( ) ( ) Physics 111. Lecture 13 (Walker: Ch ) Connected Objects Circular Motion Centripetal Acceleration Centripetal Force Sept.


 Ferdinand Ford
 5 years ago
 Views:
Transcription
1 Physics Lectue 3 (Wlke: Ch ) Connected Objects Cicul Motion Centipetl Acceletion Centipetl Foce Sept. 30, 009 Exmple: Connected Blocks Block of mss m slides on fictionless tbletop. It is connected by sting nd pulley to hnging mss m. Find the cceletion nd sting tension T. Midtem Exm on Mon. Octobe 5 (Chptes 6; Lectues 3) Lectue 3 /8 Lectue 3 /8 Exmple: Atwood s Mchine F T m T m, x, x ( ) F m g T m T m g ( ) m m g mg ( m+ m) m mm g nd T g m + m m + m Lectue 3 3/8 Atwood s Mchine consists of two msses connected by sting nd pulley. Find the cceletion. Lectue 3 4/8
2 Question 3 F, x T m g m, x T m g m m g T m ( m m ) g ( m + m) F mg T m m m g m + m Lectue 3 5/8. T >T b. T T c. T <T Lectue 3 6/8 Exmple: Stgecft () 00 kg set S is stoed in loft boe stge. Rope holding set psses up nd oe pulley, then is tied bckstge. Diecto tells 00 kg stgehnd to lowe the set. He unties nd holds on to ope nd is hoisted into loft. Wht is his cceletion? (Assume mssless ope & mssless, fictionless pulley.) Lectue 3 7/8 Stgehnd: Set: F T w T m g m ( on M ) y S on M M S on M M M My F T w T m g m m ( on S) y M on S S M on S S S Sy S My TM on S TS on M T T m g m M M My T m g m S M My g( m m ) ( m + m ) S M My S M ( ms mm) (00 kg) My g (9.8 m/s ) 3.7 m/s ( m + m ) (300 kg) S M Lectue 3 8/8
3 Unifom Cicul Motion Pticle in Unifom Cicul Motion T peiod the time equied fo one complete ottion. cicumfeence π peiod T Position: Rdius: Speed: constnt constnt Fo pticle in unifom cicul motion, elocity ecto is constnt in mgnitude, but continuously chnges diection. Pticle hs cceletion Thee must be net foce on pticle Lectue 3 9/8 Lectue 3 0/8 Exmple: A Rotting Cnkshft A 4.0 cm dimete cnkshft tuns t 400 pm. Wht is speed of point on sufce of the cnkshft? 400 e minute 40 e/s minute 60 s T 0.05 s (pe eolution) 40 e/s π π (0.00 m) 5.03 m/s T 0.05 s Acceletion in Unifom Cicul Motion Object moing t constnt speed in cicle of dius hs centipetl (towd cente) cceletion cp Diection of this cceletion cp is towds the cente of the cicle. Size of the cceletion is cp / Lectue 3 /8 Lectue 3 /8
4 Centipetl Foce Since object in unifom cicul motion hs centipetl cceletion cp, foce is needed to poide this cceletion. Foce must be poided by ope, fiction, gity, etc. Mgnitude of foce f cp equied to keep n object of mss m moing t speed in cicle of dius, clled centipetl foce becuse it points towd cente of cicle, is gien by: fcp mcp m (66) Lectue 3 3/8 Souces of Centipetl Foce This centipetl foce my be poided by the tension in sting, the noml foce, o fiction, mong othe souces. Lectue 3 4/8 Exmple: Rounding Cone Bnked Cues A c ounds cone of dius. If coefficient of fiction between ties nd od is µ s, wht is mximum speed c cn he without skidding? Fx fs µ sn mx m 0 y µ smg m µ sg Question: Did we need to know mss of c? F N W N mg (0.8)(45.0 m)(9.8 m/s ) 9.0 m/s Lectue 3 5/8 Lectue 3 6/8
5 If od is bnked t the pope ngle θ, c cn ound cue without the ssistnce of fiction between the ties nd the od nd without skidding. Wht bnk ngle θ is needed fo c of mss m teling t speed ound cue of dius? Lectue 3 7/8 F 0 Ncosθ W Ncosθ mg y N cosθ mg Fx N sinθ mx mcp m / N sin θ / tnθ m N cosθ mg g θ ctn g Notice tht thee is only one speed t which gity exctly poides the needed centipetl foce. Lectue 3 8/8 Centifuge A centifuge is lbotoy deice used in chemisty, biology, nd medicine fo septing out solids suspended in liquid by spinning tubes of the liquid t high speed. The liquid noml foce cnnot poide the needed centipetl foce on the solids, so the solids collect t the bottom of the tubes. Lectue 3 9/8 Tngentil & Totl Acceletion An object my be chnging its speed (speeding up o slowing down) s it moes in cicul pth. In tht cse, thee is tngentil cceletion s well s centipetl cceletion. The totl cceletion totl is the ecto sum of the centipetl cceletion cp, which points towd the cente of ottion, nd the tngentil cceletion t, which points in the diection of speed incese. Lectue 3 0/8
6 Centipetl Acceletion Question Which motion hs the lgest centipetl cceletion? cp (centipetl cceletion) t π T (tngentil elocity) Lectue 3 /8 Lectue 3 /8 Exmple: Spinning in Cicle Fthe plces 0 kg child in 5.0 kg ct to which is ttched.0 m long ope. He holds the end of the ope nd spins the ct nd child in cicle, keeping the ope pllel to gound. If tension in ope is 00 N, how mny eolutions pe minute does ct mke? Lectue 3 3/8 m ( Fnet ) F T ; T (.0 m)(00 N) t.83 m/s; m (5 kg) t (.83 m/s).4 d/s 3.5 pm (.0 m) Lectue 3 4/8
7 Exmple: Stellite s Motion Stellite moes t constnt speed in cicul obit bout cente of Eth nd ne sufce of Eth. If mgnitude of its cceletion is g 9.8 m/s nd Eth s dius is 6,370 km, find its speed nd time T equied fo one complete eolution. cp g g 3 3 (6,370 0 m)(9.8 m/s ) m/s 7,700 mi/h T 3 3 π/ π(6,370 0 m)/(7.9 0 m/s) 5,060 s 84.3 min End of Lectue 3 Befoe Fidy, ed Wlke Section 7. Homewok Assignment #6c should be submitted using WebAssign by :00 PM on Study, Oct. 3. (HW #6b due tonight.) MIDTERM I on Mondy Octobe 5. (Chptes 6; Lectues 3.) Lectue 3 5/8 Lectue 3 6/8
Physics 111. Lecture 14 (Walker: Ch. 6.5) Circular Motion Centripetal Acceleration Centripetal Force February 27, 2009
Physics 111 Lectue 14 (Walke: Ch. 6.5) Cicula Motion Centipetal Acceleation Centipetal Foce Febuay 7, 009 Midtem Exam 1 on Wed. Mach 4 (Chaptes 16) Lectue 14 1/8 Connected Objects If thee is a pulley,
More informationPhysics 111. Uniform circular motion. Ch 6. v = constant. v constant. Wednesday, 89 pm in NSC 128/119 Sunday, 6:308 pm in CCLIR 468
ics Announcements dy, embe 28, 2004 Ch 6: Cicul Motion  centipetl cceletion Fiction Tension  the mssless sting Help this week: Wednesdy, 89 pm in NSC 128/119 Sundy, 6:308 pm in CCLIR 468 Announcements
More informationAnswers to test yourself questions
Answes to test youself questions opic Descibing fields Gm Gm Gm Gm he net field t is: g ( d / ) ( 4d / ) d d Gm Gm Gm Gm Gm Gm b he net potentil t is: V d / 4d / d 4d d d V e 4 7 9 49 J kg 7 7 Gm d b E
More information(a) CounterClockwise (b) Clockwise ()N (c) No rotation (d) Not enough information
m m m00 kg dult, m0 kg bby. he seesw stts fom est. Which diection will it ottes? ( CounteClockwise (b Clockwise ( (c o ottion ti (d ot enough infomtion Effect of Constnt et oque.3 A constnt nonzeo toque
More informationSatellite Orbits. Orbital Mechanics. Circular Satellite Orbits
Obitl Mechnic tellite Obit Let u tt by king the quetion, Wht keep tellite in n obit ound eth?. Why doen t tellite go diectly towd th, nd why doen t it ecpe th? The nwe i tht thee e two min foce tht ct
More informationSection 35 SHM and Circular Motion
Section 35 SHM nd Cicul Motion Phsics 204A Clss Notes Wht do objects do? nd Wh do the do it? Objects sometimes oscillte in simple hmonic motion. In the lst section we looed t mss ibting t the end of sping.
More information1. The sphere P travels in a straight line with speed
1. The sphee P tels in stight line with speed = 10 m/s. Fo the instnt depicted, detemine the coesponding lues of,,,,, s mesued eltie to the fixed Oxy coodinte system. (/134) + 38.66 1.34 51.34 10sin 3.639
More informationAQA Maths M2. Topic Questions from Papers. Circular Motion. Answers
AQA Mths M Topic Questions fom Ppes Cicul Motion Answes PhysicsAndMthsTuto.com PhysicsAndMthsTuto.com Totl 6 () T cos30 = 9.8 Resolving veticlly with two tems Coect eqution 9.8 T = cos30 T =.6 N AG 3 Coect
More informationChapter 4 TwoDimensional Motion
D Kinemtic Quntities Position nd Velocit Acceletion Applictions Pojectile Motion Motion in Cicle Unifom Cicul Motion Chpte 4 TwoDimensionl Motion D Motion Pemble In this chpte, we ll tnsplnt the conceptul
More informationCentral Forces: Circular Motion and Gravitation
CF1 Centl Foces: Cicul Motion nd Gittion Cicul motion: object moing in cicle of dius, with constnt speed. T = peiod = time fo 1 complete eolution, 1 cycle ( Don't confuse tension T with peiod T.) speed
More informationChapter 4 Kinematics in Two Dimensions
D Kinemtic Quntities Position nd Velocit Acceletion Applictions Pojectile Motion Motion in Cicle Unifom Cicul Motion Chpte 4 Kinemtics in Two Dimensions D Motion Pemble In this chpte, we ll tnsplnt the
More informationN for static friction and N
Fiction: Epeimentll the following fetues e obseed to be tue of the foce of fiction: ) Fiction lws opposes the motion. The foce is dissiptie nd its diection is pllel to the sufce of the object in motion.
More informationPhysics 1502: Lecture 2 Today s Agenda
1 Lectue 1 Phsics 1502: Lectue 2 Tod s Agend Announcements: Lectues posted on: www.phs.uconn.edu/~cote/ HW ssignments, solutions etc. Homewok #1: On Mstephsics this Fid Homewoks posted on Msteingphsics
More informationPicking Coordinate Axes
Picing Coodinte Axes If the object you e inteested in Is cceleting Choose one xis long the cceletion Su of Foce coponents long tht xis equls Su of Foce coponents long ny othe xis equls 0 Clcultions e esie
More informationElectric Potential. and Equipotentials
Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil
More information10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = =
Chpte 1 nivesl Gvittion 11 *P1. () The unth distnce is 1.4 nd the thmoon 8 distnce is.84, so the distnce fom the un to the Moon duing sol eclipse is 11 8 11 1.4.84 = 1.4 The mss of the un, th, nd Moon
More informationVersion 001 HW#6  Circular & Rotational Motion arts (00223) 1
Version 001 HW#6  Circulr & ottionl Motion rts (00223) 1 This printout should hve 14 questions. Multiplechoice questions my continue on the next column or pge find ll choices before nswering. Circling
More informationPhysics 101 Lecture 6 Circular Motion
Physics 101 Lectue 6 Cicula Motion Assist. Pof. D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Equilibium, Example 1 q What is the smallest value of the foce F such that the.0kg block will not slide
More informationUniform Circular Motion
Unfom Ccul Moton Unfom ccul Moton An object mong t constnt sped n ccle The ntude of the eloct emns constnt The decton of the eloct chnges contnuousl!!!! Snce cceleton s te of chnge of eloct:!! Δ Δt The
More information6. Gravitation. 6.1 Newton's law of Gravitation
Gvittion / 1 6.1 Newton's lw of Gvittion 6. Gvittion Newton's lw of gvittion sttes tht evey body in this univese ttcts evey othe body with foce, which is diectly popotionl to the poduct of thei msses nd
More informationPhysics 111 Lecture 5 Circular Motion
Physics 111 Lectue 5 Cicula Motion D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Multiple Objects q A block of mass m1 on a ough, hoizontal suface is connected to a ball of mass m by a lightweight
More informationDynamics: Newton s Laws of Motion
Lecture 7 Chpter 4 Physics I 09.25.2013 Dynmics: Newton s Lws of Motion Solving Problems using Newton s lws Course website: http://fculty.uml.edu/andriy_dnylov/teching/physicsi Lecture Cpture: http://echo360.uml.edu/dnylov2013/physics1fll.html
More informationEnergy Dissipation Gravitational Potential Energy Power
Lectue 4 Chpte 8 Physics I 0.8.03 negy Dissiption Gvittionl Potentil negy Powe Couse wesite: http://fculty.uml.edu/andiy_dnylov/teching/physicsi Lectue Cptue: http://echo360.uml.edu/dnylov03/physicsfll.html
More informationSolutions to Midterm Physics 201
Solutions to Midtem Physics. We cn conside this sitution s supeposition of unifomly chged sphee of chge density ρ nd dius R, nd second unifomly chged sphee of chge density ρ nd dius R t the position of
More informationPhysics 11b Lecture #11
Physics 11b Lectue #11 Mgnetic Fields Souces of the Mgnetic Field S&J Chpte 9, 3 Wht We Did Lst Time Mgnetic fields e simil to electic fields Only diffeence: no single mgnetic pole Loentz foce Moving chge
More informationChapter 28 Sources of Magnetic Field
Chpte 8 Souces of Mgnetic Field  Mgnetic Field of Moving Chge  Mgnetic Field of Cuent Element  Mgnetic Field of Stight CuentCying Conducto  Foce Between Pllel Conductos  Mgnetic Field of Cicul Cuent
More information13.5. Torsion of a curve Tangential and Normal Components of Acceleration
13.5 osion of cuve ngentil nd oml Components of Acceletion Recll: Length of cuve '( t) Ac length function s( t) b t u du '( t) Ac length pmetiztion ( s) with '( s) 1 '( t) Unit tngent vecto '( t) Cuvtue:
More information+ r Position Velocity
1. The phee P tel in tight line with contnt peed of =100 m/. Fo the intnt hown, detemine the coeponding lue of,,,,, eltie to the fixed Ox coodinte tem. meued + + Poition Velocit e 80 e 45 o 113. 137 d
More informationCircular Motion. xy coordinate systems. Other coordinates... PHY circularmotion  J. Hedberg
Cicula Motion PHY 207  ciculamotion  J. Hedbeg  2017 xy coodinate systems Fo many situations, an xy coodinate system is a geat idea. Hee is a map on Manhattan. The steets ae laid out in a ectangula
More information( ) ( ) ( ) ( ) ( ) # B x ( ˆ i ) ( ) # B y ( ˆ j ) ( ) # B y ("ˆ ( ) ( ) ( (( ) # ("ˆ ( ) ( ) ( ) # B ˆ z ( k )
Emple 1: A positie chge with elocit is moing though unifom mgnetic field s shown in the figues below. Use the ighthnd ule to detemine the diection of the mgnetic foce on the chge. Emple 1 ˆ i = ˆ ˆ i
More informationPhysics 4A Chapter 8: Dynamics II Motion in a Plane
Physics 4A Chapte 8: Dynamics II Motion in a Plane Conceptual Questions and Example Poblems fom Chapte 8 Conceptual Question 8.5 The figue below shows two balls of equal mass moving in vetical cicles.
More informationAlgebra Based Physics. Gravitational Force. PSI Honors universal gravitation presentation Update Fall 2016.notebookNovember 10, 2016
Newton's Lw of Univesl Gvittion Gvittionl Foce lick on the topic to go to tht section Gvittionl Field lgeb sed Physics Newton's Lw of Univesl Gvittion Sufce Gvity Gvittionl Field in Spce Keple's Thid Lw
More informationCircular Motion. Mr. Velazquez AP/Honors Physics
Cicula Motion M. Velazquez AP/Honos Physics Objects in Cicula Motion Accoding to Newton s Laws, if no foce acts on an object, it will move with constant speed in a constant diection. Theefoe, if an object
More informationDYNAMICS OF UNIFORM CIRCULAR MOTION
Chapte 5 Dynamics of Unifom Cicula Motion Chapte 5 DYNAMICS OF UNIFOM CICULA MOTION PEVIEW An object which is moing in a cicula path with a constant speed is said to be in unifom cicula motion. Fo an object
More informationUniform Circular Motion
Unifom Cicula Motion Have you eve idden on the amusement pak ide shown below? As it spins you feel as though you ae being pessed tightly against the wall. The ide then begins to tilt but you emain glued
More informationMotion in a Plane Uniform Circular Motion
Lectue 11 Chapte 8 Physics I Motion in a Plane Unifom Cicula Motion Couse website: http://faculty.uml.edu/andiy_danylo/teaching/physicsi PHYS.1410 Lectue 11 Danylo Depatment of Physics and Applied Physics
More informationπ,π is the angle FROM a! TO b
Mth 151: 1.2 The Dot Poduct We hve scled vectos (o, multiplied vectos y el nume clled scl) nd dded vectos (in ectngul component fom). Cn we multiply vectos togethe? The nswe is YES! In fct, thee e two
More information= 40 N. Q = 60 O m s,k
Multiple Choice ( 6 Points Ech ): F pp = 40 N 20 kg Q = 60 O m s,k = 0 1. A 20 kg box is pulled long frictionless floor with n pplied force of 40 N. The pplied force mkes n ngle of 60 degrees with the
More informationChapter 5. Uniform Circular Motion. a c =v 2 /r
Chapte 5 Unifom Cicula Motion a c =v 2 / Unifom cicula motion: Motion in a cicula path with constant speed s v 1) Speed and peiod Peiod, T: time fo one evolution Speed is elated to peiod: Path fo one evolution:
More informationPhysics 231 Lecture 17
Physics 31 Lectue 17 Main points of today s lectue: Centipetal acceleation: a c = a c t Rotational motion definitions: Δω Δω α =, α = limδ t 0 Δt Δt Δ s= Δ θ;t = ω;at = α Rotational kinematics equations:
More informationU>, and is negative. Electric Potential Energy
Electic Potentil Enegy Think of gvittionl potentil enegy. When the lock is moved veticlly up ginst gvity, the gvittionl foce does negtive wok (you do positive wok), nd the potentil enegy (U) inceses. When
More information1 Using Integration to Find Arc Lengths and Surface Areas
Novembe 9, 8 MAT86 Week Justin Ko Using Integtion to Find Ac Lengths nd Sufce Aes. Ac Length Fomul: If f () is continuous on [, b], then the c length of the cuve = f() on the intevl [, b] is given b s
More informationChapter 5. really hard to start the object moving and then, once it starts moving, you don t have to push as hard to keep it moving.
Chapte 5 Fiction When an object is in motion it is usually in contact with a viscous mateial (wate o ai) o some othe suface. So fa, we have assumed that moving objects don t inteact with thei suoundings
More informationMotion on a Curve and Curvature
Moion on Cue nd Cuue his uni is bsed on Secions 9. & 9.3, Chpe 9. All ssigned edings nd execises e fom he exbook Objecies: Mke cein h you cn define, nd use in conex, he ems, conceps nd fomuls lised below:
More information1. Viscosities: μ = ρν. 2. Newton s viscosity law: 3. Infinitesimal surface force df. 4. Moment about the point o, dm
3 Fluid Mecnics Clss Emple 3: Newton s Viscosit Lw nd Se Stess 3 Fluid Mecnics Clss Emple 3: Newton s Viscosit Lw nd Se Stess Motition Gien elocit field o ppoimted elocit field, we wnt to be ble to estimte
More informationChapter 21: Electric Charge and Electric Field
Chpte 1: Electic Chge nd Electic Field Electic Chge Ancient Gees ~ 600 BC Sttic electicit: electic chge vi fiction (see lso fig 1.1) (Attempted) pith bll demonsttion: inds of popeties objects with sme
More informationSchool of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007
School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 4 Due on Sep. 1, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt
More informationEWTO S LAWS OF MOTIO ewton 1 st lw o Lw of Ineti Evey body continues to be in its stte of est o of unifom motion until nd unless nd until it is compelled by n extenl foce to chnge its stte of est o of
More informationSOLUTIONS TO CONCEPTS CHAPTER 11
SLUTINS T NEPTS HPTE. Gvittionl fce of ttction, F.7 0 0 0.7 0 7 N (0.). To clculte the gvittionl fce on t unline due to othe ouse. F D G 4 ( / ) 8G E F I F G ( / ) G ( / ) G 4G 4 D F F G ( / ) G esultnt
More informationChapter 8. Ch.8, Potential flow
Ch.8, Voticit (epetition) Velocit potentil Stem function Supeposition Cicultion dimensionl bodies KuttJoukovskis lift theoem Comple potentil Aismmetic potentil flow Rotting fluid element Chpte 4 Angul
More information2013 Checkpoints Chapter 6 CIRCULAR MOTION
013 Checkpoints Chapte 6 CIRCULAR MOTIO Question 09 In unifom cicula motion, thee is a net foce acting adially inwads. This net foce causes the elocity to change (in diection). Since the speed is constant,
More informationDYNAMICS. Kinetics of Particles: Newton s Second Law VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.
Ninth E CHPTER VECTOR MECHNICS OR ENGINEERS: DYNMICS edinnd P. ee E. Russell Johnston, J. Lectue Notes: J. Wlt Ole Texs Tech Univesity Kinetics of Pticles: Newton s Second Lw The McGwHill Copnies, Inc.
More informationHoizontal Cicula Motion 1. A paticle of mass m is tied to a light sting and otated with a speed v along a cicula path of adius. If T is tension in the sting and mg is gavitational foce on the paticle then,
More informationAssistant Professor: Zhou Yufeng. N , ,
Aitnt Pofeo: Zhou Yufeng N3.05, 6790448, yfzhou@ntu.edu.g http://www3.ntu.edu.g/home/yfzhou/coue.html . A pojectile i fied t flling tget hown. The pojectile lee the gun t the me intnt tht the tget dopped
More informationChapter 5: Uniform Circular Motion
Chapte 5: Unifom Cicula Motion Motion at constant speed in a cicle Centipetal acceleation Banked cuves Obital motion Weightlessness, atificial gavity Vetical cicula motion Centipetal Foce Acceleation towad
More informationΣF = r r v. Question 213. Checkpoints Chapter 6 CIRCULAR MOTION
Unit 3 Physics 16 6. Cicula Motion Page 1 of 9 Checkpoints Chapte 6 CIRCULAR MOTION Question 13 Question 8 In unifom cicula motion, thee is a net foce acting adially inwads. This net foce causes the elocity
More informationMAGNETIC EFFECT OF CURRENT & MAGNETISM
TODUCTO MAGETC EFFECT OF CUET & MAGETM The molecul theo of mgnetism ws given b Webe nd modified lte b Ewing. Oested, in 18 obseved tht mgnetic field is ssocited with n electic cuent. ince, cuent is due
More informationUniform Circular Motion
Unifom Cicula Motion constant speed Pick a point in the objects motion... What diection is the velocity? HINT Think about what diection the object would tavel if the sting wee cut Unifom Cicula Motion
More informationDEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3
DEPATMENT OF CIVIL AND ENVIONMENTAL ENGINEEING FLID MECHANICS III Solutions to Poblem Sheet 3 1. An tmospheic vote is moelle s combintion of viscous coe otting s soli boy with ngul velocity Ω n n iottionl
More informationPage 1. Motion in a Circle... Dynamics of Circular Motion. Motion in a Circle... Motion in a Circle... Discussion Problem 21: Motion in a Circle
Dynics of Circulr Motion A boy ties rock of ss to the end of strin nd twirls it in the erticl plne. he distnce fro his hnd to the rock is. he speed of the rock t the top of its trectory is. Wht is the
More informationCHAPTER 18: ELECTRIC CHARGE AND ELECTRIC FIELD
ollege Physics Student s Mnul hpte 8 HAPTR 8: LTRI HARG AD LTRI ILD 8. STATI LTRIITY AD HARG: OSRVATIO O HARG. ommon sttic electicity involves chges nging fom nnocoulombs to micocoulombs. () How mny electons
More informationPhysics 2001 Problem Set 5 Solutions
Physics 2001 Poblem Set 5 Solutions Jeff Kissel Octobe 16, 2006 1. A puck attached to a sting undegoes cicula motion on an ai table. If the sting beaks at the point indicated in the figue, which path (A,
More informationMark Scheme (Results) January 2008
Mk Scheme (Results) Jnuy 00 GCE GCE Mthemtics (6679/0) Edecel Limited. Registeed in Englnd nd Wles No. 4496750 Registeed Office: One90 High Holbon, London WCV 7BH Jnuy 00 6679 Mechnics M Mk Scheme Question
More informationPHYSICS 211 MIDTERM I 21 April 2004
PHYSICS MIDERM I April 004 Exm is closed book, closed notes. Use only your formul sheet. Write ll work nd nswers in exm booklets. he bcks of pges will not be grded unless you so request on the front of
More information3.3 Centripetal Force
3.3 Centipetal Foce Think of a time when ou wee a passenge in a ca going aound a shap cue at high speed (Figue 1). If the ca wee going fast enough, ou might feel the side of the ca doo pushing on ou side.
More informationChap 5. Circular Motion: Gravitation
Chap 5. Cicula Motion: Gavitation Sec. 5.1  Unifom Cicula Motion A body moves in unifom cicula motion, if the magnitude of the velocity vecto is constant and the diection changes at evey point and is
More informationCh04: Motion in two and three dimensions (2D and 3D)
Ch4: Motion in two and thee dimensions (D and 3D) Displacement, elocity and acceleation ectos Pojectile motion Cicula motion Relatie motion 4.: Position and displacement Position of an object in D o 3D
More informationAnswers to test yourself questions
Answes to test youself questions opic. Cicula motion π π a he angula speed is just ω 5. 7 ad s. he linea speed is ω 5. 7 3. 5 7. 7 m s.. 4 b he fequency is f. 8 s.. 4 3 a f. 45 ( 3. 5). m s. 3 a he aeage
More informationAP Physics 1  Circular Motion and Gravitation Practice Test (Multiple Choice Section) Answer Section
AP Physics 1  Cicula Motion and Gaitation Pactice est (Multiple Choice Section) Answe Section MULIPLE CHOICE 1. B he centipetal foce must be fiction since, lacking any fiction, the coin would slip off.
More informationELECTRO  MAGNETIC INDUCTION
NTRODUCTON LCTRO  MAGNTC NDUCTON Whenee mgnetic flu linked with cicuit chnges, n e.m.f. is induced in the cicuit. f the cicuit is closed, cuent is lso induced in it. The e.m.f. nd cuent poduced lsts s
More information(A) 6.32 (B) 9.49 (C) (D) (E) 18.97
Univesity of Bhin Physics 10 Finl Exm Key Fll 004 Deptment of Physics 13/1/005 8:30 10:30 e =1.610 19 C, m e =9.1110 31 Kg, m p =1.6710 7 Kg k=910 9 Nm /C, ε 0 =8.8410 1 C /Nm, µ 0 =4π10 7 T.m/A Pt : 10
More informationr cos, and y r sin with the origin of coordinate system located at
Lectue 33 Kinematics of Rotation Duing ou peious lectues we hae consideed diffeent examples of motion in one and seeal dimensions. But in each case the moing object was consideed as a paticlelike object,
More informationSECTION B Circular Motion
SECTION B Circulr Motion 1. When person stnds on rotting merrygoround, the frictionl force exerted on the person by the merrygoround is (A) greter in mgnitude thn the frictionl force exerted on the
More informationPhysics 201 Homework 4
Physics 201 Homewok 4 Jan 30, 2013 1. Thee is a cleve kitchen gadget fo dying lettuce leaves afte you wash them. 19 m/s 2 It consists of a cylindical containe mounted so that it can be otated about its
More informationc) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed?
Geneal Physics I Exam 2  Chs. 4,5,6  Foces, Cicula Motion, Enegy Oct. 10, 2012 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with
More informationA wire. 100 kg. Fig. 1.1
1 Fig. 1.1 shows circulr cylinder of mss 100 kg being rised by light, inextensible verticl wire. There is negligible ir resistnce. wire 100 kg Fig. 1.1 (i) lculte the ccelertion of the cylinder when the
More informationUnit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE.
Unit 6 actice Test 1. Which one of the following gaphs best epesents the aiation of the kinetic enegy, KE, and of the gaitational potential enegy, GE, of an obiting satellite with its distance fom the
More informationDynamically Equivalent Systems. Dynamically Equivalent Systems. Dynamically Equivalent Systems. ME 201 Mechanics of Machines
ME 0 Mechnics of Mchines 8//006 Dynmicy Equivent Systems Ex: Connecting od G Dynmicy Equivent Systems. If the mss of the connecting od m G m m B m m m. Moment out cente of gvity shoud e zeo m G m B Theefoe;
More informationPHYS 1114, Lecture 21, March 6 Contents:
PHYS 1114, Lectue 21, Mach 6 Contents: 1 This class is o cially cancelled, being eplaced by the common exam Tuesday, Mach 7, 5:30 PM. A eview and Q&A session is scheduled instead duing class time. 2 Exam
More informationGet Solution of These Packages & Learn by Video Tutorials on EXERCISE1
FEE Downlod Study Pckge fom website: www.tekoclsses.com & www.mthsbysuhg.com Get Solution of These Pckges & Len by Video Tutoils on www.mthsbysuhg.com EXECISE * MAK IS MOE THAN ONE COECT QUESTIONS. SECTION
More informationUnit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE.
Unit 6 actice Test 1. Which one of the following gaphs best epesents the aiation of the kinetic enegy, KE, and of the gaitational potential enegy, GE, of an obiting satellite with its distance fom the
More informationMath 8 Winter 2015 Applications of Integration
Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl
More informationCorrect answer: 0 m/s 2. Explanation: 8 N
Version 001 HW#3  orces rts (00223) 1 his printout should hve 15 questions. Multiplechoice questions my continue on the next column or pge find ll choices before nswering. Angled orce on Block 01 001
More informationr a + r b a + ( r b + r c)
AP Phsics C Unit 2 2.1 Nme Vectos Vectos e used to epesent quntities tht e chcteized b mgnitude ( numeicl vlue with ppopite units) nd diection. The usul emple is the displcement vecto. A quntit with onl
More informationPS113 Chapter 5 Dynamics of Uniform Circular Motion
PS113 Chapte 5 Dynamics of Unifom Cicula Motion 1 Unifom cicula motion Unifom cicula motion is the motion of an object taveling at a constant (unifom) speed on a cicula path. The peiod T is the time equied
More informationUniform Circular Motion. Key Terms and Equations. Kinematics of UCM. Topics of Uniform Circular Motion (UCM) Kinematics of Uniform Circular Motion
opics of Unifom icu Motion (UM) Kinemtics of UM ick on the topic to go to tht section Unifom icu Motion 2009 b Goodmn & Zvootni Peiod, Fequenc, nd Rottion Veocit nmics of UM Vetic UM uckets of Wte Roecostes
More informationYour Thoughts. Mechanics Lecture 16, Slide 1
Your Thoughts I get dizzy with ll the equtions being shifted, spun nd switched so much in the prelectures. If the prelectures for, 3 nd 4 re like tht, I m pretty worried. Are we going to be rcing spheres,
More informationOptimization. x = 22 corresponds to local maximum by second derivative test
Optimiztion Lectue 17 discussed the exteme vlues of functions. This lectue will pply the lesson fom Lectue 17 to wod poblems. In this section, it is impotnt to emembe we e in Clculus I nd e deling onevible
More informationF is on a moving charged particle. F = 0, if B v. (sin " = 0)
F is on moving chrged prticle. Chpter 29 Mgnetic Fields Ech mgnet hs two poles, north pole nd south pole, regrdless the size nd shpe of the mgnet. Like poles repel ech other, unlike poles ttrct ech other.
More informationElectric Field F E. q Q R Q. ˆ 4 r r   Electric field intensity depends on the medium! origin
1 1 Electic Field + + q F Q R oigin E 0 0 F E ˆ E 4 4 R q Q R Q   Electic field intensity depends on the medium! Electic Flux Density We intoduce new vecto field D independent of medium. D E So, electic
More informationStudy Guide Final Exam. Part A: Kinetic Theory, First Law of Thermodynamics, Heat Engines
Msschusetts Institute of Technology Deprtment of Physics 8.0T Fll 004 Study Guide Finl Exm The finl exm will consist of two sections. Section : multiple choice concept questions. There my be few concept
More information1. A man pulls himself up the 15 incline by the method shown. If the combined mass of the man and cart is 100 kg, determine the acceleration of the
1. n pulls hiself up the 15 incline b the ethod shown. If the cobined ss of the n nd ct is 100 g deteine the cceletion of the ct if the n eets pull of 50 on the ope. eglect ll fiction nd the ss of the
More informationThis immediately suggests an inversesquare law for a "piece" of current along the line.
Electomgnetic Theoy (EMT) Pof Rui, UNC Asheville, doctophys on YouTube Chpte T Notes The iotsvt Lw T nvesesque Lw fo Mgnetism Compe the mgnitude of the electic field t distnce wy fom n infinite line
More informationCourse Updates. Reminders: 1) Assignment #8 available. 2) Chapter 28 this week.
Couse Updtes http://www.phys.hwii.edu/~vne/phys7sp1/physics7.html Remindes: 1) Assignment #8 vilble ) Chpte 8 this week Lectue 3 iotsvt s Lw (Continued) θ d θ P R R θ R d θ d Mgnetic Fields fom long
More informationMEE 214 (Dynamics) Tuesday Dr. Soratos Tantideeravit (สรทศ ต นต ธ รว ทย )
MEE 14 (Dynmics) Tuesdy 8.3011.0 Dr. Sortos Tntideerit (สรทศ ต นต ธ รว ทย ) sortos@oep.go.th Lecture Notes, Course updtes, Extr problems, etc No Homework Finl Exm (Dte & Time TBD) 1/03/58 MEE14 Dynmics
More informationUniform Circular Motion
Unifom Cicula Motion Intoduction Ealie we defined acceleation as being the change in velocity with time: a = v t Until now we have only talked about changes in the magnitude of the acceleation: the speeding
More informationPhysics 105 Exam 2 10/31/2008 Name A
Physics 105 Exm 2 10/31/2008 Nme_ A As student t NJIT I will conduct myself in professionl mnner nd will comply with the proisions of the NJIT Acdemic Honor Code. I lso understnd tht I must subscribe to
More informationPhysics 207 Lecture 7
Phsics 07 Lecture 7 Agend: Phsics 07, Lecture 7, Sept. 6 hpter 6: Motion in (nd 3) dimensions, Dnmics II Recll instntneous velocit nd ccelertion hpter 6 (Dnmics II) Motion in two (or three dimensions)
More informationLA0011_11GB. Formulas and Units. Rotation 2 W. W = work in Ws = J = Nm. = ang. velocity in rad./sec. f = frequency in rev./sec.
Tnsmission technicl clcultions Min Fomuls Size designtions nd units ccoding to the SIunits Line moement: s m/s t s t m s 1 m t m/s t P F W F m N Rottion ω π f d/s ω π f m/s M F P M ω W M J ω J ω W Ws
More informationChapters 58. Dynamics: Applying Newton s Laws
Chaptes 58 Dynamics: Applying Newton s Laws Systems of Inteacting Objects The Fee Body Diagam Technique Examples: Masses Inteacting ia Nomal Foces Masses Inteacting ia Tensions in Ropes. Ideal Pulleys
More information