Satellite Orbits. Orbital Mechanics. Circular Satellite Orbits

Size: px
Start display at page:

Download "Satellite Orbits. Orbital Mechanics. Circular Satellite Orbits"

Transcription

1 Obitl Mechnic tellite Obit Let u tt by king the quetion, Wht keep tellite in n obit ound eth?. Why doen t tellite go diectly towd th, nd why doen t it ecpe th? The nwe i tht thee e two min foce tht ct on tellite o ny object tht i in obit ound th (o ny othe plnet o t). Thee foce e clled 1. Centifugl foce: Thi foce ct on the tellite long the line between the tellite nd the cente of m of th in the outwd diection. Thi eult fom the fct tht the object moe nd object in motion tend to tel in tight line.. Centipetl foce: Thi foce ct on the tellite long the line between the tellite nd the cente of m of th in the inwd diection. Thi eult fom the gittionl foce exeted on the tellite by th. In ddition to the boe two foce, thee i le impotnt foce tht my lte the pth of motion of tellite including:. Atmopheic dg: Thi foce my be ignificnt fo tellite tht e t LO obit, epecilly t ltitude le thn 00 km o o. The effect of thi foce eult in lowing the tellite motion nd hence lteing it obitl ltitude. 4. Moon nd ol gittion: Although tellite e uully plced in obit tht e much cloe to th thn to th moon nd knowing tht the gittionl pull of the Moon i itelf much lowe thn the gittionl pull of th, tellite motion neethele i ffected by the Moon (nd un ) gitie jut like e wte i ffected by Moon gity eulting in tide. The effect of thee gitie eult in the tellite wobbling (moing up nd down lowly) while in obit. 5. ol wind nd comic dition: thee foce he mll effect on the motion of tellite. Cicul tellite Obit Conideing the fit two foce only fo the time being, the following figue illutte how thee foce ct on n object in obit ound th:

2 Diection of Motion Centifugl Foce R tellite Centipetl Foce th The Centipetl Foce due to gity of th ( F ) i equl to F M = m whee i clled the Uniel ittionl Contnt, i the m of tellite, th. The Uniel ittionl Contnt i equl to M i the m of th, m i the diu of ottion of the tellite ound the cente of ( N ) m 11 = 6.67*10, kg m but Newton N = kg. Thi mke become m kg m = 6.67*10 kg = 6.67* m kg. The boe contnt ue the unit of (m), but ince ditnce between plnet nd tellite e uully meued in (km), o the we will ue i = 6.67*10 0 km kg. The m of th i equl to

3 M = 5.974*10 4 kg Often, the diu of tellite ottion i gien in tem of tellite ltitude (height boe th ufce) inted of diu. In thi itution, the tellite diu become equl to the ddition of tellite ltitude with th diu ( ): = + whee th diu = km Note tht thi i the ege diu of th. The othe min foce ffecting the tellite (centifugl foce) i gien by FC = m.(cetifegl cceletion) = m whee i the peed of motion of the tellite in obit, i the diu of tellite ottion. m i the m of the tellite, nd Now, uing the fomul fo the boe two foce, we ee tht tellite will emin in fixed cicul obit if the two foce e equl to ech othe, othewie, the tellite will not tel in cicul obit nd my poibly hit th ufce o ecpe th gity. Uing thi, we get the following: M m m = Thi gie fomul fo eluting the needed peed of tellite to mintin cicul obit ound th in tem of the diu of tellite obit o the oppoite: M M = = OR The quntity µ = M i clled Kepple Contnt. Thi quntity i n impotnt quntity tht i found when dicuing object obit th (o plnet in genel). Impotnt Note 1: When uing the boe eqution o ny othe eqution to elute ome quntity, it i ey impotnt to be conitent with unit (i.e., ue the pope unit of the diffeent quntitie uch tht the imil unit in diffeent quntitie e the me (km. km, o kg. kg, nd o on)). o, if one of the quntitie i gien in (km) while the othe quntity i gien in unit of (m), one of them h to be coneted to the othe.

4 Impotnt Note : Becue the diection of the Centipetl nd Centigl foce e oppoite to ech othe nd both of the them ct in pependecul diection to the diection of motion of the tellite, they do not eult in chnging the peed of motion of the tellite (i.e., the peed of tellite emin contnt t ll time). ince tellite in cicul obit ound th with diu tel oe cicle, the totl ditnce telled in complete obit i ( π ). o, the peiod of ottion i T π = = π M econd xmple 1: NAA Hubble pce telecope i plced in cicul obit ound th t n ltitude (height boe th ufce) of 595 km. Detemine: ) The peed of the tellite in obit, b) The tellite obitl peiod. xmple : Detemine: ) The diu of geo-ynchonou o geo-ttiony tellite obit b) The peed of tellite in geo-ynchonou obit. llipticl tellite Obit ee The boe dicuion conide cicul tellite obit, which e only ubcl of tellite obit. The genel fom of tellite obit i n ellipticl obit, which men tht the ditnce fom the tellite to the cente of th (o to the ufce of th) chnge continuouly the tellite moe in obit. An ellipticl obit h two focl point ( comped to ingle focl point in the ce of cicul obit which the cente of the cicle). th i locted in one of the focl point of n ellipticl obit.

5 b 0 φ 0 (1 + e) e P = (1 e) Whee The fit peon to depict the ellipticl motion of plnet ound the un w Keple who cme up with hi lw of plnety motion in the Thee lw pply to ny object of negligible m tht obit much lge m it i the ce fo tellite obiting th. Newton then confimed tht Keple lw e comptible with hi gittionl lw. Keple lw tte the following: 1. The obit of ny mll body bout lge body i lwy n ellipe with the cente of m of the lge body one of the two focl point of the ellipticl obit.. The obit of the mlle body weep equl e of the ellipe in equl time intel.. The que of the peiod of eolution i gien by 4π T = µ whee km 5 µ = M =.986*10. Thee lw llowed the deition of the loction of the tellite t diffeent point duing it obit uing the following et of eqution Ditnce between tellite nd th 0 ( 1 e ) = 1 + e co ( φ ) 0 Reltion between the emi-mjo xi, emi-mino xi, nd eccenticity

6 b e = 1 b e = 1 The elocity of the tellite The obitl peiod µ = 1 0 4π T = µ xmple : A tellite obit th in n ellipticl obit = 15 km nd e = 0.. The plin of tellite obit i the me plne of th equto nd the diection of tellite obit i in the me diection of th obit (i.e., the tellite obit fom W to ). Find the following: ) If the tellite w on longitude 6 when it w in it peigee point, oe which longitude will it be when it eche the next pogee? b) The peed t which the tellite will be teling t the pogee nd peigee point c) The peed of the tellite when it height i height boe th ufce i 4000 km. d) The height of the tellite boe th ufce when it peed i 4.5 km/.

+ r Position Velocity

+ r Position Velocity 1. The phee P tel in tight line with contnt peed of =100 m/. Fo the intnt hown, detemine the coeponding lue of,,,,, eltie to the fixed Ox coodinte tem. meued + + Poition Velocit e 80 e 45 o 113. 137 d

More information

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = =

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = = Chpte 1 nivesl Gvittion 11 *P1. () The un-th distnce is 1.4 nd the th-moon 8 distnce is.84, so the distnce fom the un to the Moon duing sol eclipse is 11 8 11 1.4.84 = 1.4 The mss of the un, th, nd Moon

More information

UNIT VII Central Force: Review Key

UNIT VII Central Force: Review Key UNIT VII Centl oce: Review Key. Which of the following tteent e tue of n object oving in cicle t contnt peed? Include ll tht pply.. The object expeience foce which h coponent diected pllel to the diection

More information

Central Forces: Circular Motion and Gravitation

Central Forces: Circular Motion and Gravitation CF-1 Centl Foces: Cicul Motion nd Gittion Cicul motion: object moing in cicle of dius, with constnt speed. T = peiod = time fo 1 complete eolution, 1 cycle ( Don't confuse tension T with peiod T.) speed

More information

Algebra Based Physics. Gravitational Force. PSI Honors universal gravitation presentation Update Fall 2016.notebookNovember 10, 2016

Algebra Based Physics. Gravitational Force. PSI Honors universal gravitation presentation Update Fall 2016.notebookNovember 10, 2016 Newton's Lw of Univesl Gvittion Gvittionl Foce lick on the topic to go to tht section Gvittionl Field lgeb sed Physics Newton's Lw of Univesl Gvittion Sufce Gvity Gvittionl Field in Spce Keple's Thid Lw

More information

( ) ( ) Physics 111. Lecture 13 (Walker: Ch ) Connected Objects Circular Motion Centripetal Acceleration Centripetal Force Sept.

( ) ( ) Physics 111. Lecture 13 (Walker: Ch ) Connected Objects Circular Motion Centripetal Acceleration Centripetal Force Sept. Physics Lectue 3 (Wlke: Ch. 6.4-5) Connected Objects Cicul Motion Centipetl Acceletion Centipetl Foce Sept. 30, 009 Exmple: Connected Blocks Block of mss m slides on fictionless tbletop. It is connected

More information

6. Gravitation. 6.1 Newton's law of Gravitation

6. Gravitation. 6.1 Newton's law of Gravitation Gvittion / 1 6.1 Newton's lw of Gvittion 6. Gvittion Newton's lw of gvittion sttes tht evey body in this univese ttcts evey othe body with foce, which is diectly popotionl to the poduct of thei msses nd

More information

Physics 111. Uniform circular motion. Ch 6. v = constant. v constant. Wednesday, 8-9 pm in NSC 128/119 Sunday, 6:30-8 pm in CCLIR 468

Physics 111. Uniform circular motion. Ch 6. v = constant. v constant. Wednesday, 8-9 pm in NSC 128/119 Sunday, 6:30-8 pm in CCLIR 468 ics Announcements dy, embe 28, 2004 Ch 6: Cicul Motion - centipetl cceletion Fiction Tension - the mssless sting Help this week: Wednesdy, 8-9 pm in NSC 128/119 Sundy, 6:30-8 pm in CCLIR 468 Announcements

More information

Answers to test yourself questions

Answers to test yourself questions Answes to test youself questions opic Descibing fields Gm Gm Gm Gm he net field t is: g ( d / ) ( 4d / ) d d Gm Gm Gm Gm Gm Gm b he net potentil t is: V d / 4d / d 4d d d V e 4 7 9 49 J kg 7 7 Gm d b E

More information

Assistant Professor: Zhou Yufeng. N , ,

Assistant Professor: Zhou Yufeng. N , , Aitnt Pofeo: Zhou Yufeng N3.-0-5, 6790-448, yfzhou@ntu.edu.g http://www3.ntu.edu.g/home/yfzhou/coue.html . A pojectile i fied t flling tget hown. The pojectile lee the gun t the me intnt tht the tget dopped

More information

N for static friction and N

N for static friction and N Fiction: Epeimentll the following fetues e obseed to be tue of the foce of fiction: ) Fiction lws opposes the motion. The foce is dissiptie nd its diection is pllel to the sufce of the object in motion.

More information

2 / r. Since the speed of the car is constant,

2 / r. Since the speed of the car is constant, CHAPER 5 DYAMICS OF UIFORM CIRCULAR MOIO COCEPUAL QUESIOS 1. REASOIG AD SOLUIO he will elete if it eloity hnge in mgnitude, in dietion, o both. If i teling t ontnt peed of 35 m/, it n be eleting if it

More information

Section 35 SHM and Circular Motion

Section 35 SHM and Circular Motion Section 35 SHM nd Cicul Motion Phsics 204A Clss Notes Wht do objects do? nd Wh do the do it? Objects sometimes oscillte in simple hmonic motion. In the lst section we looed t mss ibting t the end of sping.

More information

13.5. Torsion of a curve Tangential and Normal Components of Acceleration

13.5. Torsion of a curve Tangential and Normal Components of Acceleration 13.5 osion of cuve ngentil nd oml Components of Acceletion Recll: Length of cuve '( t) Ac length function s( t) b t u du '( t) Ac length pmetiztion ( s) with '( s) 1 '( t) Unit tngent vecto '( t) Cuvtue:

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

Example 2: ( ) 2. $ s ' 9.11" 10 *31 kg ( )( 1" 10 *10 m) ( e)

Example 2: ( ) 2. $ s ' 9.11 10 *31 kg ( )( 1 10 *10 m) ( e) Emple 1: Two point chge e locted on the i, q 1 = e t = 0 nd q 2 = e t =.. Find the wok tht mut be done b n etenl foce to bing thid point chge q 3 = e fom infinit to = 2. b. Find the totl potentil eneg

More information

Get Solution of These Packages & Learn by Video Tutorials on EXERCISE-1

Get Solution of These Packages & Learn by Video Tutorials on  EXERCISE-1 FEE Downlod Study Pckge fom website: www.tekoclsses.com & www.mthsbysuhg.com Get Solution of These Pckges & Len by Video Tutoils on www.mthsbysuhg.com EXECISE- * MAK IS MOE THAN ONE COECT QUESTIONS. SECTION

More information

SPH3UW/SPH4U Unit 3.2 Forces in Cetripetal Motion Page 1 of 6. Notes Physics Tool Box

SPH3UW/SPH4U Unit 3.2 Forces in Cetripetal Motion Page 1 of 6. Notes Physics Tool Box SPH3UW/SPH4U Unit 3. Foce in Cetipetal Motion Page 1 o 6 Note Phyic Tool Box Net Foce: acting on an object in uniom cicula motion act towad the cente o the cicle. Magnitude o Net Foce: combine Newton Second

More information

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z)

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z) 08 Tylo eie nd Mcluin eie A holomophic function f( z) defined on domin cn be expnded into the Tylo eie ound point except ingul point. Alo, f( z) cn be expnded into the Mcluin eie in the open dik with diu

More information

Chapter 4 Two-Dimensional Motion

Chapter 4 Two-Dimensional Motion D Kinemtic Quntities Position nd Velocit Acceletion Applictions Pojectile Motion Motion in Cicle Unifom Cicul Motion Chpte 4 Two-Dimensionl Motion D Motion Pemble In this chpte, we ll tnsplnt the conceptul

More information

1. The sphere P travels in a straight line with speed

1. The sphere P travels in a straight line with speed 1. The sphee P tels in stight line with speed = 10 m/s. Fo the instnt depicted, detemine the coesponding lues of,,,,, s mesued eltie to the fixed Oxy coodinte system. (/134) + 38.66 1.34 51.34 10sin 3.639

More information

Impulse and Momentum

Impulse and Momentum Impule and Momentum 1. A ca poee 20,000 unit of momentum. What would be the ca' new momentum if... A. it elocity wee doubled. B. it elocity wee tipled. C. it ma wee doubled (by adding moe paenge and a

More information

Chapter 4 Kinematics in Two Dimensions

Chapter 4 Kinematics in Two Dimensions D Kinemtic Quntities Position nd Velocit Acceletion Applictions Pojectile Motion Motion in Cicle Unifom Cicul Motion Chpte 4 Kinemtics in Two Dimensions D Motion Pemble In this chpte, we ll tnsplnt the

More information

(a) Counter-Clockwise (b) Clockwise ()N (c) No rotation (d) Not enough information

(a) Counter-Clockwise (b) Clockwise ()N (c) No rotation (d) Not enough information m m m00 kg dult, m0 kg bby. he seesw stts fom est. Which diection will it ottes? ( Counte-Clockwise (b Clockwise ( (c o ottion ti (d ot enough infomtion Effect of Constnt et oque.3 A constnt non-zeo toque

More information

PHYSICS 211 MIDTERM I 22 October 2003

PHYSICS 211 MIDTERM I 22 October 2003 PHYSICS MIDTERM I October 3 Exm i cloed book, cloed note. Ue onl our formul heet. Write ll work nd nwer in exm booklet. The bck of pge will not be grded unle ou o requet on the front of the pge. Show ll

More information

Picking Coordinate Axes

Picking Coordinate Axes Picing Coodinte Axes If the object you e inteested in Is cceleting Choose one xis long the cceletion Su of Foce coponents long tht xis equls Su of Foce coponents long ny othe xis equls 0 Clcultions e esie

More information

1 Using Integration to Find Arc Lengths and Surface Areas

1 Using Integration to Find Arc Lengths and Surface Areas Novembe 9, 8 MAT86 Week Justin Ko Using Integtion to Find Ac Lengths nd Sufce Aes. Ac Length Fomul: If f () is continuous on [, b], then the c length of the cuve = f() on the intevl [, b] is given b s

More information

RELATIVE KINEMATICS. q 2 R 12. u 1 O 2 S 2 S 1. r 1 O 1. Figure 1

RELATIVE KINEMATICS. q 2 R 12. u 1 O 2 S 2 S 1. r 1 O 1. Figure 1 RELAIVE KINEMAICS he equtions of motion fo point P will be nlyzed in two diffeent efeence systems. One efeence system is inetil, fixed to the gound, the second system is moving in the physicl spce nd the

More information

ELECTRO - MAGNETIC INDUCTION

ELECTRO - MAGNETIC INDUCTION NTRODUCTON LCTRO - MAGNTC NDUCTON Whenee mgnetic flu linked with cicuit chnges, n e.m.f. is induced in the cicuit. f the cicuit is closed, cuent is lso induced in it. The e.m.f. nd cuent poduced lsts s

More information

Fluids & Bernoulli s Equation. Group Problems 9

Fluids & Bernoulli s Equation. Group Problems 9 Goup Poblems 9 Fluids & Benoulli s Eqution Nme This is moe tutoil-like thn poblem nd leds you though conceptul development of Benoulli s eqution using the ides of Newton s 2 nd lw nd enegy. You e going

More information

DYNAMICS. Kinetics of Particles: Newton s Second Law VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

DYNAMICS. Kinetics of Particles: Newton s Second Law VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Ninth E CHPTER VECTOR MECHNICS OR ENGINEERS: DYNMICS edinnd P. ee E. Russell Johnston, J. Lectue Notes: J. Wlt Ole Texs Tech Univesity Kinetics of Pticles: Newton s Second Lw The McGw-Hill Copnies, Inc.

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chpte 8 Souces of Mgnetic Field - Mgnetic Field of Moving Chge - Mgnetic Field of Cuent Element - Mgnetic Field of Stight Cuent-Cying Conducto - Foce Between Pllel Conductos - Mgnetic Field of Cicul Cuent

More information

Chapter 2. Review of Newton's Laws, Units and Dimensions, and Basic Physics

Chapter 2. Review of Newton's Laws, Units and Dimensions, and Basic Physics Chpte. Review of Newton's Lws, Units nd Diensions, nd Bsic Physics You e ll fili with these ipotnt lws. But which e bsed on expeients nd which e ttes of definition? FIRST LAW n object oves unifoly (o eins

More information

( ) ( ) ( ) ( ) ( ) # B x ( ˆ i ) ( ) # B y ( ˆ j ) ( ) # B y ("ˆ ( ) ( ) ( (( ) # ("ˆ ( ) ( ) ( ) # B ˆ z ( k )

( ) ( ) ( ) ( ) ( ) # B x ( ˆ i ) ( ) # B y ( ˆ j ) ( ) # B y (ˆ ( ) ( ) ( (( ) # (ˆ ( ) ( ) ( ) # B ˆ z ( k ) Emple 1: A positie chge with elocit is moing though unifom mgnetic field s shown in the figues below. Use the ight-hnd ule to detemine the diection of the mgnetic foce on the chge. Emple 1 ˆ i = ˆ ˆ i

More information

Radial geodesics in Schwarzschild spacetime

Radial geodesics in Schwarzschild spacetime Rdil geodesics in Schwzschild spcetime Spheiclly symmetic solutions to the Einstein eqution tke the fom ds dt d dθ sin θdϕ whee is constnt. We lso hve the connection components, which now tke the fom using

More information

On the Eötvös effect

On the Eötvös effect On the Eötvös effect Mugu B. Răuţ The im of this ppe is to popose new theoy bout the Eötvös effect. We develop mthemticl model which loud us bette undestnding of this effect. Fom the eqution of motion

More information

π,π is the angle FROM a! TO b

π,π is the angle FROM a! TO b Mth 151: 1.2 The Dot Poduct We hve scled vectos (o, multiplied vectos y el nume clled scl) nd dded vectos (in ectngul component fom). Cn we multiply vectos togethe? The nswe is YES! In fct, thee e two

More information

U>, and is negative. Electric Potential Energy

U>, and is negative. Electric Potential Energy Electic Potentil Enegy Think of gvittionl potentil enegy. When the lock is moved veticlly up ginst gvity, the gvittionl foce does negtive wok (you do positive wok), nd the potentil enegy (U) inceses. When

More information

This immediately suggests an inverse-square law for a "piece" of current along the line.

This immediately suggests an inverse-square law for a piece of current along the line. Electomgnetic Theoy (EMT) Pof Rui, UNC Asheville, doctophys on YouTube Chpte T Notes The iot-svt Lw T nvese-sque Lw fo Mgnetism Compe the mgnitude of the electic field t distnce wy fom n infinite line

More information

4-4 E-field Calculations using Coulomb s Law

4-4 E-field Calculations using Coulomb s Law 1/11/5 ection_4_4_e-field_clcultion_uing_coulomb_lw_empty.doc 1/1 4-4 E-field Clcultion uing Coulomb Lw Reding Aignment: pp. 9-98 Specificlly: 1. HO: The Uniform, Infinite Line Chrge. HO: The Uniform Dik

More information

NARAYANA I I T / P M T A C A D E M Y. C o m m o n Pr a c t i c e T e s t 0 9 XI-IC SPARK Date: PHYSICS CHEMISTRY MATHEMATICS

NARAYANA I I T / P M T A C A D E M Y. C o m m o n Pr a c t i c e T e s t 0 9 XI-IC SPARK Date: PHYSICS CHEMISTRY MATHEMATICS . (D). (B). (). (). (D). (A) 7. () 8. (B) 9. (B). (). (A). (D). (B). (). (B) NAAYANA I I T / T A A D E Y XIS-I-IIT-SA (..7) o m m o n c t i c e T e s t 9 XI-I SA Dte:..7 ANSWE YSIS EISTY ATEATIS. (B).

More information

Comparative Studies of Law of Gravity and General Relativity. No.1 of Comparative Physics Series Papers

Comparative Studies of Law of Gravity and General Relativity. No.1 of Comparative Physics Series Papers Comptive Studies of Lw of Gvity nd Genel Reltivity No. of Comptive hysics Seies pes Fu Yuhu (CNOOC Resech Institute, E-mil:fuyh945@sin.com) Abstct: As No. of comptive physics seies ppes, this ppe discusses

More information

CIRCULAR MOTION. b gb g CHAPTER 5 DYNAMICS OF UNIFORM PROBLEMS

CIRCULAR MOTION. b gb g CHAPTER 5 DYNAMICS OF UNIFORM PROBLEMS HAPTER 5 DYNAMIS O UNIORM IRULAR MOTION PROBLEMS 1. SSM REASONING The peed of the plne i ien by Eqution 5.1: π / T, whee T i the peiod o the time equied fo the plne to omplete one eolution. SOLUTION Solin

More information

CHAPTER 2 ELECTRIC FIELD

CHAPTER 2 ELECTRIC FIELD lecticity-mgnetim Tutil (QU PROJCT) 9 CHAPTR LCTRIC FILD.. Intductin If we plce tet chge in the pce ne chged d, n electttic fce will ct n the chge. In thi ce we pek f n electic field in thi pce ( nlgy

More information

Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin

Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin 1 1 Electic Field + + q F Q R oigin E 0 0 F E ˆ E 4 4 R q Q R Q - - Electic field intensity depends on the medium! Electic Flux Density We intoduce new vecto field D independent of medium. D E So, electic

More information

Solutions to Midterm Physics 201

Solutions to Midterm Physics 201 Solutions to Midtem Physics. We cn conside this sitution s supeposition of unifomly chged sphee of chge density ρ nd dius R, nd second unifomly chged sphee of chge density ρ nd dius R t the position of

More information

1.3 Using Formulas to Solve Problems

1.3 Using Formulas to Solve Problems Section 1.3 Uing Fomul to Solve Polem 73 1.3 Uing Fomul to Solve Polem OBJECTIVES 1 Solve fo Vile in Fomul 2 Ue Fomul to Solve Polem Peping fo Fomul Befoe getting tted, tke ti edine quiz. If you get polem

More information

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface Genel Physics II Chpte 3: Guss w We now wnt to quickly discuss one of the moe useful tools fo clculting the electic field, nmely Guss lw. In ode to undestnd Guss s lw, it seems we need to know the concept

More information

MAGNETIC EFFECT OF CURRENT & MAGNETISM

MAGNETIC EFFECT OF CURRENT & MAGNETISM TODUCTO MAGETC EFFECT OF CUET & MAGETM The molecul theo of mgnetism ws given b Webe nd modified lte b Ewing. Oested, in 18 obseved tht mgnetic field is ssocited with n electic cuent. ince, cuent is due

More information

SOLUTIONS TO CONCEPTS CHAPTER 11

SOLUTIONS TO CONCEPTS CHAPTER 11 SLUTINS T NEPTS HPTE. Gvittionl fce of ttction, F.7 0 0 0.7 0 7 N (0.). To clculte the gvittionl fce on t unline due to othe ouse. F D G 4 ( / ) 8G E F I F G ( / ) G ( / ) G 4G 4 D F F G ( / ) G esultnt

More information

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3 DEPATMENT OF CIVIL AND ENVIONMENTAL ENGINEEING FLID MECHANICS III Solutions to Poblem Sheet 3 1. An tmospheic vote is moelle s combintion of viscous coe otting s soli boy with ngul velocity Ω n n iottionl

More information

Uniform Circular Motion

Uniform Circular Motion Unfom Ccul Moton Unfom ccul Moton An object mong t constnt sped n ccle The ntude of the eloct emns constnt The decton of the eloct chnges contnuousl!!!! Snce cceleton s te of chnge of eloct:!! Δ Δt The

More information

1. The 0.1 kg particle has a speed v = 10 m/s as it passes the 30 position shown. The coefficient of kinetic friction between the particle and the

1. The 0.1 kg particle has a speed v = 10 m/s as it passes the 30 position shown. The coefficient of kinetic friction between the particle and the 1. The 0.1 kg pticle h peed v = 10 m/ it pe the 30 poitio how. The coefficiet of kietic fictio betwee the pticle d the veticl ple tck i m k = 0.0. Detemie the mgitude of the totl foce exeted by the tck

More information

Friedmannien equations

Friedmannien equations ..6 Fiedmnnien equtions FLRW metic is : ds c The metic intevl is: dt ( t) d ( ) hee f ( ) is function which detemines globl geometic l popety of D spce. f d sin d One cn put it in the Einstein equtions

More information

r a + r b a + ( r b + r c)

r a + r b a + ( r b + r c) AP Phsics C Unit 2 2.1 Nme Vectos Vectos e used to epesent quntities tht e chcteized b mgnitude ( numeicl vlue with ppopite units) nd diection. The usul emple is the displcement vecto. A quntit with onl

More information

Content 5.1 Angular displacement and angular velocity 5.2 Centripetal acceleration 5.3 Centripetal force. 5. Circular motion.

Content 5.1 Angular displacement and angular velocity 5.2 Centripetal acceleration 5.3 Centripetal force. 5. Circular motion. 5. Cicula otion By Liew Sau oh Content 5.1 Angula diplaceent and angula elocity 5. Centipetal acceleation 5.3 Centipetal foce Objectie a) expe angula diplaceent in adian b) define angula elocity and peiod

More information

Mark Scheme (Results) January 2008

Mark Scheme (Results) January 2008 Mk Scheme (Results) Jnuy 00 GCE GCE Mthemtics (6679/0) Edecel Limited. Registeed in Englnd nd Wles No. 4496750 Registeed Office: One90 High Holbon, London WCV 7BH Jnuy 00 6679 Mechnics M Mk Scheme Question

More information

E on M 2. r the radius of the moon s orbit around the earth is given in Appendix F as 8

E on M 2. r the radius of the moon s orbit around the earth is given in Appendix F as 8 GAVIAION IDNIFY nd UP: Use the lw of ittion, q(), to detemine F XCU: F G ( sun, moon); F G ( eth) on on F on m G F on G m the dius of the moon s obit ound the eth is ien in Appendi F s 0 m he moon is much,

More information

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION Chapte 6 NEWTON S nd LAW AND UNIFORM CIRCULAR MOTION Phyic 1 1 3 4 ting Quetion: A ball attached to the end of a ting i whiled in a hoizontal plane. At the point indicated, the ting beak. Looking down

More information

DYNAMICS OF UNIFORM CIRCULAR MOTION

DYNAMICS OF UNIFORM CIRCULAR MOTION Chapte 5 Dynamics of Unifom Cicula Motion Chapte 5 DYNAMICS OF UNIFOM CICULA MOTION PEVIEW An object which is moing in a cicula path with a constant speed is said to be in unifom cicula motion. Fo an object

More information

AE 245 homework #9 solutions

AE 245 homework #9 solutions AE 245 homewok #9 olution Tim Smith 13 Apil 2000 1 Poblem1 In the Apollo miion fom the Eath to the Moon, the Satun thid tage povided the tan-luna inetion bun that tanfeed the Apollo pacecaft fom a low

More information

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by Clss Summy.5 Eponentil Functions.6 Invese Functions nd Logithms A function f is ule tht ssigns to ech element D ectly one element, clled f( ), in. Fo emple : function not function Given functions f, g:

More information

Problems (Show your work!)

Problems (Show your work!) Prctice Midter Multiple Choice 1. A. C 3. D 4. D 5. D 6. E 7. D 8. A 9. C 9. In word, 3.5*10 11 i E. 350 billion (I nubered 9 twice by itke!) 10. D 11. B 1. D 13. E 14. A 15. C 16. B 17. A 18. A 19. E

More information

Chapter 19 Webassign Help Problems

Chapter 19 Webassign Help Problems Chapte 9 Webaign Help Poblem 4 5 6 7 8 9 0 Poblem 4: The pictue fo thi poblem i a bit mileading. They eally jut give you the pictue fo Pat b. So let fix that. Hee i the pictue fo Pat (a): Pat (a) imply

More information

Equations from the Millennium Theory of Inertia and Gravity. Copyright 2004 Joseph A. Rybczyk

Equations from the Millennium Theory of Inertia and Gravity. Copyright 2004 Joseph A. Rybczyk Equtions fo the illenniu heoy of Ineti nd vity Copyight 004 Joseph A. Rybzyk ollowing is oplete list of ll of the equtions used o deived in the illenniu heoy of Ineti nd vity. o ese of efeene the equtions

More information

Announcements. Description Linear Angular position x θ displacement x θ rate of change of position v x ω x = = θ average rate of change of position

Announcements. Description Linear Angular position x θ displacement x θ rate of change of position v x ω x = = θ average rate of change of position Announcement In the lectue link Look o tet 1 beakdown liting the topic o the quetion. Look o m umma o topic o the eam. We ll ue it on the eiew net Tueda. Look o a lit o baic phic act eleant o thi eam.

More information

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION. string

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION. string Chapte 6 NEWTON S nd LAW AND UNIFORM CIRCULAR MOTION 103 PHYS 1 1 L:\103 Phy LECTURES SLIDES\103Phy_Slide_T1Y3839\CH6Flah 3 4 ting Quetion: A ball attached to the end of a ting i whiled in a hoizontal

More information

Math 2142 Homework 2 Solutions. Problem 1. Prove the following formulas for Laplace transforms for s > 0. a s 2 + a 2 L{cos at} = e st.

Math 2142 Homework 2 Solutions. Problem 1. Prove the following formulas for Laplace transforms for s > 0. a s 2 + a 2 L{cos at} = e st. Mth 2142 Homework 2 Solution Problem 1. Prove the following formul for Lplce trnform for >. L{1} = 1 L{t} = 1 2 L{in t} = 2 + 2 L{co t} = 2 + 2 Solution. For the firt Lplce trnform, we need to clculte:

More information

History of Astronomy - Part II. Tycho Brahe - An Observer. Johannes Kepler - A Theorist

History of Astronomy - Part II. Tycho Brahe - An Observer. Johannes Kepler - A Theorist Histoy of Astonomy - Pat II Afte the Copenican Revolution, astonomes stived fo moe obsevations to help bette explain the univese aound them Duing this time (600-750) many majo advances in science and astonomy

More information

CHAPTER 18: ELECTRIC CHARGE AND ELECTRIC FIELD

CHAPTER 18: ELECTRIC CHARGE AND ELECTRIC FIELD ollege Physics Student s Mnul hpte 8 HAPTR 8: LTRI HARG AD LTRI ILD 8. STATI LTRIITY AD HARG: OSRVATIO O HARG. ommon sttic electicity involves chges nging fom nnocoulombs to micocoulombs. () How mny electons

More information

Between any two masses, there exists a mutual attractive force.

Between any two masses, there exists a mutual attractive force. YEAR 12 PHYSICS: GRAVITATION PAST EXAM QUESTIONS Name: QUESTION 1 (1995 EXAM) (a) State Newton s Univesal Law of Gavitation in wods Between any two masses, thee exists a mutual attactive foce. This foce

More information

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system 436-459 Advnced contol nd utomtion Extensions to bckstepping contolle designs Tcking Obseves (nonline dmping) Peviously Lst lectue we looked t designing nonline contolles using the bckstepping technique

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 4 Due on Sep. 1, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

LECTURE 14. m 1 m 2 b) Based on the second law of Newton Figure 1 similarly F21 m2 c) Based on the third law of Newton F 12

LECTURE 14. m 1 m 2 b) Based on the second law of Newton Figure 1 similarly F21 m2 c) Based on the third law of Newton F 12 CTU 4 ] NWTON W O GVITY -The gavity law i foulated fo two point paticle with ae and at a ditance between the. Hee ae the fou tep that bing to univeal law of gavitation dicoveed by NWTON. a Baed on expeiental

More information

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013 Mth 4318 : Rel Anlysis II Mid-Tem Exm 1 14 Febuy 2013 Nme: Definitions: Tue/Flse: Poofs: 1. 2. 3. 4. 5. 6. Totl: Definitions nd Sttements of Theoems 1. (2 points) Fo function f(x) defined on (, b) nd fo

More information

AQA Maths M2. Topic Questions from Papers. Circular Motion. Answers

AQA Maths M2. Topic Questions from Papers. Circular Motion. Answers AQA Mths M Topic Questions fom Ppes Cicul Motion Answes PhysicsAndMthsTuto.com PhysicsAndMthsTuto.com Totl 6 () T cos30 = 9.8 Resolving veticlly with two tems Coect eqution 9.8 T = cos30 T =.6 N AG 3 Coect

More information

Energy Dissipation Gravitational Potential Energy Power

Energy Dissipation Gravitational Potential Energy Power Lectue 4 Chpte 8 Physics I 0.8.03 negy Dissiption Gvittionl Potentil negy Powe Couse wesite: http://fculty.uml.edu/andiy_dnylov/teching/physicsi Lectue Cptue: http://echo360.uml.edu/dnylov03/physicsfll.html

More information

TP A.4 Post-impact cue ball trajectory for any cut angle, speed, and spin

TP A.4 Post-impact cue ball trajectory for any cut angle, speed, and spin technical poof TP A.4 Pot-impact cue ball tajectoy fo any cut anle, peed, and pin uppotin: The Illutated Pinciple of Pool and Billiad http://billiad.colotate.edu by Daid G. Alciatoe, PhD, PE ("D. Dae")

More information

Ch04: Motion in two and three dimensions (2D and 3D)

Ch04: Motion in two and three dimensions (2D and 3D) Ch4: Motion in two and thee dimensions (D and 3D) Displacement, elocity and acceleation ectos Pojectile motion Cicula motion Relatie motion 4.: Position and displacement Position of an object in D o 3D

More information

( ) Physics 1401 Homework Solutions - Walker, Chapter 9

( ) Physics 1401 Homework Solutions - Walker, Chapter 9 Phyic 40 Conceptual Quetion CQ No Fo exaple, ey likely thee will be oe peanent deoation o the ca In thi cae, oe o the kinetic enegy that the two ca had beoe the colliion goe into wok that each ca doe on

More information

Circular Motion. x-y coordinate systems. Other coordinates... PHY circular-motion - J. Hedberg

Circular Motion. x-y coordinate systems. Other coordinates... PHY circular-motion - J. Hedberg Cicula Motion PHY 207 - cicula-motion - J. Hedbeg - 2017 x-y coodinate systems Fo many situations, an x-y coodinate system is a geat idea. Hee is a map on Manhattan. The steets ae laid out in a ectangula

More information

4.2 Boussinesq s Theory. Contents

4.2 Boussinesq s Theory. Contents 00477 Pvement Stuctue 4. Stesses in Flexible vement Contents 4. Intoductions to concet of stess nd stin in continuum mechnics 4. Boussinesq s Theoy 4. Bumiste s Theoy 4.4 Thee Lye System Weekset Sung Chte

More information

EE Control Systems LECTURE 8

EE Control Systems LECTURE 8 Coyright F.L. Lewi 999 All right reerved Udted: Sundy, Ferury, 999 EE 44 - Control Sytem LECTURE 8 REALIZATION AND CANONICAL FORMS A liner time-invrint (LTI) ytem cn e rereented in mny wy, including: differentil

More information

SURFACE TENSION. e-edge Education Classes 1 of 7 website: , ,

SURFACE TENSION. e-edge Education Classes 1 of 7 website: , , SURFACE TENSION Definition Sufce tension is popety of liquid by which the fee sufce of liquid behves like stetched elstic membne, hving contctive tendency. The sufce tension is mesued by the foce cting

More information

Chapter 21: Electric Charge and Electric Field

Chapter 21: Electric Charge and Electric Field Chpte 1: Electic Chge nd Electic Field Electic Chge Ancient Gees ~ 600 BC Sttic electicit: electic chge vi fiction (see lso fig 1.1) (Attempted) pith bll demonsttion: inds of popeties objects with sme

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism FI 1 Electomgnetism Alexnde A. Isknd, Ph.D. Physics of Mgnetism nd Photonics Resech Goup Electosttics ELECTRIC PTENTIALS 1 Recll tht we e inteested to clculte the electic field of some chge distiution.

More information

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE.

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE. Unit 6 actice Test 1. Which one of the following gaphs best epesents the aiation of the kinetic enegy, KE, and of the gaitational potential enegy, GE, of an obiting satellite with its distance fom the

More information

PRACTICE EXAM 2 SOLUTIONS

PRACTICE EXAM 2 SOLUTIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Deprtment of Phyic Phyic 8.01x Fll Term 00 PRACTICE EXAM SOLUTIONS Proble: Thi i reltively trihtforwrd Newton Second Lw problem. We et up coordinte ytem which i poitive

More information

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s: Chpte 7 Kleene s Theoem 7.1 Kleene s Theoem The following theoem is the most impotnt nd fundmentl esult in the theoy of FA s: Theoem 6 Any lnguge tht cn e defined y eithe egul expession, o finite utomt,

More information

PHYS Dynamics of Space Vehicles

PHYS Dynamics of Space Vehicles PHYS 4110 - Dynamics of Space Vehicles Chapte 3: Two Body Poblem Eath, Moon, Mas, and Beyond D. Jinjun Shan, Pofesso of Space Engineeing Depatment of Eath and Space Science and Engineeing Room 55, Petie

More information

3.1 Magnetic Fields. Oersted and Ampere

3.1 Magnetic Fields. Oersted and Ampere 3.1 Mgnetic Fields Oested nd Ampee The definition of mgnetic induction, B Fields of smll loop (dipole) Mgnetic fields in mtte: ) feomgnetism ) mgnetiztion, (M ) c) mgnetic susceptiility, m d) mgnetic field,

More information

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and Exta notes fo cicula motion: Cicula motion : v keeps changing, maybe both speed and diection ae changing. At least v diection is changing. Hence a 0. Acceleation NEEDED to stay on cicula obit: a cp v /,

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 3 Due on Sep. 14, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

Physics 604 Problem Set 1 Due Sept 16, 2010

Physics 604 Problem Set 1 Due Sept 16, 2010 Physics 64 Polem et 1 Due ept 16 1 1) ) Inside good conducto the electic field is eo (electons in the conducto ecuse they e fee to move move in wy to cncel ny electic field impessed on the conducto inside

More information

Winter 2004 OSU Sources of Magnetic Fields 1 Chapter 32

Winter 2004 OSU Sources of Magnetic Fields 1 Chapter 32 Winte 4 OSU 1 Souces Of Mgnetic Fields We lened two wys to clculte Electic Field Coulomb's Foce de 4 E da 1 dq Q enc ˆ ute Foce Clcultion High symmety Wht e the nlogous equtions fo the Mgnetic Field? Winte

More information

F 12. = G m m 1 2 F 21 = F 12. = G m 1m 2. Review. Physics 201, Lecture 22. Newton s Law Of Universal Gravitation

F 12. = G m m 1 2 F 21 = F 12. = G m 1m 2. Review. Physics 201, Lecture 22. Newton s Law Of Universal Gravitation Physics 201, Lectue 22 Review Today s Topics n Univesal Gavitation (Chapte 13.1-13.3) n Newton s Law of Univesal Gavitation n Popeties of Gavitational Foce n Planet Obits; Keple s Laws by Newton s Law

More information

Chapter 2: Electric Field

Chapter 2: Electric Field P 6 Genel Phsics II Lectue Outline. The Definition of lectic ield. lectic ield Lines 3. The lectic ield Due to Point Chges 4. The lectic ield Due to Continuous Chge Distibutions 5. The oce on Chges in

More information

PHYS 601 HW 5 Solution. We wish to find a Fourier expansion of e sin ψ so that the solution can be written in the form

PHYS 601 HW 5 Solution. We wish to find a Fourier expansion of e sin ψ so that the solution can be written in the form 5 Solving Kepler eqution Conider the Kepler eqution ωt = ψ e in ψ We wih to find Fourier expnion of e in ψ o tht the olution cn be written in the form ψωt = ωt + A n innωt, n= where A n re the Fourier

More information

Course Updates. Reminders: 1) Assignment #8 available. 2) Chapter 28 this week.

Course Updates. Reminders: 1) Assignment #8 available. 2) Chapter 28 this week. Couse Updtes http://www.phys.hwii.edu/~vne/phys7-sp1/physics7.html Remindes: 1) Assignment #8 vilble ) Chpte 8 this week Lectue 3 iot-svt s Lw (Continued) θ d θ P R R θ R d θ d Mgnetic Fields fom long

More information

Solutions Practice Test PHYS 211 Exam 2

Solutions Practice Test PHYS 211 Exam 2 Solution Pactice Tet PHYS 11 Exam 1A We can plit thi poblem up into two pat, each one dealing with a epaate axi. Fo both the x- and y- axe, we have two foce (one given, one unknown) and we get the following

More information