ΣF = r r v. Question 213. Checkpoints Chapter 6 CIRCULAR MOTION

Size: px
Start display at page:

Download "ΣF = r r v. Question 213. Checkpoints Chapter 6 CIRCULAR MOTION"

Transcription

1 Unit 3 Physics Cicula Motion Page 1 of 9 Checkpoints Chapte 6 CIRCULAR MOTION Question 13 Question 8 In unifom cicula motion, thee is a net foce acting adially inwads. This net foce causes the elocity to change (in diection). Since the speed is constant, the KE (½ ) is also constant. B C D Question 9 Fo all cicula motion the net foce is always adially inwads. The foce is always towads Giselda. Question ΣF N Question 11 x Nx m m/s As soon as the foce ceases to be applied, the hamme will continue in the diection it was taelling. The hamme will leae tangentially to the cicle it was moing in. ΣF + N N N Question 14 ΣF m/s Question 15 Question 1 The ball will lose contact and fall off, at the point C, if the acceleation at the point C, due to its motion, is less than ms -. This will be because when this occus the weight foce will cause the ball to fall. Σa ms -, which is less than ms -. Yes the ball will fall off Because the caiage is moing, it is undegoing cicula motion at this point, so the foce fom the seat must be geate than the weight foce, the net foce is acting up.

2 Unit 3 Physics Cicula Motion Page of 9 Question 16 ΣF R - R + The eaction foce, R +. R >, so Jim 'feels' heaie. C Question 17 Σa 5 ms - Question 18 The eaction foce, R R N Jim will feel times as heay 65 Jim will feel 5% heaie C Question 19 At the top of a hill the foce diagam looks like this: Question Σa Question 1 a ms - ΣF - R R - R m - m R This means that since the oad is not pushing up on the tuck, then the tuck is not pushing down on the oad. Theefoe thee isn't a contact foce between the tuck and the oad, so the tuck is not in contact with the oad. Question The loss in PE must equal the gain in KE. Δ h Δ KE ½ m/s 1 m/s Question 3 KE D KE c - h J ½ m/s Question 4 ΣF - R R - R is less than, so Jim 'feels' lighte.

3 Unit 3 Physics Cicula Motion Page 3 of 9 ΣF + N N N Question 5 With no othe foces, the combined weight of the ca and passenges is W 5. The nomal eaction at the top of the loop is 5% of this alue, hence the passenges will feel a 5% eduction in thei weight. Question 6 Speed distance taelled time taken π T π 3.14 m/s So at the top, because N -, you actually feel lighte and at the bottom N +, makes you feel heaie. Question 9 Question 7 ΣF N Question 3 Question 8 At the top of the wheel ΣF + N N - At the bottom of the wheel ΣF N - N + Since the ca is moing in a hoizontal cicle, the net foce must be acting adially inwads (hoizontally). Fo this you can't esole the weight foce, because it is pependicula to the net foce. You hae to esole the nomal eaction.

4 Unit 3 Physics Cicula Motion Page 4 of 9 lage enough foce acting adially inwads. The oad is going to need to supply this exta foce. Line B epesents the foce fom the oad. The component of this foce acting hoizontal and adially inwads will assist the ca to complete the cone. ΣF Nsin15 D Question 31 Question 3 Ncos15 + Ncos15 C ΣF Nsin15 ΣF N sin15 Ncos15 + N cos15 sin15 cos15 gtan15 g tan tan15 1 m/s Question 33 Line C is acting etically downwads fom the cente of mass, it is the gaity foce on the weight. Line A is acting pependicula to the oad suface, if it was shown acting fom the oad, not the cente of mass, then it would be the nomal eaction foce of oad on ca. As the ca is taelling faste than the ecommended speed it is going to need some exta assistance (fom the oad) in getting a Question 34 Line C is acting etically downwads fom the cente of mass, it is the gaity foce on the weight. Line A is acting pependicula to the oad suface, if it was shown acting fom the oad, not the cente of mass, then it would be the nomal eaction foce of oad on ca. As the ca is taelling slowe than the ecommended speed it is going to exet a foce on the oad that is outwad as in line D Question 35 The net foce is calculated fom Fm Be caeful with you substitutions; the mass of g is. kg and the adius of 8 cm is.8 m 5 F..8 The magnitude of the net foce is F 3.1 N Question 36 Question 37 Weight Tension T pole The net foce acting adially inwads is 3.15N. the hoizontal component of the tension Tsinθ gies: Tsinθ 3.15 and the etical component of the tension Tcosθ gies:

5 Unit 3 Physics Cicula Motion Page 5 of 9 Tcosθ Tcosθ. 1 Squae both equations T sin θ + T cos θ T (sin θ + cos θ).7656 T.7656 T 3.8 N Question 38 Use Tcosθ 1 3.8(11)cosθ 1 1 cosθ θ 7 Question 39 At the top of the ide, Σ Fm ΣF N Question 4 The actual foces applied to the cage ae the tensions fom each cable and the weight Tcos T + 5 T (315 5) 1.73 T 36.8 T is ey close to 36N Question m The total enegy of the system will emain constant. At the top Total Enegy KE top + GPE top ½mu + h top whee u is the speed at the top At the bottom, Total Enegy KE bottom + GPE bottom ½ + h bottom whee is the speed at the bottom ½mu + h top ½ + h bottom h top - h bottom ½ - ½mu (h top - h bottom ) ½ 5 ½ 5 5 (16) (whee the distance between the top and the bottom is the diamete of 16m) m/s Question 4 At the bottom of the ide, ΣFm ΣF The actual foces applied to the cage ae the tensions fom each cable and the foce of gaity Tcos3 (Assuming the positie diection is up) T 5 T ( ) 1.73 T N Theefoe if the speed at the bottom of the ide is.5 m/s, then the tension in the cable at the bottom of the ide is geate than the tension in the cable at the top of the ide (36N fom befoe). Question 43 At the bottom of the ide, ΣFm ΣF The actual foces applied to the cage ae the tensions fom each cable and the foce of gaity. Tcos3 (Assuming the positie diection is up) 1.73T 5 T ( + 5) 1.73 T 598 N

6 Unit 3 Physics Cicula Motion Page 6 of 9 Question 44 ( Q1, m, 85%) F net m m/s 5 Question 45 ( Q, m, 87%) Acceleation 5 but it is also equal to F 11 m 7 16 m/s (In this case using F is bette, because it is m data that is poided in the question stem.) You could use this answe to check you answe to the peious question. Question 46 ( Q5, m, 47%) The two foces acting ae the weight, which acts etically down, and the Nomal eaction, which is pependicula to the suface. The sum of the two ectos should look like a hoizontal line pointing adially inwads. one hoizontal (Nsinθ substitute m. We can N cosθ into the hoizontal equation, as this will eliminate the unknowns, N and m. sinθ N cosθ m, which will gie tanθ g On substitution, tanθ.1 θ 5.7 Question 48 ( Q7, m, 85%) The ides will feel as if they hae no weight if the nomal eaction is zeo. This means that at the point C, the net foce acting on the ides must be. m g g ms -1. Question 47 ( Q6, 3m, 5%) If thee is to be no sideways fictional foce between the tyes and the tack, then the two ectos need to combine to gie a hoizontal ecto, adially inwads. Question 49 (11 Q4, 1m, 84%) This is unifom cicula motion so use ΣF 3 15 ΣF ΣF 3375 ΣF N This is a ey lage ide o a ey heay bike!!! If the nomal ecto is esoled into two components, one etical (Ncosθ ) and

7 Unit 3 Physics Cicula Motion Page 7 of 9 Question 5 (11 Q5, m, 5%) The only two foces acting ae the weight foce, acting down and the nomal eaction fom the suface, acting pependicula to the suface. They must add togethe to gie the esultant foce ΣF, which is adially inwads. N ΣF You could esole the Nomal ecto into two components, one pependicula and the othe hoizontal. Question 53 (11 Q, m, 5%) Since the nomal is zeo, Melanie will be appaently weightless. This is because she is in fee fall, acceleating down at ms -. N Question 54 (11 Q11, 3m, 54%) At the bottom, N N N 71 N Nsinθ Fom this we get that Nsinθ and Ncosθ Question 51 (11 Q6, m, 65%) N θ Ncosθ Question 55 (1 Q7a, m, 8%) Use ΣF ma T m/s Use Tanθ Rg 15 tanθ θ 48.4 Question 56 (1 Q7b, 1m, 75%) The sphee will fly off tangentially. Question 5 (11 Q9, m, 74%) When the ca is just about to leae the ails, the nomal eaction is zeo. At A, ΣF N + N +, but N g g ms -1 Rounded coectly to one decimal place

8 Unit 3 Physics Cicula Motion Page 8 of 9 Question 57 (1 Q7c, 3m, 33%) Conside the motion to be etical, at constant speed. Question 58 (13 Q4a, m, 6%) N F net T At the top of the path, thee ae two foces acting on the sphee, its weight,, and the tension fom the sting T. ΣF ma Becomes T + T -. At the bottom of the cicle, the situation looks like. T The two foces acting ae the weight foce (fom the cente of mass) acting etically downwads, and the Nomal eaction, which is a foce pependicula to the banked suface. The net foce is a ecto acting adially inwads (it had to be hoizontal). The question didn t ask you to label, and N. Good physics means that you do. Also it s bette to be safe than soy. Question 59 (13 Q4b, m, 54%) This question einfoces the need to hae the fomula on the cheat sheet, een though it is not on the couse. Use tanθ g 5 tanθ θ 7.1 ΣF ma Becomes T - T +. Since is constant, the tension at the bottom is lage than the foce at the top. the tension in the sting is geate at the bottom of the cicula path. Question 6 (13 Q5a, 1m, 68%) Since the mass is taelling at a constant speed, the net foce is adially inwads. D Question 61 (13 Q5b, 3m, 43%) At the point S thee ae two foces acting on the mass. The weight is acting down, and the tension foce is up. Since the net foce is up, ΣF ma ma T a 7 1

9 Unit 3 Physics Cicula Motion Page 9 of 9 49 m/s. 49 T. T 118 N Question 6 (14 Q4a, m, 7%) Fo May and Bob to feel weightless, the Nomal eaction must be zeo. / g / / m/s Question 63 (14 Q4b, 3m, 4%) At this speed, May and Bob ae in fee fall. The nomal eaction is zeo, so the only foce acting on them is the foce due to gaity. This is the conditions fo appaent weightlessness. Question 64 (14 Q4c, 3m, 67%) N F The weight is acting down fom the cente of mass. The nomal is etically upwads, fom the suface. The nomal ecto is lage than the weight ecto. The esultant foce is acting upwads

2013 Checkpoints Chapter 6 CIRCULAR MOTION

2013 Checkpoints Chapter 6 CIRCULAR MOTION 013 Checkpoints Chapte 6 CIRCULAR MOTIO Question 09 In unifom cicula motion, thee is a net foce acting adially inwads. This net foce causes the elocity to change (in diection). Since the speed is constant,

More information

Motion in a Plane Uniform Circular Motion

Motion in a Plane Uniform Circular Motion Lectue 11 Chapte 8 Physics I Motion in a Plane Unifom Cicula Motion Couse website: http://faculty.uml.edu/andiy_danylo/teaching/physicsi PHYS.1410 Lectue 11 Danylo Depatment of Physics and Applied Physics

More information

Centripetal Force. Lecture 11. Chapter 8. Course website:

Centripetal Force. Lecture 11. Chapter 8. Course website: Lectue 11 Chapte 8 Centipetal Foce Couse website: http://faculty.uml.edu/andiy_danylov/teaching/physicsi PHYS.1410 Lectue 11 Danylov Depatment of Physics and Applied Physics Today we ae going to discuss:

More information

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE.

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE. Unit 6 actice Test 1. Which one of the following gaphs best epesents the aiation of the kinetic enegy, KE, and of the gaitational potential enegy, GE, of an obiting satellite with its distance fom the

More information

DYNAMICS OF UNIFORM CIRCULAR MOTION

DYNAMICS OF UNIFORM CIRCULAR MOTION Chapte 5 Dynamics of Unifom Cicula Motion Chapte 5 DYNAMICS OF UNIFOM CICULA MOTION PEVIEW An object which is moing in a cicula path with a constant speed is said to be in unifom cicula motion. Fo an object

More information

PROJECTILE MOTION. At any given point in the motion, the velocity vector is always a tangent to the path.

PROJECTILE MOTION. At any given point in the motion, the velocity vector is always a tangent to the path. PROJECTILE MOTION A pojectile is any object that has been thown though the ai. A foce must necessaily set the object in motion initially but, while it is moing though the ai, no foce othe than gaity acts

More information

Answers to test yourself questions

Answers to test yourself questions Answes to test youself questions opic. Cicula motion π π a he angula speed is just ω 5. 7 ad s. he linea speed is ω 5. 7 3. 5 7. 7 m s.. 4 b he fequency is f. 8 s.. 4 3 a f. 45 ( 3. 5). m s. 3 a he aeage

More information

AP Physics 1 - Circular Motion and Gravitation Practice Test (Multiple Choice Section) Answer Section

AP Physics 1 - Circular Motion and Gravitation Practice Test (Multiple Choice Section) Answer Section AP Physics 1 - Cicula Motion and Gaitation Pactice est (Multiple Choice Section) Answe Section MULIPLE CHOICE 1. B he centipetal foce must be fiction since, lacking any fiction, the coin would slip off.

More information

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE.

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE. Unit 6 actice Test 1. Which one of the following gaphs best epesents the aiation of the kinetic enegy, KE, and of the gaitational potential enegy, GE, of an obiting satellite with its distance fom the

More information

3.3 Centripetal Force

3.3 Centripetal Force 3.3 Centipetal Foce Think of a time when ou wee a passenge in a ca going aound a shap cue at high speed (Figue 1). If the ca wee going fast enough, ou might feel the side of the ca doo pushing on ou side.

More information

Chapters 5-8. Dynamics: Applying Newton s Laws

Chapters 5-8. Dynamics: Applying Newton s Laws Chaptes 5-8 Dynamics: Applying Newton s Laws Systems of Inteacting Objects The Fee Body Diagam Technique Examples: Masses Inteacting ia Nomal Foces Masses Inteacting ia Tensions in Ropes. Ideal Pulleys

More information

Physics 111. Lecture 14 (Walker: Ch. 6.5) Circular Motion Centripetal Acceleration Centripetal Force February 27, 2009

Physics 111. Lecture 14 (Walker: Ch. 6.5) Circular Motion Centripetal Acceleration Centripetal Force February 27, 2009 Physics 111 Lectue 14 (Walke: Ch. 6.5) Cicula Motion Centipetal Acceleation Centipetal Foce Febuay 7, 009 Midtem Exam 1 on Wed. Mach 4 (Chaptes 1-6) Lectue 14 1/8 Connected Objects If thee is a pulley,

More information

Physics 231 Lecture 17

Physics 231 Lecture 17 Physics 31 Lectue 17 Main points of today s lectue: Centipetal acceleation: a c = a c t Rotational motion definitions: Δω Δω α =, α = limδ t 0 Δt Δt Δ s= Δ θ;t = ω;at = α Rotational kinematics equations:

More information

PS113 Chapter 5 Dynamics of Uniform Circular Motion

PS113 Chapter 5 Dynamics of Uniform Circular Motion PS113 Chapte 5 Dynamics of Unifom Cicula Motion 1 Unifom cicula motion Unifom cicula motion is the motion of an object taveling at a constant (unifom) speed on a cicula path. The peiod T is the time equied

More information

Hoizontal Cicula Motion 1. A paticle of mass m is tied to a light sting and otated with a speed v along a cicula path of adius. If T is tension in the sting and mg is gavitational foce on the paticle then,

More information

Physics 4A Chapter 8: Dynamics II Motion in a Plane

Physics 4A Chapter 8: Dynamics II Motion in a Plane Physics 4A Chapte 8: Dynamics II Motion in a Plane Conceptual Questions and Example Poblems fom Chapte 8 Conceptual Question 8.5 The figue below shows two balls of equal mass moving in vetical cicles.

More information

Physics 111 Lecture 5 Circular Motion

Physics 111 Lecture 5 Circular Motion Physics 111 Lectue 5 Cicula Motion D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Multiple Objects q A block of mass m1 on a ough, hoizontal suface is connected to a ball of mass m by a lightweight

More information

Physics 101 Lecture 6 Circular Motion

Physics 101 Lecture 6 Circular Motion Physics 101 Lectue 6 Cicula Motion Assist. Pof. D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Equilibium, Example 1 q What is the smallest value of the foce F such that the.0-kg block will not slide

More information

Physics 2001 Problem Set 5 Solutions

Physics 2001 Problem Set 5 Solutions Physics 2001 Poblem Set 5 Solutions Jeff Kissel Octobe 16, 2006 1. A puck attached to a sting undegoes cicula motion on an ai table. If the sting beaks at the point indicated in the figue, which path (A,

More information

Circular Motion. x-y coordinate systems. Other coordinates... PHY circular-motion - J. Hedberg

Circular Motion. x-y coordinate systems. Other coordinates... PHY circular-motion - J. Hedberg Cicula Motion PHY 207 - cicula-motion - J. Hedbeg - 2017 x-y coodinate systems Fo many situations, an x-y coodinate system is a geat idea. Hee is a map on Manhattan. The steets ae laid out in a ectangula

More information

Sections and Chapter 10

Sections and Chapter 10 Cicula and Rotational Motion Sections 5.-5.5 and Chapte 10 Basic Definitions Unifom Cicula Motion Unifom cicula motion efes to the motion of a paticle in a cicula path at constant speed. The instantaneous

More information

Phys 201A. Homework 6 Solutions. F A and F r. B. According to Newton s second law, ( ) ( )2. j = ( 6.0 m / s 2 )ˆ i ( 10.4m / s 2 )ˆ j.

Phys 201A. Homework 6 Solutions. F A and F r. B. According to Newton s second law, ( ) ( )2. j = ( 6.0 m / s 2 )ˆ i ( 10.4m / s 2 )ˆ j. 7. We denote the two foces F A + F B = ma,sof B = ma F A. (a) In unit vecto notation F A = ( 20.0 N)ˆ i and Theefoe, Phys 201A Homewok 6 Solutions F A and F B. Accoding to Newton s second law, a = [ (

More information

Chapter 5. really hard to start the object moving and then, once it starts moving, you don t have to push as hard to keep it moving.

Chapter 5. really hard to start the object moving and then, once it starts moving, you don t have to push as hard to keep it moving. Chapte 5 Fiction When an object is in motion it is usually in contact with a viscous mateial (wate o ai) o some othe suface. So fa, we have assumed that moving objects don t inteact with thei suoundings

More information

Shree Datta Coaching Classes, Contact No Circular Motion

Shree Datta Coaching Classes, Contact No Circular Motion Shee Datta Coaching Classes, Contact No. 93698036 Pof. Deepak Jawale Cicula Motion Definition : The motion of the paticle along the cicumfeence of a cicle is called as cicula motion. Eg. i) Motion of eath

More information

The study of the motion of a body along a general curve. the unit vector normal to the curve. Clearly, these unit vectors change with time, u ˆ

The study of the motion of a body along a general curve. the unit vector normal to the curve. Clearly, these unit vectors change with time, u ˆ Section. Cuilinea Motion he study of the motion of a body along a geneal cue. We define u ˆ û the unit ecto at the body, tangential to the cue the unit ecto nomal to the cue Clealy, these unit ectos change

More information

r cos, and y r sin with the origin of coordinate system located at

r cos, and y r sin with the origin of coordinate system located at Lectue 3-3 Kinematics of Rotation Duing ou peious lectues we hae consideed diffeent examples of motion in one and seeal dimensions. But in each case the moing object was consideed as a paticle-like object,

More information

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block?

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 13, 2010 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 5

PHYS Summer Professor Caillault Homework Solutions. Chapter 5 PHYS 1111 - Summe 2007 - Pofesso Caillault Homewok Solutions Chapte 5 7. Pictue the Poblem: The ball is acceleated hoizontally fom est to 98 mi/h ove a distance of 1.7 m. Stategy: Use equation 2-12 to

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

Chapter 5: Uniform Circular Motion

Chapter 5: Uniform Circular Motion Chapte 5: Unifom Cicula Motion Motion at constant speed in a cicle Centipetal acceleation Banked cuves Obital motion Weightlessness, atificial gavity Vetical cicula motion Centipetal Foce Acceleation towad

More information

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed?

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 10, 2012 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible)

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible) Name: Class: Date: ID: A Quiz 6--Wok, Gavitation, Cicula Motion, Toque. (60 pts available, 50 points possible) Multiple Choice, 2 point each Identify the choice that best completes the statement o answes

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Intoduction Ealie we defined acceleation as being the change in velocity with time: a = v t Until now we have only talked about changes in the magnitude of the acceleation: the speeding

More information

Discover the answer to this question in this chapter.

Discover the answer to this question in this chapter. In a oto ide such as the one shown in the figue, what is the maximum peiod of otation that the oto ide can hae so that people do not slip down the wall if the coefficient of fiction between the wall and

More information

Physics 1114: Unit 5 Hand-out Homework (Answers)

Physics 1114: Unit 5 Hand-out Homework (Answers) Physics 1114: Unit 5 Hand-out Homewok (Answes) Poblem set 1 1. The flywheel on an expeimental bus is otating at 420 RPM (evolutions pe minute). To find (a) the angula velocity in ad/s (adians/second),

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Have you eve idden on the amusement pak ide shown below? As it spins you feel as though you ae being pessed tightly against the wall. The ide then begins to tilt but you emain glued

More information

to point uphill and to be equal to its maximum value, in which case f s, max = μsfn

to point uphill and to be equal to its maximum value, in which case f s, max = μsfn Chapte 6 16. (a) In this situation, we take f s to point uphill and to be equal to its maximum value, in which case f s, max = μsf applies, whee μ s = 0.5. pplying ewton s second law to the block of mass

More information

NEETIIT.COM. Angular Displacement. Page - 1

NEETIIT.COM. Angular Displacement. Page - 1 - Download ou andoid App. 1. ANGULA DISPLACEMENT Intoduction : Angle subtended by position ecto of a paticle moing along any abitay path w..t. some fixed point is called angula displacement. (a) Paticle

More information

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N Chapte answes Heinemann Physics 4e Section. Woked example: Ty youself.. GRAVITATIONAL ATTRACTION BETWEEN SMALL OBJECTS Two bowling balls ae sitting next to each othe on a shelf so that the centes of the

More information

Motion along curved path *

Motion along curved path * OpenStax-CNX module: m14091 1 Motion along cuved path * Sunil Kuma Singh This wok is poduced by OpenStax-CNX and licensed unde the Ceative Commons Attibution License 2.0 We all expeience motion along a

More information

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet Linea and angula analogs Linea Rotation x position x displacement v velocity a T tangential acceleation Vectos in otational motion Use the ight hand ule to detemine diection of the vecto! Don t foget centipetal

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion constant speed Pick a point in the objects motion... What diection is the velocity? HINT Think about what diection the object would tavel if the sting wee cut Unifom Cicula Motion

More information

Discover the answer to this question in this chapter.

Discover the answer to this question in this chapter. In a oto ide such as the one shown in the figue, what is the maximum peiod of otation that the oto ide can hae so that people do not slip down the wall if the coefficient of fiction between the wall and

More information

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t)

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t) Cicula Motion Fom ancient times cicula tajectoies hae occupied a special place in ou model of the Uniese. Although these obits hae been eplaced by the moe geneal elliptical geomety, cicula motion is still

More information

PHYSICS 220. Lecture 08. Textbook Sections Lecture 8 Purdue University, Physics 220 1

PHYSICS 220. Lecture 08. Textbook Sections Lecture 8 Purdue University, Physics 220 1 PHYSICS 0 Lectue 08 Cicula Motion Textbook Sections 5.3 5.5 Lectue 8 Pudue Univesity, Physics 0 1 Oveview Last Lectue Cicula Motion θ angula position adians ω angula velocity adians/second α angula acceleation

More information

ISSUED BY K V - DOWNLOADED FROM CIRCULAR MOTION

ISSUED BY K V - DOWNLOADED FROM  CIRCULAR MOTION K.V. Silcha CIRCULAR MOTION Cicula Motion When a body moves such that it always emains at a fixed distance fom a fixed point then its motion is said to be cicula motion. The fixed distance is called the

More information

Thomas Whitham Sixth Form Mechanics in Mathematics. Rectilinear Motion Dynamics of a particle Projectiles Vectors Circular motion

Thomas Whitham Sixth Form Mechanics in Mathematics. Rectilinear Motion Dynamics of a particle Projectiles Vectors Circular motion Thomas Whitham Sith om Mechanics in Mathematics Unit M Rectilinea Motion Dynamics of a paticle Pojectiles Vectos Cicula motion . Rectilinea Motion omation and solution of simple diffeential equations in

More information

4. Two and Three Dimensional Motion

4. Two and Three Dimensional Motion 4. Two and Thee Dimensional Motion 1 Descibe motion using position, displacement, elocity, and acceleation ectos Position ecto: ecto fom oigin to location of the object. = x i ˆ + y ˆ j + z k ˆ Displacement:

More information

Motion in a Circle. Content 1. Kinematics of uniform circular motion 2. Centripetal acceleration 3. Centripetal force.

Motion in a Circle. Content 1. Kinematics of uniform circular motion 2. Centripetal acceleration 3. Centripetal force. JJ 014 H PHYSICS (9646) Motion in a Cicle Motion in a Cicle Content 1. Kinematics of unifom cicula motion. Centipetal acceleation 3. Centipetal foce Leaning Outcomes Candidates should be able to: (a) expess

More information

Objective Notes Summary

Objective Notes Summary Objective Notes Summay An object moving in unifom cicula motion has constant speed but not constant velocity because the diection is changing. The velocity vecto in tangent to the cicle, the acceleation

More information

Chapter 5. Uniform Circular Motion. a c =v 2 /r

Chapter 5. Uniform Circular Motion. a c =v 2 /r Chapte 5 Unifom Cicula Motion a c =v 2 / Unifom cicula motion: Motion in a cicula path with constant speed s v 1) Speed and peiod Peiod, T: time fo one evolution Speed is elated to peiod: Path fo one evolution:

More information

Circular Motion & Torque Test Review. The period is the amount of time it takes for an object to travel around a circular path once.

Circular Motion & Torque Test Review. The period is the amount of time it takes for an object to travel around a circular path once. Honos Physics Fall, 2016 Cicula Motion & Toque Test Review Name: M. Leonad Instuctions: Complete the following woksheet. SHOW ALL OF YOUR WORK ON A SEPARATE SHEET OF PAPER. 1. Detemine whethe each statement

More information

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and Exta notes fo cicula motion: Cicula motion : v keeps changing, maybe both speed and diection ae changing. At least v diection is changing. Hence a 0. Acceleation NEEDED to stay on cicula obit: a cp v /,

More information

Describing Circular motion

Describing Circular motion Unifom Cicula Motion Descibing Cicula motion In ode to undestand cicula motion, we fist need to discuss how to subtact vectos. The easiest way to explain subtacting vectos is to descibe it as adding a

More information

CHAPTER 5: Circular Motion; Gravitation

CHAPTER 5: Circular Motion; Gravitation CHAPER 5: Cicula Motion; Gavitation Solution Guide to WebAssign Pobles 5.1 [1] (a) Find the centipetal acceleation fo Eq. 5-1.. a R v ( 1.5 s) 1.10 1.4 s (b) he net hoizontal foce is causing the centipetal

More information

Chap 5. Circular Motion: Gravitation

Chap 5. Circular Motion: Gravitation Chap 5. Cicula Motion: Gavitation Sec. 5.1 - Unifom Cicula Motion A body moves in unifom cicula motion, if the magnitude of the velocity vecto is constant and the diection changes at evey point and is

More information

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION. string

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION. string Chapte 6 NEWTON S nd LAW AND UNIFORM CIRCULAR MOTION 103 PHYS 1 1 L:\103 Phy LECTURES SLIDES\103Phy_Slide_T1Y3839\CH6Flah 3 4 ting Quetion: A ball attached to the end of a ting i whiled in a hoizontal

More information

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION Chapte 6 NEWTON S nd LAW AND UNIFORM CIRCULAR MOTION Phyic 1 1 3 4 ting Quetion: A ball attached to the end of a ting i whiled in a hoizontal plane. At the point indicated, the ting beak. Looking down

More information

SPH3UW/SPH4U Unit 3.2 Forces in Cetripetal Motion Page 1 of 6. Notes Physics Tool Box

SPH3UW/SPH4U Unit 3.2 Forces in Cetripetal Motion Page 1 of 6. Notes Physics Tool Box SPH3UW/SPH4U Unit 3. Foce in Cetipetal Motion Page 1 o 6 Note Phyic Tool Box Net Foce: acting on an object in uniom cicula motion act towad the cente o the cicle. Magnitude o Net Foce: combine Newton Second

More information

Recap. Centripetal acceleration: v r. a = m/s 2 (towards center of curvature)

Recap. Centripetal acceleration: v r. a = m/s 2 (towards center of curvature) a = c v 2 Recap Centipetal acceleation: m/s 2 (towads cente of cuvatue) A centipetal foce F c is equied to keep a body in cicula motion: This foce poduces centipetal acceleation that continuously changes

More information

ESTIMATION MODELS USING MATHEMATICAL CONCEPTS AND NEWTON S LAWS FOR CONIC SECTION TRAJECTORIES ON EARTH S SURFACE

ESTIMATION MODELS USING MATHEMATICAL CONCEPTS AND NEWTON S LAWS FOR CONIC SECTION TRAJECTORIES ON EARTH S SURFACE Fundamental Jounal of Mathematical Physics Vol. 3 Issue 1 13 Pages 33-44 Published online at http://www.fdint.com/ ESTIMATION MODELS USING MATHEMATICAL CONCEPTS AND NEWTON S LAWS FOR CONIC SECTION TRAJECTORIES

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

Circular-Rotational Motion Mock Exam. Instructions: (92 points) Answer the following questions. SHOW ALL OF YOUR WORK.

Circular-Rotational Motion Mock Exam. Instructions: (92 points) Answer the following questions. SHOW ALL OF YOUR WORK. AP Physics C Sping, 2017 Cicula-Rotational Motion Mock Exam Name: Answe Key M. Leonad Instuctions: (92 points) Answe the following questions. SHOW ALL OF YOUR WORK. ( ) 1. A stuntman dives a motocycle

More information

Potential Energy and Conservation of Energy

Potential Energy and Conservation of Energy Potential Enegy and Consevation of Enegy Consevative Foces Definition: Consevative Foce If the wok done by a foce in moving an object fom an initial point to a final point is independent of the path (A

More information

Circular Motion. Subtopics. Introduction. Angular displacement. acceleration. Relation between linear velocity and angular velocity

Circular Motion. Subtopics. Introduction. Angular displacement. acceleration. Relation between linear velocity and angular velocity Chapte 0 : Cicula Motion 0 Cicula Motion Subtopics.0 Intoduction. Angula displacement. Angula elocity acceleation.3 Relation between linea elocity and angula elocity.4 Unifom cicula motion.5 Acceleation

More information

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions )

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions ) 06 - ROTATIONAL MOTION Page ) A body A of mass M while falling vetically downwads unde gavity beaks into two pats, a body B of mass ( / ) M and a body C of mass ( / ) M. The cente of mass of bodies B and

More information

Spring 2001 Physics 2048 Test 3 solutions

Spring 2001 Physics 2048 Test 3 solutions Sping 001 Physics 048 Test 3 solutions Poblem 1. (Shot Answe: 15 points) a. 1 b. 3 c. 4* d. 9 e. 8 f. 9 *emembe that since KE = ½ mv, KE must be positive Poblem (Estimation Poblem: 15 points) Use momentum-impulse

More information

Understanding the Concepts

Understanding the Concepts Chistian Bache Phsics Depatment Bn Maw College Undestanding the Concepts PHYSICS 101-10 Homewok Assignment #5 - Solutions 5.7. A cclist making a tun must make use of a centipetal foce, one that is pependicula

More information

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session.

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session. - 5 - TEST 1R This is the epeat vesion of TEST 1, which was held duing Session. This epeat test should be attempted by those students who missed Test 1, o who wish to impove thei mak in Test 1. IF YOU

More information

Ch04: Motion in two and three dimensions (2D and 3D)

Ch04: Motion in two and three dimensions (2D and 3D) Ch4: Motion in two and thee dimensions (D and 3D) Displacement, elocity and acceleation ectos Pojectile motion Cicula motion Relatie motion 4.: Position and displacement Position of an object in D o 3D

More information

CIRCULAR MOTION. Particle moving in an arbitrary path. Particle moving in straight line

CIRCULAR MOTION. Particle moving in an arbitrary path. Particle moving in straight line 1 CIRCULAR MOTION 1. ANGULAR DISPLACEMENT Intoduction: Angle subtended by position vecto of a paticle moving along any abitay path w..t. some fixed point is called angula displacement. (a) Paticle moving

More information

1) Consider a particle moving with constant speed that experiences no net force. What path must this particle be taking?

1) Consider a particle moving with constant speed that experiences no net force. What path must this particle be taking? Chapte 5 Test Cicula Motion and Gavitation 1) Conside a paticle moving with constant speed that expeiences no net foce. What path must this paticle be taking? A) It is moving in a paabola. B) It is moving

More information

Chapter 8. Accelerated Circular Motion

Chapter 8. Accelerated Circular Motion Chapte 8 Acceleated Cicula Motion 8.1 Rotational Motion and Angula Displacement A new unit, adians, is eally useful fo angles. Radian measue θ(adians) = s = θ s (ac length) (adius) (s in same units as

More information

AP * PHYSICS B. Circular Motion, Gravity, & Orbits. Teacher Packet

AP * PHYSICS B. Circular Motion, Gravity, & Orbits. Teacher Packet AP * PHYSICS B Cicula Motion, Gavity, & Obits Teache Packet AP* is a tademak of the College Entance Examination Boad. The College Entance Examination Boad was not involved in the poduction of this mateial.

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

A Level Exam-style Practice Paper

A Level Exam-style Practice Paper A Leel Exam-style Pactice Pape a i The peiod is gien by the time lapse between high tide and low tide which is.5 hous. ii The amplitude is gien by half the total displacement and so is 5 m. b The safe

More information

UCSD Phys 4A Intro Mechanics Winter 2016 Ch 5 Solutions

UCSD Phys 4A Intro Mechanics Winter 2016 Ch 5 Solutions UCSD Phs 4 Into Mechanics Winte 016 Ch 5 Solutions 0. Since the uppe bloc has a highe coefficient of iction, that bloc will dag behind the lowe bloc. Thus thee will be tension in the cod, and the blocs

More information

Motion in Two Dimensions

Motion in Two Dimensions SOLUTIONS TO PROBLEMS Motion in Two Dimensions Section 3.1 The Position, Velocity, and Acceleation Vectos P3.1 x( m) 0!3 000!1 70!4 70 m y( m)!3 600 0 1 70! 330 m (a) Net displacement x + y 4.87 km at

More information

SECTION 1. Objectives. Solve problems involving centripetal acceleration. Solve problems involving centripetal force.

SECTION 1. Objectives. Solve problems involving centripetal acceleration. Solve problems involving centripetal force. SECTION 1 Plan and Pepae Peiew Vocabulay Latin Wod Oigins The wod centipetal is ombination of two pats, cente and petal. The second pat of the wod is deied fom the Latin wod petee, which means seeking.

More information

Recitation PHYS 131. must be one-half of T 2

Recitation PHYS 131. must be one-half of T 2 Reitation PHYS 131 Ch. 5: FOC 1, 3, 7, 10, 15. Pobles 4, 17, 3, 5, 36, 47 & 59. Ch 5: FOC Questions 1, 3, 7, 10 & 15. 1. () The eloity of a has a onstant agnitude (speed) and dietion. Sine its eloity is

More information

PHYS 1114, Lecture 21, March 6 Contents:

PHYS 1114, Lecture 21, March 6 Contents: PHYS 1114, Lectue 21, Mach 6 Contents: 1 This class is o cially cancelled, being eplaced by the common exam Tuesday, Mach 7, 5:30 PM. A eview and Q&A session is scheduled instead duing class time. 2 Exam

More information

PHYS 1410, 11 Nov 2015, 12:30pm.

PHYS 1410, 11 Nov 2015, 12:30pm. PHYS 40, Nov 205, 2:30pm. A B = AB cos φ x = x 0 + v x0 t + a 2 xt 2 a ad = v2 2 m(v2 2 v) 2 θ = θ 0 + ω 0 t + 2 αt2 L = p fs µ s n 0 + αt K = 2 Iω2 cm = m +m 2 2 +... m +m 2 +... p = m v and L = I ω ω

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Pat 1: Electic Foce 1.1: Review of Vectos Review you vectos! You should know how to convet fom pola fom to component fom and vice vesa add and subtact vectos multiply vectos by scalas Find the esultant

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 6: motion in two and three dimensions III. Slide 6-1

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 6: motion in two and three dimensions III. Slide 6-1 Physics 1501 Fall 2008 Mechanics, Themodynamics, Waves, Fluids Lectue 6: motion in two and thee dimensions III Slide 6-1 Recap: elative motion An object moves with velocity v elative to one fame of efeence.

More information

SAMPLE QUIZ 3 - PHYSICS For a right triangle: sin θ = a c, cos θ = b c, tan θ = a b,

SAMPLE QUIZ 3 - PHYSICS For a right triangle: sin θ = a c, cos θ = b c, tan θ = a b, SAMPLE QUIZ 3 - PHYSICS 1301.1 his is a closed book, closed notes quiz. Calculatos ae pemitted. he ONLY fomulas that may be used ae those given below. Define all symbols and justify all mathematical expessions

More information

Niraj Sir. circular motion;; SOLUTIONS TO CONCEPTS CHAPTER 7

Niraj Sir. circular motion;; SOLUTIONS TO CONCEPTS CHAPTER 7 SOLUIONS O CONCEPS CHAPE 7 cicula otion;;. Distance between Eath & Moon.85 0 5 k.85 0 8 7. days 4 600 (7.) sec.6 0 6 sec.4.85 0 v 6.6 0 8 05.4/sec v (05.4) a 0.007/sec.7 0 /sec 8.85 0. Diaete of eath 800k

More information

CHAPTER 6: UNIFORM CIRCULAR MOTION AND GRAVITATION

CHAPTER 6: UNIFORM CIRCULAR MOTION AND GRAVITATION College Physics Student s Manual Chapte 6 CHAPTER 6: UIORM CIRCULAR MOTIO AD GRAVITATIO 6. ROTATIO AGLE AD AGULAR VELOCITY. Sei- taile tucks hae an odoete on one hub of a taile wheel. The hub is weighted

More information

ROTATORY MOTION HORIZONTAL AND VERTICAL CIRCULAR MOTION

ROTATORY MOTION HORIZONTAL AND VERTICAL CIRCULAR MOTION ROTATORY MOTION HORIZONTAL AND VERTICAL CIRCULAR MOTION POINTS TO REMEMBER 1. Tanslatoy motion: Evey point in the body follows the path of its peceding one with same velocity including the cente of mass..

More information

THE MAGNETIC FIELD. This handout covers: The magnetic force between two moving charges. The magnetic field, B, and magnetic field lines

THE MAGNETIC FIELD. This handout covers: The magnetic force between two moving charges. The magnetic field, B, and magnetic field lines EM 005 Handout 7: The Magnetic ield 1 This handout coes: THE MAGNETIC IELD The magnetic foce between two moing chages The magnetic field,, and magnetic field lines Magnetic flux and Gauss s Law fo Motion

More information

Name. Date. Period. Engage Examine the pictures on the left. 1. What is going on in these pictures?

Name. Date. Period. Engage Examine the pictures on the left. 1. What is going on in these pictures? AP Physics 1 Lesson 9.a Unifom Cicula Motion Outcomes 1. Define unifom cicula motion. 2. Detemine the tangential velocity of an object moving with unifom cicula motion. 3. Detemine the centipetal acceleation

More information

Multiple choice questions [100 points] As shown in the figure, a mass M is hanging by three massless strings from the ceiling of a room.

Multiple choice questions [100 points] As shown in the figure, a mass M is hanging by three massless strings from the ceiling of a room. Multiple choice questions [00 points] Answe all of the following questions. Read each question caefully. Fill the coect ule on you scanton sheet. Each coect answe is woth 4 points. Each question has exactly

More information

21 MAGNETIC FORCES AND MAGNETIC FIELDS

21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 1 MAGNETIC ORCES AND MAGNETIC IELDS ANSWERS TO OCUS ON CONCEPTS QUESTIONS 1. (d) Right-Hand Rule No. 1 gives the diection of the magnetic foce as x fo both dawings A and. In dawing C, the velocity

More information

b) (5) What average force magnitude was applied by the students working together?

b) (5) What average force magnitude was applied by the students working together? Geneal Physics I Exam 3 - Chs. 7,8,9 - Momentum, Rotation, Equilibium Nov. 3, 2010 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults

More information

Chapter 12. Kinetics of Particles: Newton s Second Law

Chapter 12. Kinetics of Particles: Newton s Second Law Chapte 1. Kinetics of Paticles: Newton s Second Law Intoduction Newton s Second Law of Motion Linea Momentum of a Paticle Systems of Units Equations of Motion Dynamic Equilibium Angula Momentum of a Paticle

More information

Chapter 4. Newton s Laws of Motion

Chapter 4. Newton s Laws of Motion Chapte 4 Newton s Laws of Motion 4.1 Foces and Inteactions A foce is a push o a pull. It is that which causes an object to acceleate. The unit of foce in the metic system is the Newton. Foce is a vecto

More information

Circular Motion Problem Solving

Circular Motion Problem Solving iula Motion Poblem Soling Aeleation o a hange in eloity i aued by a net foe: Newton nd Law An objet aeleate when eithe the magnitude o the dietion of the eloity hange We aw in the lat unit that an objet

More information

Chapter 4: The laws of motion. Newton s first law

Chapter 4: The laws of motion. Newton s first law Chapte 4: The laws of motion gavitational Electic magnetic Newton s fist law If the net foce exeted on an object is zeo, the object continues in its oiginal state of motion: - an object at est, emains

More information

PROBLEM (page 126, 12 th edition)

PROBLEM (page 126, 12 th edition) PROBLEM 13-27 (page 126, 12 th edition) The mass of block A is 100 kg. The mass of block B is 60 kg. The coefficient of kinetic fiction between block B and the inclined plane is 0.4. A and B ae eleased

More information

ω = θ θ o = θ θ = s r v = rω

ω = θ θ o = θ θ = s r v = rω Unifom Cicula Motion Unifom cicula motion is the motion of an object taveling at a constant(unifom) speed in a cicula path. Fist we must define the angula displacement and angula velocity The angula displacement

More information

Lab #9: The Kinematics & Dynamics of. Circular Motion & Rotational Motion

Lab #9: The Kinematics & Dynamics of. Circular Motion & Rotational Motion Reading Assignment: Lab #9: The Kinematics & Dynamics of Cicula Motion & Rotational Motion Chapte 6 Section 4 Chapte 11 Section 1 though Section 5 Intoduction: When discussing motion, it is impotant to

More information