Ⅱ Retngles = Te e of sque of side is Ⅲ Pllelogms = Te e of etngle of sides nd is = Te e of pllelogm is te podut of te lengt of one

More information

### Fundamental Theorem of Calculus

Funmentl Teorem of Clculus Liming Png 1 Sttement of te Teorem Te funmentl Teorem of Clculus is one of te most importnt teorems in te istory of mtemtics, wic ws first iscovere by Newton n Leibniz inepenently.

More information

### FULL MECHANICS SOLUTION

FULL MECHANICS SOLUION. m 3 3 3 f For long the tngentil direction m 3g cos 3 sin 3 f N m 3g sin 3 cos3 from soling 3. ( N 4) ( N 8) N gsin 3. = ut + t = ut g sin cos t u t = gsin cos = 4 5 5 = s] 3 4 o

More information

### Exam 3: Equation Summary

MAACHUETT INTITUTE OF TECHNOLOGY Depatment of Physics Physics 8. TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t = Exam 3: Equation ummay = Impulse: I F( t ) = p Toque: τ =,P dp F P τ =,P

More information

### Friedmannien equations

..6 Fiedmnnien equtions FLRW metic is : ds c The metic intevl is: dt ( t) d ( ) hee f ( ) is function which detemines globl geometic l popety of D spce. f d sin d One cn put it in the Einstein equtions

More information

### Chapter 1. Model Theory

Chte odel heo.. Intoduction Phsicl siultion of hdulic henoenon, such s the flow ove sillw, in the lboto is clled hsicl odel o onl odel. Potote is the hdulic henoen in the ntue like the sillw ove d. odels

More information

### Finding and Using Derivative The shortcuts

Calculus 1 Lia Vas Finding and Using Derivative Te sortcuts We ave seen tat te formula f f(x+) f(x) (x) = lim 0 is manageable for relatively simple functions like a linear or quadratic. For more complex

More information

### Example 2: ( ) 2. \$ s ' 9.11" 10 *31 kg ( )( 1" 10 *10 m) ( e)

Emple 1: Two point chge e locted on the i, q 1 = e t = 0 nd q 2 = e t =.. Find the wok tht mut be done b n etenl foce to bing thid point chge q 3 = e fom infinit to = 2. b. Find the totl potentil eneg

More information