Uniform Circular Motion

Size: px
Start display at page:

Download "Uniform Circular Motion"

Transcription

1 Unifom Cicula Motion Have you eve idden on the amusement pak ide shown below? As it spins you feel as though you ae being pessed tightly against the wall. The ide then begins to tilt but you emain glued to the wall. What is unique about moving in a cicle that allows you to appaently defy gavity? What causes people on the ide to stick to the wall?

2 Unifom Cicula Motion Amusement pak ides ae excellent examples of cicula motion. When an object is moving in a cicle of constant adius and its speed is constant, it is moving with unifom cicula motion. When objects ae moving in a cicula path, speed is constant but diection continuously changes as it moves along the cicle. Theefoe they ae expeiencing centipetal acceleation towads the cente of the path. Centipetal is Latin fo cente-seeking.

3 Unifom Cicula Motion Fo example, conside an object as it moves fom point P to point Q as shown. If its velocity changes fom v1 to v2 then: v = v 2 v 1 Using tiangle conguencies and the equations v = d/ t fo the distance tavelled and a = v/ t then as t appoaches zeo yields: a c = v2 Note that since v1 and v2 ae pependicula to the adii of the cicle, the change in velocity and acceleation vecto points diectly towads the cente of the cicle. Acceleation that is diected towads the cente of a cicula path is called centipetal acceleation. This is the instantaneous acceleation towads the cicle cente.

4 Centipetal Acceleation SUMMARY of UNIFORM CIRCULAR MOTION occus when an object moves in a cicle of constant adius and its speed is constant since diection changes the object expeiences acceleation which is always diected towad the cente of the cicle a c = v2 whee a c is the centipetal acceleation (m/s 2 ) v is the velocity (m/s) is adius of the cicula path (m) Note: a c is the instantaneous acceleation ( t is vey small)

5 Centipetal Acceleation Example #1: A child ides a caousel with a adius of 5.1 m that otates with a constant speed of 2.2 m/s. Calculate the magnitude of the centipetal acceleation of the child. a c = v2 a c = (2.2m s )2 5.1 m a c = 0.95 m/s 2

6 Centipetal Acceleation Sometimes the speed of an object moving with unifom cicula motion is unknown. Often we can measue the time it takes fo the object to move once aound the cicle, o the peiod (T). If the object is moving too quickly, you would measue the numbe of evolutions pe unit time, o the fequency (f) whee f = 1/T. How ae the following fomulas deived? (Hint: use the cicumfeence of the cicle) a c = 4π2 T 2 and a c = 4π 2 f 2

7 Centipetal Acceleation Since v = d whee d is the cicumfeence of a cicle (C=2π) t then v = 2π whee T is the peiod of one cicle cicumfeence. T Substituting into a c = v2 T 2 gives: 2π = a c = 4π2 T 2 Since peiod and fequency ae elated as T = 1 f then: a c = 4π 2 f 2 whee a c is centipetal acceleation (m/s 2 ) is the adius of the cicula path (m) T is the peiod of otation (s) f is the fequency of otation (Hz o s -1 )

8 Centipetal Acceleation Example #2: a) A salad spinne with a adius of 9.7 cm otates clockwise with a fequency of 12 Hz. At a given instant, a piece of lettuce is moving in the westwad diection. Detemine the magnitude and diection of the centipetal acceleation of the lettuce in the spinne at the moment shown. a c = 4π 2 f 2 a c = 4π 2 (0. 097m)(12Hz) 2 a c = 550 m/s 2 [N] b) How does the salad spinne wok to emove wate fom the lettuce? The wate is able to pass though a sceen to the outside of the spinne whee it is collected, leaving the lettuce dy.

9 Centipetal Acceleation Example #3: The planet Mecuy moves in an appoximately cicula path aound the sun at an aveage distance of 5.8 x m, acceleating centipetally at 0.04 m/s 2. What is its peiod of evolution aound the sun? a c = 4π2 T 2 T = 4π 2 (5.8 x m) 0.04 m/s 2 T = 7.6 x 10 6 s o appx. 88 days on Eath

10 Centipetal Foce Accoding to Newton s laws of motion, an object will acceleate only if a net foce is exeted on it. Since objects moving with unifom cicula motion ae always acceleating, thee must always be a foce exeted on it in the same diection as the acceleation as shown. The foce pointing to the cente of a cicula path is called a centipetal foce (Fc). Without this foce, objects would not be able to move in a cicula path.

11 Centipetal Foce Using Newton s second law and a c = v2 deived as follows: the fomula fo Fc is Substitute a c = v2 into F net = ma : F net = ma c F net = m v2 F c = F net = m v2

12 Centipetal Foce SUMMARY of CENTRIPETAL FORCE is like net foce that causes centipetal acceleation (Fc =Fnet) always choose motion towads the cente of the cicle as the +ve diection F c = mv2 = 4π2 mf 2 = 4π2 m T 2 whee Fc is the centipetal foce that acts towads the cente of cicle (N) m is the mass (kg)

13 Centipetal Foce A centipetal foce can be supplied by any type of foce. Fo example, gavity povides the centipetal foce that keeps the Moon in a oughly cicula path aound Eath, fiction povides a centipetal foce that causes a ca to move in a cicula path on a flat oad, and the tension in a sting tied to a ball will cause the ball to move in a cicula path when you twil it aound.

14 Centipetal Foce Example #4: An astonaut in deep space twils a yo-yo on a sting. a) What type of foce causes the yo-yo to tavel in a cicle? Tension causes F c b) What would happen if the sting suddenly boke? The yo-yo would continue along a staight line accoding to Newton s Fist Law of Inetia.

15 Centipetal Foce Example #5: A ca with a mass of 2200 kg is ounding a cuve on a level oad. If the adius of the cuvatue of the oad is 52 m and the coefficient of static fiction between the ties and the oad is 0.70, what is the maximum speed at which the ca can make the cuve without skidding off the oad? Since Fc = F fs = μsf N = μmg and F c = mv kg (9. 81 m s 2) = s (2200kg)v 2 52m v = 19 m/s o 68 km/h

16 Centipetal Foce and Banked Cuves Cas and tucks can use fiction as a centipetal foce. Howeve, the amount of fiction vaies with oad conditions and can become vey small when oads ae wet o icy. As well, fiction causes wea and tea on ties causing them to wea out faste. Fo these easons, enginees who design highways whee speeds ae high with lage centipetal foces ae equied to incopoate anothe souce of centipetal foce banked cuves. Aiplanes also geneate a centipetal foce when they bank o tun.

17 Centipetal Foce and Banked Cuves Example #6: A ca (m = 1.1 x 10 3 kg) tavels aound a fictionless banked cuve of adius 85 m. The bank is 19 to the hoizontal. a) What foce povides the centipetal acceleation? The hoizontal component of F N acts towads the cente of the cicle and esults in Fc and theefoe a c. Note that F f is not needed to ceate Fc; only F Nx ceates Fc. b) What constant speed must the ca maintain to tavel safely aound the cuve? Since Fx: F c = F N sinθ ; ma c = F N sinθ #1 Fy: F g = F N cosθ; mg = F N cosθ; F N = mg cosθ #2 Sub 2 into 1: ma c = mg sinθ whee mass cancels cosθ v 2 = gtanθ v = gtanθ v = 17 m/s c) What happens if v > 17 m s? If v < 17 m s? Ca does not maintain position; slides up o down oad. F c

18 Centipetal Foce and Banked Cuves Example #7: Copy the scenaio fom Sample Poblem 3 on pg. 122 and attempt to solve. Note that this poblem incopoates fiction between the ties and oad to detemine the maximum speed at which a ca can maintain unifom cicula motion.

19 Centifugal Foce Sometimes when an object expeiences unifom cicula motion, an obseve moving elative to the object may feel as though thee ae othe foces acting on them. Ex: On a mey-go-ound you feel as though you ae being pushed to the outside of the ide o while tuning a cone shaply in a ca o on a bike you body feels as though it leans away; fom an inetial efeence fame you body wants to keep moving in a staight line elative to Eath (due to inetia) This is explained by the centifugal foce (Latin fo centefleeing) which is a fictitious foce in a non-inetial otating fame of efeence ; Newton s Laws do not apply in an acceleating efeence fame. Centifugal foces help to explain the peceived motion of objects in an acceleating efeence fame

20 Unifom Cicula Motion Read Section 3.4 on Rotating Fames of Refeence and Centifugal Foces pgs What challenges do long space jouneys pose? How could atificial gavity be ceated? Odyssey-Wide-Release-Taile-.html

21 Centipetal Foce and Vetical Motion Example #8: You ae playing with a yo-yo of mass 225 g by swinging it vetically. The full length of the sting is 1.2 m. a) Calculate the minimum speed at which you can swing the yo-yo while keeping it in a cicula path. Fc is caused by tension of sting. At the top of the swing if F T = 0, then v is min. To keep the yo-yo in a cicula path Fc Fg. F c Since F c = F T + F g and if F T = 0 Then F C = F g mv 2 v = = mg whee mass cancels 9. 81m/s m v = 3.4 m/s

22 Centipetal Foce and Vetical Motion Example #8 Continued: You ae playing with a yo-yo (m = 225 g) by swinging it vetically. The full length of the sting is 1.2 m. b) At the speed just detemined, what is the tension in the sting at the bottom of the swing? Since F: Fc = F T - Fg mv 2 = F T mg F T = 0.225g( )2 + (0. 225kg m ) 1.2m s 2 F T = N N F c F T = 4.4 N

23 Centipetal Foce and Vetical Motion Example #9: A olle coaste ca is at the lowest point on its cicula tack. The adius of cuvatue is 22 m. The appaent weight of one of the passenges is 3.0 times he tue weight (F N = 3.0Fg). Detemine the speed of the olle coaste. Since F c = F N F g mv 2 mv 2 = 3.0mg mg = 2. 0mg v = 2g whee mass cancels F N F c v = 2 22m 9. 81m/s 2 F g v = 21 m/s

24 Centipetal Foce and Vetical Motion Rolle coastes have evolved ove time. The cicula loop that was used almost a centuy ago has been eplaced by the clothoid loop found in moden looping coastes. Compae these 2 designs. Refe to Section 3.5 in you text Then and now..

25 Rolle Coaste Physics Check out these cool links: e-coaste-g-foces-weve-got-data.html _2013.pdf

PS113 Chapter 5 Dynamics of Uniform Circular Motion

PS113 Chapter 5 Dynamics of Uniform Circular Motion PS113 Chapte 5 Dynamics of Unifom Cicula Motion 1 Unifom cicula motion Unifom cicula motion is the motion of an object taveling at a constant (unifom) speed on a cicula path. The peiod T is the time equied

More information

Objective Notes Summary

Objective Notes Summary Objective Notes Summay An object moving in unifom cicula motion has constant speed but not constant velocity because the diection is changing. The velocity vecto in tangent to the cicle, the acceleation

More information

Chapter 5. Uniform Circular Motion. a c =v 2 /r

Chapter 5. Uniform Circular Motion. a c =v 2 /r Chapte 5 Unifom Cicula Motion a c =v 2 / Unifom cicula motion: Motion in a cicula path with constant speed s v 1) Speed and peiod Peiod, T: time fo one evolution Speed is elated to peiod: Path fo one evolution:

More information

Describing Circular motion

Describing Circular motion Unifom Cicula Motion Descibing Cicula motion In ode to undestand cicula motion, we fist need to discuss how to subtact vectos. The easiest way to explain subtacting vectos is to descibe it as adding a

More information

Chapter 5: Uniform Circular Motion

Chapter 5: Uniform Circular Motion Chapte 5: Unifom Cicula Motion Motion at constant speed in a cicle Centipetal acceleation Banked cuves Obital motion Weightlessness, atificial gavity Vetical cicula motion Centipetal Foce Acceleation towad

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Intoduction Ealie we defined acceleation as being the change in velocity with time: a = v t Until now we have only talked about changes in the magnitude of the acceleation: the speeding

More information

3.2 Centripetal Acceleration

3.2 Centripetal Acceleration unifom cicula motion the motion of an object with onstant speed along a cicula path of constant adius 3.2 Centipetal Acceleation The hamme thow is a tack-and-field event in which an athlete thows a hamme

More information

ω = θ θ o = θ θ = s r v = rω

ω = θ θ o = θ θ = s r v = rω Unifom Cicula Motion Unifom cicula motion is the motion of an object taveling at a constant(unifom) speed in a cicula path. Fist we must define the angula displacement and angula velocity The angula displacement

More information

Sections and Chapter 10

Sections and Chapter 10 Cicula and Rotational Motion Sections 5.-5.5 and Chapte 10 Basic Definitions Unifom Cicula Motion Unifom cicula motion efes to the motion of a paticle in a cicula path at constant speed. The instantaneous

More information

Physics 201 Homework 4

Physics 201 Homework 4 Physics 201 Homewok 4 Jan 30, 2013 1. Thee is a cleve kitchen gadget fo dying lettuce leaves afte you wash them. 19 m/s 2 It consists of a cylindical containe mounted so that it can be otated about its

More information

Chap 5. Circular Motion: Gravitation

Chap 5. Circular Motion: Gravitation Chap 5. Cicula Motion: Gavitation Sec. 5.1 - Unifom Cicula Motion A body moves in unifom cicula motion, if the magnitude of the velocity vecto is constant and the diection changes at evey point and is

More information

Circular Motion & Torque Test Review. The period is the amount of time it takes for an object to travel around a circular path once.

Circular Motion & Torque Test Review. The period is the amount of time it takes for an object to travel around a circular path once. Honos Physics Fall, 2016 Cicula Motion & Toque Test Review Name: M. Leonad Instuctions: Complete the following woksheet. SHOW ALL OF YOUR WORK ON A SEPARATE SHEET OF PAPER. 1. Detemine whethe each statement

More information

Centripetal Force. Lecture 11. Chapter 8. Course website:

Centripetal Force. Lecture 11. Chapter 8. Course website: Lectue 11 Chapte 8 Centipetal Foce Couse website: http://faculty.uml.edu/andiy_danylov/teaching/physicsi PHYS.1410 Lectue 11 Danylov Depatment of Physics and Applied Physics Today we ae going to discuss:

More information

PHYSICS 220. Lecture 08. Textbook Sections Lecture 8 Purdue University, Physics 220 1

PHYSICS 220. Lecture 08. Textbook Sections Lecture 8 Purdue University, Physics 220 1 PHYSICS 0 Lectue 08 Cicula Motion Textbook Sections 5.3 5.5 Lectue 8 Pudue Univesity, Physics 0 1 Oveview Last Lectue Cicula Motion θ angula position adians ω angula velocity adians/second α angula acceleation

More information

Circular Motion. Mr. Velazquez AP/Honors Physics

Circular Motion. Mr. Velazquez AP/Honors Physics Cicula Motion M. Velazquez AP/Honos Physics Objects in Cicula Motion Accoding to Newton s Laws, if no foce acts on an object, it will move with constant speed in a constant diection. Theefoe, if an object

More information

Chapter 8. Accelerated Circular Motion

Chapter 8. Accelerated Circular Motion Chapte 8 Acceleated Cicula Motion 8.1 Rotational Motion and Angula Displacement A new unit, adians, is eally useful fo angles. Radian measue θ(adians) = s = θ s (ac length) (adius) (s in same units as

More information

Physics 111 Lecture 5 Circular Motion

Physics 111 Lecture 5 Circular Motion Physics 111 Lectue 5 Cicula Motion D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Multiple Objects q A block of mass m1 on a ough, hoizontal suface is connected to a ball of mass m by a lightweight

More information

Physics 4A Chapter 8: Dynamics II Motion in a Plane

Physics 4A Chapter 8: Dynamics II Motion in a Plane Physics 4A Chapte 8: Dynamics II Motion in a Plane Conceptual Questions and Example Poblems fom Chapte 8 Conceptual Question 8.5 The figue below shows two balls of equal mass moving in vetical cicles.

More information

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible)

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible) Name: Class: Date: ID: A Quiz 6--Wok, Gavitation, Cicula Motion, Toque. (60 pts available, 50 points possible) Multiple Choice, 2 point each Identify the choice that best completes the statement o answes

More information

Physics 101 Lecture 6 Circular Motion

Physics 101 Lecture 6 Circular Motion Physics 101 Lectue 6 Cicula Motion Assist. Pof. D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Equilibium, Example 1 q What is the smallest value of the foce F such that the.0-kg block will not slide

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion constant speed Pick a point in the objects motion... What diection is the velocity? HINT Think about what diection the object would tavel if the sting wee cut Unifom Cicula Motion

More information

Chapter 5. really hard to start the object moving and then, once it starts moving, you don t have to push as hard to keep it moving.

Chapter 5. really hard to start the object moving and then, once it starts moving, you don t have to push as hard to keep it moving. Chapte 5 Fiction When an object is in motion it is usually in contact with a viscous mateial (wate o ai) o some othe suface. So fa, we have assumed that moving objects don t inteact with thei suoundings

More information

Name. Date. Period. Engage Examine the pictures on the left. 1. What is going on in these pictures?

Name. Date. Period. Engage Examine the pictures on the left. 1. What is going on in these pictures? AP Physics 1 Lesson 9.a Unifom Cicula Motion Outcomes 1. Define unifom cicula motion. 2. Detemine the tangential velocity of an object moving with unifom cicula motion. 3. Detemine the centipetal acceleation

More information

3.3 Centripetal Force

3.3 Centripetal Force 3.3 Centipetal Foce Think of a time when ou wee a passenge in a ca going aound a shap cue at high speed (Figue 1). If the ca wee going fast enough, ou might feel the side of the ca doo pushing on ou side.

More information

1) Consider a particle moving with constant speed that experiences no net force. What path must this particle be taking?

1) Consider a particle moving with constant speed that experiences no net force. What path must this particle be taking? Chapte 5 Test Cicula Motion and Gavitation 1) Conside a paticle moving with constant speed that expeiences no net foce. What path must this paticle be taking? A) It is moving in a paabola. B) It is moving

More information

Recap. Centripetal acceleration: v r. a = m/s 2 (towards center of curvature)

Recap. Centripetal acceleration: v r. a = m/s 2 (towards center of curvature) a = c v 2 Recap Centipetal acceleation: m/s 2 (towads cente of cuvatue) A centipetal foce F c is equied to keep a body in cicula motion: This foce poduces centipetal acceleation that continuously changes

More information

As observed from the frame of reference of the sidewalk:

As observed from the frame of reference of the sidewalk: Section 3.1: Inetial and Non-inetial Fames of Refeence Tutoial 1 Pactice, page 110 1. (a) When the ca is moving with constant velocity, I see the ball lie still on the floo. I would see the same situation

More information

PHYS 1114, Lecture 21, March 6 Contents:

PHYS 1114, Lecture 21, March 6 Contents: PHYS 1114, Lectue 21, Mach 6 Contents: 1 This class is o cially cancelled, being eplaced by the common exam Tuesday, Mach 7, 5:30 PM. A eview and Q&A session is scheduled instead duing class time. 2 Exam

More information

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed?

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 10, 2012 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information

Between any two masses, there exists a mutual attractive force.

Between any two masses, there exists a mutual attractive force. YEAR 12 PHYSICS: GRAVITATION PAST EXAM QUESTIONS Name: QUESTION 1 (1995 EXAM) (a) State Newton s Univesal Law of Gavitation in wods Between any two masses, thee exists a mutual attactive foce. This foce

More information

DYNAMICS OF UNIFORM CIRCULAR MOTION

DYNAMICS OF UNIFORM CIRCULAR MOTION Chapte 5 Dynamics of Unifom Cicula Motion Chapte 5 DYNAMICS OF UNIFOM CICULA MOTION PEVIEW An object which is moing in a cicula path with a constant speed is said to be in unifom cicula motion. Fo an object

More information

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session.

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session. - 5 - TEST 1R This is the epeat vesion of TEST 1, which was held duing Session. This epeat test should be attempted by those students who missed Test 1, o who wish to impove thei mak in Test 1. IF YOU

More information

Physics 2001 Problem Set 5 Solutions

Physics 2001 Problem Set 5 Solutions Physics 2001 Poblem Set 5 Solutions Jeff Kissel Octobe 16, 2006 1. A puck attached to a sting undegoes cicula motion on an ai table. If the sting beaks at the point indicated in the figue, which path (A,

More information

Lab #9: The Kinematics & Dynamics of. Circular Motion & Rotational Motion

Lab #9: The Kinematics & Dynamics of. Circular Motion & Rotational Motion Reading Assignment: Lab #9: The Kinematics & Dynamics of Cicula Motion & Rotational Motion Chapte 6 Section 4 Chapte 11 Section 1 though Section 5 Intoduction: When discussing motion, it is impotant to

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In Chaptes 2 and 4 we have studied kinematics, i.e., we descibed the motion of objects using paametes such as the position vecto, velocity, and acceleation without any insights

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In chaptes 2 and 4 we have studied kinematics i.e. descibed the motion of objects using paametes such as the position vecto, velocity and acceleation without any insights as to

More information

Physics 1114: Unit 5 Hand-out Homework (Answers)

Physics 1114: Unit 5 Hand-out Homework (Answers) Physics 1114: Unit 5 Hand-out Homewok (Answes) Poblem set 1 1. The flywheel on an expeimental bus is otating at 420 RPM (evolutions pe minute). To find (a) the angula velocity in ad/s (adians/second),

More information

Circular motion. Objectives. Physics terms. Assessment. Equations 5/22/14. Describe the accelerated motion of objects moving in circles.

Circular motion. Objectives. Physics terms. Assessment. Equations 5/22/14. Describe the accelerated motion of objects moving in circles. Cicula motion Objectives Descibe the acceleated motion of objects moving in cicles. Use equations to analyze the acceleated motion of objects moving in cicles.. Descibe in you own wods what this equation

More information

ROTATORY MOTION HORIZONTAL AND VERTICAL CIRCULAR MOTION

ROTATORY MOTION HORIZONTAL AND VERTICAL CIRCULAR MOTION ROTATORY MOTION HORIZONTAL AND VERTICAL CIRCULAR MOTION POINTS TO REMEMBER 1. Tanslatoy motion: Evey point in the body follows the path of its peceding one with same velocity including the cente of mass..

More information

Motion in a Plane Uniform Circular Motion

Motion in a Plane Uniform Circular Motion Lectue 11 Chapte 8 Physics I Motion in a Plane Unifom Cicula Motion Couse website: http://faculty.uml.edu/andiy_danylo/teaching/physicsi PHYS.1410 Lectue 11 Danylo Depatment of Physics and Applied Physics

More information

AP Physics 1 - Circular Motion and Gravitation Practice Test (Multiple Choice Section) Answer Section

AP Physics 1 - Circular Motion and Gravitation Practice Test (Multiple Choice Section) Answer Section AP Physics 1 - Cicula Motion and Gaitation Pactice est (Multiple Choice Section) Answe Section MULIPLE CHOICE 1. B he centipetal foce must be fiction since, lacking any fiction, the coin would slip off.

More information

Motion along curved path *

Motion along curved path * OpenStax-CNX module: m14091 1 Motion along cuved path * Sunil Kuma Singh This wok is poduced by OpenStax-CNX and licensed unde the Ceative Commons Attibution License 2.0 We all expeience motion along a

More information

Physics 111. Lecture 14 (Walker: Ch. 6.5) Circular Motion Centripetal Acceleration Centripetal Force February 27, 2009

Physics 111. Lecture 14 (Walker: Ch. 6.5) Circular Motion Centripetal Acceleration Centripetal Force February 27, 2009 Physics 111 Lectue 14 (Walke: Ch. 6.5) Cicula Motion Centipetal Acceleation Centipetal Foce Febuay 7, 009 Midtem Exam 1 on Wed. Mach 4 (Chaptes 1-6) Lectue 14 1/8 Connected Objects If thee is a pulley,

More information

Unit 4 Circular Motion and Centripetal Force

Unit 4 Circular Motion and Centripetal Force Name: Unit 4 Cicula Motion and Centipetal Foce H: Gading: Show all wok, keeping it neat and oganized. Show equations used and include all units. Vocabulay Peiod: the time it takes fo one complete evolution

More information

CHAPTER 5: Circular Motion; Gravitation

CHAPTER 5: Circular Motion; Gravitation CHAPER 5: Cicula Motion; Gavitation Solution Guide to WebAssign Pobles 5.1 [1] (a) Find the centipetal acceleation fo Eq. 5-1.. a R v ( 1.5 s) 1.10 1.4 s (b) he net hoizontal foce is causing the centipetal

More information

( ) 2. Chapter 3 Review, pages Knowledge

( ) 2. Chapter 3 Review, pages Knowledge Chapte 3 Review, pages 140 145 Knowledge 1. (a). (a) 3. (b) 4. (b) 5. (c) 6. (d) 7. False. An amusement pak ide moving down with a constant velocity is an example of an inetial fame of efeence. 8. Tue

More information

Chapter 7-8 Rotational Motion

Chapter 7-8 Rotational Motion Chapte 7-8 Rotational Motion What is a Rigid Body? Rotational Kinematics Angula Velocity ω and Acceleation α Unifom Rotational Motion: Kinematics Unifom Cicula Motion: Kinematics and Dynamics The Toque,

More information

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary 7 Cicula Motion 7-1 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o

More information

Universal Gravitation

Universal Gravitation Chapte 1 Univesal Gavitation Pactice Poblem Solutions Student Textbook page 580 1. Conceptualize the Poblem - The law of univesal gavitation applies to this poblem. The gavitational foce, F g, between

More information

Hoizontal Cicula Motion 1. A paticle of mass m is tied to a light sting and otated with a speed v along a cicula path of adius. If T is tension in the sting and mg is gavitational foce on the paticle then,

More information

CIRCULAR MOTION. Particle moving in an arbitrary path. Particle moving in straight line

CIRCULAR MOTION. Particle moving in an arbitrary path. Particle moving in straight line 1 CIRCULAR MOTION 1. ANGULAR DISPLACEMENT Intoduction: Angle subtended by position vecto of a paticle moving along any abitay path w..t. some fixed point is called angula displacement. (a) Paticle moving

More information

b) (5) What average force magnitude was applied by the students working together?

b) (5) What average force magnitude was applied by the students working together? Geneal Physics I Exam 3 - Chs. 7,8,9 - Momentum, Rotation, Equilibium Nov. 3, 2010 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults

More information

AP * PHYSICS B. Circular Motion, Gravity, & Orbits. Teacher Packet

AP * PHYSICS B. Circular Motion, Gravity, & Orbits. Teacher Packet AP * PHYSICS B Cicula Motion, Gavity, & Obits Teache Packet AP* is a tademak of the College Entance Examination Boad. The College Entance Examination Boad was not involved in the poduction of this mateial.

More information

Introduction to Mechanics Centripetal Force

Introduction to Mechanics Centripetal Force Intoduction to Mechanics Centipetal Foce Lana heidan De Anza College Ma 9, 2016 Last time intoduced unifom cicula motion centipetal foce Oveview using the idea of centipetal foce Detemine (a) the astonaut

More information

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block?

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 13, 2010 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 6- THE LAW OF GRAVITATION Essential Idea: The Newtonian idea of gavitational foce acting between two spheical bodies and the laws of mechanics

More information

( ) ( ) 1.4 m ( ) Section 3.2: Centripetal Acceleration Tutorial 1 Practice, page Given: r = 25 km = m; v = 50.0 m/s. Required: a!

( ) ( ) 1.4 m ( ) Section 3.2: Centripetal Acceleration Tutorial 1 Practice, page Given: r = 25 km = m; v = 50.0 m/s. Required: a! Section 3.2: Centipetal Acceleation Tutoial 1 Pactice, page 118 1. Given: 25 km 2.5 10 4 m; v 50.0 m/s Requied: Analysis: Solution: ( 50.0 m/s) 2 2.5!10 4 m 0.10 m/s 2 Statement: The magnitude of the centipetal

More information

Kinematics in 2-D (II)

Kinematics in 2-D (II) Kinematics in 2-D (II) Unifom cicula motion Tangential and adial components of Relative velocity and acceleation a Seway and Jewett 4.4 to 4.6 Pactice Poblems: Chapte 4, Objective Questions 5, 11 Chapte

More information

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and Exta notes fo cicula motion: Cicula motion : v keeps changing, maybe both speed and diection ae changing. At least v diection is changing. Hence a 0. Acceleation NEEDED to stay on cicula obit: a cp v /,

More information

Chapter 4. Newton s Laws of Motion. Newton s Law of Motion. Sir Isaac Newton ( ) published in 1687

Chapter 4. Newton s Laws of Motion. Newton s Law of Motion. Sir Isaac Newton ( ) published in 1687 Chapte 4 Newton s Laws of Motion 1 Newton s Law of Motion Si Isaac Newton (1642 1727) published in 1687 2 1 Kinematics vs. Dynamics So fa, we discussed kinematics (chaptes 2 and 3) The discussion, was

More information

1. A stone falls from a platform 18 m high. When will it hit the ground? (a) 1.74 s (b) 1.83 s (c) 1.92 s (d) 2.01 s

1. A stone falls from a platform 18 m high. When will it hit the ground? (a) 1.74 s (b) 1.83 s (c) 1.92 s (d) 2.01 s 1. A stone falls fom a platfom 18 m high. When will it hit the gound? (a) 1.74 s (b) 1.83 s (c) 1.9 s (d).01 s Constant acceleation D = v 0 t + ½ a t. Which, if any, of these foces causes the otation of

More information

MAGNETIC FIELD INTRODUCTION

MAGNETIC FIELD INTRODUCTION MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a noth-south diection (the compass needle). The noth end is called the Noth Pole (N-pole),

More information

AP Centripetal Acceleration Lab

AP Centripetal Acceleration Lab AP PHYSICS NAME: PERIOD: DATE: GRADE: DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP Centipetal Acceleation Lab Note: Data collection will be done by table goups. Data analysis is to be done individually. Copying

More information

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet Linea and angula analogs Linea Rotation x position x displacement v velocity a T tangential acceleation Vectos in otational motion Use the ight hand ule to detemine diection of the vecto! Don t foget centipetal

More information

Circular Motion. x-y coordinate systems. Other coordinates... PHY circular-motion - J. Hedberg

Circular Motion. x-y coordinate systems. Other coordinates... PHY circular-motion - J. Hedberg Cicula Motion PHY 207 - cicula-motion - J. Hedbeg - 2017 x-y coodinate systems Fo many situations, an x-y coodinate system is a geat idea. Hee is a map on Manhattan. The steets ae laid out in a ectangula

More information

Centripetal Force OBJECTIVE INTRODUCTION APPARATUS THEORY

Centripetal Force OBJECTIVE INTRODUCTION APPARATUS THEORY Centipetal Foce OBJECTIVE To veify that a mass moving in cicula motion expeiences a foce diected towad the cente of its cicula path. To detemine how the mass, velocity, and adius affect a paticle's centipetal

More information

Circular-Rotational Motion Mock Exam. Instructions: (92 points) Answer the following questions. SHOW ALL OF YOUR WORK.

Circular-Rotational Motion Mock Exam. Instructions: (92 points) Answer the following questions. SHOW ALL OF YOUR WORK. AP Physics C Sping, 2017 Cicula-Rotational Motion Mock Exam Name: Answe Key M. Leonad Instuctions: (92 points) Answe the following questions. SHOW ALL OF YOUR WORK. ( ) 1. A stuntman dives a motocycle

More information

6.4 Period and Frequency for Uniform Circular Motion

6.4 Period and Frequency for Uniform Circular Motion 6.4 Peiod and Fequency fo Unifom Cicula Motion If the object is constained to move in a cicle and the total tangential foce acting on the total object is zeo, F θ = 0, then (Newton s Second Law), the tangential

More information

Chapter 4. Newton s Laws of Motion

Chapter 4. Newton s Laws of Motion Chapte 4 Newton s Laws of Motion 4.1 Foces and Inteactions A foce is a push o a pull. It is that which causes an object to acceleate. The unit of foce in the metic system is the Newton. Foce is a vecto

More information

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart Rotational Motion & Angula Momentum Rotational Motion Evey quantity that we have studied with tanslational motion has a otational countepat TRANSLATIONAL ROTATIONAL Displacement x Angula Position Velocity

More information

Gaia s Place in Space

Gaia s Place in Space Gaia s Place in Space The impotance of obital positions fo satellites Obits and Lagange Points Satellites can be launched into a numbe of diffeent obits depending on thei objectives and what they ae obseving.

More information

Translation and Rotation Kinematics

Translation and Rotation Kinematics Tanslation and Rotation Kinematics Oveview: Rotation and Tanslation of Rigid Body Thown Rigid Rod Tanslational Motion: the gavitational extenal foce acts on cente-of-mass F ext = dp sy s dt dv total cm

More information

ISSUED BY K V - DOWNLOADED FROM CIRCULAR MOTION

ISSUED BY K V - DOWNLOADED FROM  CIRCULAR MOTION K.V. Silcha CIRCULAR MOTION Cicula Motion When a body moves such that it always emains at a fixed distance fom a fixed point then its motion is said to be cicula motion. The fixed distance is called the

More information

constant t [rad.s -1 ] v / r r [m.s -2 ] (direction: towards centre of circle / perpendicular to circle)

constant t [rad.s -1 ] v / r r [m.s -2 ] (direction: towards centre of circle / perpendicular to circle) VISUAL PHYSICS ONLINE MODULE 5 ADVANCED MECHANICS NON-UNIFORM CIRCULAR MOTION Equation of a cicle x y Angula displacement [ad] Angula speed d constant t [ad.s -1 ] dt Tangential velocity v v [m.s -1 ]

More information

Force can be exerted by direct contact between bodies: Contact Force.

Force can be exerted by direct contact between bodies: Contact Force. Chapte 4, Newton s Laws of Motion Chapte IV NEWTON S LAWS OF MOTION Study of Dynamics: cause of motion (foces) and the esistance of objects to motion (mass), also called inetia. The fundamental Pinciples

More information

Pearson Physics Level 20 Unit III Circular Motion, Work, and Energy: Chapter 5 Solutions

Pearson Physics Level 20 Unit III Circular Motion, Work, and Energy: Chapter 5 Solutions Peason Physics Level 0 Unit III Cicula Motion, Wok, and Enegy: Chapte 5 Solutions Student Book page 4 Concept Check 1. he axis of otation is though the cente of the Fisbee diected staight up and down..

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 6: motion in two and three dimensions III. Slide 6-1

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 6: motion in two and three dimensions III. Slide 6-1 Physics 1501 Fall 2008 Mechanics, Themodynamics, Waves, Fluids Lectue 6: motion in two and thee dimensions III Slide 6-1 Recap: elative motion An object moves with velocity v elative to one fame of efeence.

More information

to point uphill and to be equal to its maximum value, in which case f s, max = μsfn

to point uphill and to be equal to its maximum value, in which case f s, max = μsfn Chapte 6 16. (a) In this situation, we take f s to point uphill and to be equal to its maximum value, in which case f s, max = μsf applies, whee μ s = 0.5. pplying ewton s second law to the block of mass

More information

Chapter 12. Kinetics of Particles: Newton s Second Law

Chapter 12. Kinetics of Particles: Newton s Second Law Chapte 1. Kinetics of Paticles: Newton s Second Law Intoduction Newton s Second Law of Motion Linea Momentum of a Paticle Systems of Units Equations of Motion Dynamic Equilibium Angula Momentum of a Paticle

More information

Rotatoy Motion Hoizontal Cicula Motion In tanslatoy motion, evey point in te body follows te pat of its pecedin one wit same velocity includin te cente of mass In otatoy motion, evey point move wit diffeent

More information

21 MAGNETIC FORCES AND MAGNETIC FIELDS

21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 1 MAGNETIC ORCES AND MAGNETIC IELDS ANSWERS TO OCUS ON CONCEPTS QUESTIONS 1. (d) Right-Hand Rule No. 1 gives the diection of the magnetic foce as x fo both dawings A and. In dawing C, the velocity

More information

Circular Orbits. and g =

Circular Orbits. and g = using analyse planetay and satellite motion modelled as unifom cicula motion in a univesal gavitation field, a = v = 4π and g = T GM1 GM and F = 1M SATELLITES IN OBIT A satellite is any object that is

More information

ΣF = r r v. Question 213. Checkpoints Chapter 6 CIRCULAR MOTION

ΣF = r r v. Question 213. Checkpoints Chapter 6 CIRCULAR MOTION Unit 3 Physics 16 6. Cicula Motion Page 1 of 9 Checkpoints Chapte 6 CIRCULAR MOTION Question 13 Question 8 In unifom cicula motion, thee is a net foce acting adially inwads. This net foce causes the elocity

More information

2013 Checkpoints Chapter 6 CIRCULAR MOTION

2013 Checkpoints Chapter 6 CIRCULAR MOTION 013 Checkpoints Chapte 6 CIRCULAR MOTIO Question 09 In unifom cicula motion, thee is a net foce acting adially inwads. This net foce causes the elocity to change (in diection). Since the speed is constant,

More information

Lecture 13. Rotational motion Moment of inertia

Lecture 13. Rotational motion Moment of inertia Lectue 13 Rotational motion Moment of inetia EXAM 2 Tuesday Mach 6, 2018 8:15 PM 9:45 PM Today s Topics: Rotational Motion and Angula Displacement Angula Velocity and Acceleation Rotational Kinematics

More information

Understanding the Concepts

Understanding the Concepts Chistian Bache Phsics Depatment Bn Maw College Undestanding the Concepts PHYSICS 101-10 Homewok Assignment #5 - Solutions 5.7. A cclist making a tun must make use of a centipetal foce, one that is pependicula

More information

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions )

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions ) 06 - ROTATIONAL MOTION Page ) A body A of mass M while falling vetically downwads unde gavity beaks into two pats, a body B of mass ( / ) M and a body C of mass ( / ) M. The cente of mass of bodies B and

More information

Relative motion (Translating axes)

Relative motion (Translating axes) Relative motion (Tanslating axes) Paticle to be studied This topic Moving obseve (Refeence) Fome study Obseve (no motion) bsolute motion Relative motion If motion of the efeence is known, absolute motion

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

Chapter 7. Rotational Motion Angles, Angular Velocity and Angular Acceleration Universal Law of Gravitation Kepler s Laws

Chapter 7. Rotational Motion Angles, Angular Velocity and Angular Acceleration Universal Law of Gravitation Kepler s Laws Chapte 7 Rotational Motion Angles, Angula Velocity and Angula Acceleation Univesal Law of Gavitation Keple s Laws Angula Displacement Cicula motion about AXIS Thee diffeent measues of angles: 1. Degees.

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 5

PHYS Summer Professor Caillault Homework Solutions. Chapter 5 PHYS 1111 - Summe 2007 - Pofesso Caillault Homewok Solutions Chapte 5 7. Pictue the Poblem: The ball is acceleated hoizontally fom est to 98 mi/h ove a distance of 1.7 m. Stategy: Use equation 2-12 to

More information

A car of mass m, traveling at constant speed, rides over the top of a circularly shaped hill as shown.

A car of mass m, traveling at constant speed, rides over the top of a circularly shaped hill as shown. A ca of mass m, taveling at constant speed, ides ove the top of a ciculaly shaped hill as shown. The magnitude of the nomal foce N of the oad on the ca is. A) Geate than the weight of the ca, N > mg. B)

More information

Momentum is conserved if no external force

Momentum is conserved if no external force Goals: Lectue 13 Chapte 9 v Employ consevation of momentum in 1 D & 2D v Examine foces ove time (aka Impulse) Chapte 10 v Undestand the elationship between motion and enegy Assignments: l HW5, due tomoow

More information

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N Chapte answes Heinemann Physics 4e Section. Woked example: Ty youself.. GRAVITATIONAL ATTRACTION BETWEEN SMALL OBJECTS Two bowling balls ae sitting next to each othe on a shelf so that the centes of the

More information

10. Force is inversely proportional to distance between the centers squared. R 4 = F 16 E 11.

10. Force is inversely proportional to distance between the centers squared. R 4 = F 16 E 11. NSWRS - P Physics Multiple hoice Pactice Gavitation Solution nswe 1. m mv Obital speed is found fom setting which gives v whee M is the object being obited. Notice that satellite mass does not affect obital

More information

Class 6 - Circular Motion and Gravitation

Class 6 - Circular Motion and Gravitation Class 6 - Cicula Motion and Gavitation pdf vesion [http://www.ic.sunysb.edu/class/phy141d/phy131pdfs/phy131class6.pdf] Fequency and peiod Fequency (evolutions pe second) [ o ] Peiod (tie fo one evolution)

More information

MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: MOTION OF PLANETS AND SATELLITES VISUAL PHYSICS ONLINE

MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: MOTION OF PLANETS AND SATELLITES VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLIN MODUL 5 ADVANCD MCHANICS GRAVITATIONAL FILD: MOTION OF PLANTS AND SATLLITS SATLLITS: Obital motion of object of mass m about a massive object of mass M (m

More information

Answers to test yourself questions

Answers to test yourself questions Answes to test youself questions opic. Cicula motion π π a he angula speed is just ω 5. 7 ad s. he linea speed is ω 5. 7 3. 5 7. 7 m s.. 4 b he fequency is f. 8 s.. 4 3 a f. 45 ( 3. 5). m s. 3 a he aeage

More information