Jim Lambers MAT 280 Spring Semester Lecture 26 and 27 Notes

Size: px
Start display at page:

Download "Jim Lambers MAT 280 Spring Semester Lecture 26 and 27 Notes"

Transcription

1 Jim Lmbers MAT 280 pring emester Lecture 26 nd 27 Notes These notes correspond to ection 8.6 in Mrsden nd Tromb. ifferentil Forms To dte, we hve lerned the following theorems concerning the evlution of integrls of derivtives: The Fundmentl Theorem of lculus: b The Fundmentl Theorem of Line Integrls: Green s Theorem: tokes Theorem: b Guss ivergence Theorem: f (x) dx f(b) f() f(r(t)) r (t) dt f(r(b)) f(r()) (Q x P y ) da curl F d E P dx + Q dy div F dv F dr F d All of these theorems relte the integrl of the derivtive or grdient of function, or prtil derivtives of components of vector field, over higher-dimensionl region to the integrl or sum of the function or vector field over lower-dimensionl region. Now, we will see how the nottion of differentil forms cn be used to combine ll of these theorems into one. It is this nottion, s opposed to vectors nd opertions such s the divergence nd curl, tht llows the Fundmentl Theorem of lculus to be generlized to functions of severl vribles. A differentil form is n expression consisting of sclr-vlued function f : K R n R nd zero or more infinitesimls of the form dx 1, dx 2,..., dx n, where x 1, x 2,..., x n re the independent 1

2 vribles of f. The order of differentil form is defined to be the number of infinitesimls tht it includes. For simplicity, we set n 3 of three vribles. With tht in mind, 0-form, or differentil form of order zero, is simply sclr-vlued function f(x, y, z). A 1-form is function f(x, y, z) together with one of the expressions dx, dy or dz. A 2-form is function f(x, y, z) together with pir of distinct infinitesimls, which cn be either dx dy, dy dz or dz dx. Finlly, 3-form is n expression of the form f(x, y, z) dx dy dz. Exmple The function f(x, y, z) x 2 y + y 3 z is 0-form on R 3, while f dx (x 2 y + y 3 z) dx nd f dy (x 2 y + y 3 z) dy re both exmples of 1-form on R 3. Exmple Let f(x, y, z) 1/(x 2 + y 2 + z 2 ). Then f dx dy is 2-form on R 3 {(0, 0, 0}, while f dx dy dz is 3-form on the sme domin. Forms of the sme order cn be dded nd scled by functions, s the following exmples show. Exmple Let f(x, y, z) e x y sin z nd let g(x, y, z) (x 2 + y 2 + z 2 ) 3/2. Then f, g nd f + g re ll 0-forms on R 3, nd f + g e x y sin z + (x 2 + y 2 + z 2 ) 3/2. Tht is, ddition of 0-forms is identicl to ddition of functions. If we define ω 1 f dx nd ω 2 g dy, then ω 1 nd ω 2 re both 1-forms on R 3, nd so is ω ω 1 + ω 2, where Furthermore, if h(x, y, z) xy 2 z 3, nd ω f dx + g dy e x y sin z dx + (x 2 + y 2 + z 2 ) 3/2 dy. η 1 f dx dy, η 2 g dz dx re 2-forms on R 3, then is lso 2-form on R 3. η hη 1 + η 2 xy 2 z 3 e x y sin z dx dy + (x 2 + y 2 + z 3 ) 3/2 dz dx Exmple Let f(x, y, z) cos x, g(x, y, z) e y nd h(x, y, z) xyz 2. Then, ν 1 f dx dy dz nd ν 2 g dx dy dz re 3-forms on R 3, nd so is ν ν 1 + hν 2 (cos x + xyz 2 e y ) dx dy dz. It should be noted tht like ddition of functions, ddition of differentil forms is both commuttive, ssocitive, nd distributive. Also, there is never ny need to dd forms of different order, such s dding 0-form to 1-form. 2

3 We now define two essentil opertions on differentil forms. The first is clled the wedge product, multipliction opertion for differentil forms. Given k-form ω nd n l-form η, where 0 k + l 3, the wedge product of ω nd η, denoted by ω η, is (k + l)-form. It stisfies the following lws: 1. For ech k there is k-form 0 such tht η 0 0 η 0 for ny l-form η. 2. istributitivy: If f is 0-form, then (fω 1 + ω 2 ) η f(ω 1 η) + (ω 2 η). 3. Anticommuttivity: 4. Associtivity: ω η ( 1) kl (η ω). ω 1 (ω 2 ω 3 ) (ω 1 ω 2 ) ω 3 5. Homogeneity: If f is 0-form, then 6. If dx i is bsic 1-form, then dx i dx i If f is 0-form, then f ω fω. ω (fη) (fω) η f(ω η). Exmple Let ω f dx nd η g dy be 1-forms. Then by homogeneity, while ω η (f dx g dy) fg(dx dy) fg dx dy, η ω ( 1) 1(1) (ω η) fg dx dy. On the other hnd, if ν h dy dz is 2-form, then ν ω fh(dy dz dx) fh dy dz dx fh dy dx dz fh dx dy dz by homogeneity nd nticommuttivity, while ν η fh(dy dz dy) fh dy dz dy fh dy dy dz 0. Note tht if ny 3-form on R 3 is multiplied by k-form, where k > 0, then the result is zero, becuse there cnnot be distinct bsic 1-forms in the wedge product of such forms. 3

4 Exmple Let ω x dx y dy, nd η z dy dz x dz dx. Then ω η (x dx y dy) (z dy dz x dz dx) (x dx z dy dz) (y dy z dy dz) (x dx x dz dz) + (y dy x dz dx) xz dx dy dz yz dy dy dz x 2 dx dz dx + xy dy dz dx xz dx dy dz yz dy dy dz + x 2 dx dx dz + xy dy dz dx xz dx dy dz 0 0 xy dy dx dz (xz + xy) dx dy dz. The second opertion is differentition. Given k-form ω, where k < 3, the derivtive of ω, denoted by dω, is (k + 1)-form. It stisfies the following lws: 1. If f is 0-form, then df f x dx + f y dy + f z dz 2. Linerity: If ω 1 nd ω 2 re k-forms, then d(ω 1 + ω 2 ) dω 1 + dω 2 3. Product Rule: If ω is k-form nd η is n l-form, then d(ω η) (dω η) + ( 1) k (ω dη) 4. The second derivtive of form is zero; tht is, for ny k-form ω, d(dω) 0. We now illustrte the use of these differentition rules. Exmple Let ω x 2 y 3 z 4 dx dy be 2-form. Then, by Linerity nd the Product Rule, dω [d(x 2 y 3 z 4 ) dx dy] + ( 1) 0 [x 2 y 3 z 4 d(dx dy)] [( (x 2 y 3 z 4 ) x dx + (x 2 y 3 z 4 ) y dy + (x 2 y 3 z 4 ) z dz ) dx dy ] + [ x 2 y 3 z 4 {(d(dx) dy) + ( 1) 1 (dx d(dy)} ] [( 2xy 3 z 4 dx + 3x 2 y 2 z 4 dy + 4x 2 y 3 z 3 dz ) dx dy ] + [ x 2 y 3 z 4 {(0 dy) (dx 0)} ] 2xy 3 z 4 dx dx dy + 3x 2 y 2 z 4 dy dx dy + 4x 2 y 3 z 3 dz dx dy + 0 4x 2 y 3 z 3 dx dz dy 4x 2 y 3 z 3 dx dy dz. In generl, differentiting k-form ω, when k > 0, only requires differentiting the coefficient function with respect to the vribles tht re not mong ny bsic 1-forms tht re included in ω. In this exmple, since ω f dx dy, we obtin dω f z dz dx dy f z dx dy dz. 4

5 We now consider the kind of differentil forms tht pper in the theorems of vector clculus. Let ω f(x, y, z) be 0-form. Then, by the first lw of differentition, dω f dx, dy, dz. If is smooth curve with prmeteriztion r(t) x(t), y(t), z(t), t b, then b f(r(t)) r (t) dt b f(r(t)) x (t), y (t), z (t) dt It follows from the Fundmentl Theorem of Line Integrls tht dω ω(r(b)) ω(r()). b dω(r(t)) The boundry of,, consists of its initil point A nd terminl point B. If we define the integrl of 0-form ω over this 0-dimensionl region by ω ω(b) ω(a), which mkes sense considering tht, intuitively, the numbers 1 nd 1 serve s n pproprite outwrd unit norml vector t the terminl nd initil points, respectively, then we hve dω ω. Let ω P (x, y) dx + Q(x, y) dy be 1-form. Then dω d[p (x, y) dx] + d[q(x, y) dy] dp (x, y) dx P (x, y) d(dx) + dq(x, y) dy Q(x, y) d(dy) (P x dx + P y dy) dx 0 + (Q x dx + Q y dy) dy 0 P x dx dx + P y dy dx + Q x dx dy + Q y dy dy (Q y P x ) dx dy. It follows from Green s Theorem tht If we proceed similrly with 1-form ω ω F dx, dy, dz P (x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz, 5

6 then we obtin dω curl F dy dz, dz dx, dx dy (R y Q z ) dy dz + (P z R x ) dz dx + (Q y P x ) dx dy. Let be smooth surfce prmeterized by r(u, v) x(u, v), y(u, v), z(u, v), Then the (unnormlized) norml vector r u r v is given by We then hve curl F d r u r v x u, y u, z u x v, y v, z v (u, v). y u z v z u y v, z u x v x u z v, x u y v y u x v (y, z) (z, x) (x, y),,. (u, v) (u, v) (u, v) curl F n d curl F(r(u, v)) (r u r v ) du dv { (y, z) [R y (r(u, v)) Q z (r(u, v))] (u, v) + (z, x) [P z (r(u, v)) R x (r(u, v))] (u, v) + } (x, y) [Q x (r(u, v)) P y (r(u, v))] du dv (u, v) (R y Q z ) dy dz + (P z R x ) dz dx + (Q y P x ) dx dy If is the boundry curve of, nd is prmeterized by r(t) x(t), y(t), z(t), t b, then b F dr F(r(t)) r (t) dt b b P (r(t)), Q(r(t)), R(r(t)) x (t), y (t), z (t) dt ω(r(t)) dt ω. 6

7 It follows from tokes Theorem tht Let F P, Q, R. Let ω be the 2-form Then ω ω P dy dz + Q dz dx + R dx dy. dω dp dy dz + dq dz dx + dr dx dy [P x dx + P y dy + P z dz] dy dz + [Q x dx + Q y dy + Q z dz] dz dx + [R x dx + R y dy + R z dz] dx dy P x dx dy dz + Q y dy dz dx + R z dz dx dy P x dx dy dz Q y dy dx dz R z dx dz dy P x dx dy dz + Q y dx dy dz + R z dx dy dz div F dx dy dz. Let E be solid enclosed by smooth surfce with positive orienttion, nd let be prmeterized by r(u, v) x(u, v), y(u, v), z(u, v), (u, v). We then hve F d F n d F(r(u, v)) (r u r v ) du dv (y, z) (z, x) (x, y) P (r(u, v)), Q(r(u, v)), R(r(u, v)),, du dv (u, v) (u, v) (u, v) (y, z) x) y) P (r(u, v)) + Q(r(u, v)) (z, + R(r(u, v)) (x, du dv (u, v) (u, v) (u, v) P dy dz + Q dz dx + R dx dy ω. It follows from the ivergence Theorem tht ω E 7

8 Putting ll of these results together, we obtin the following combined theorem, tht is known s the Generl tokes Theorem: If M is n oriented k-mnifold with boundry M, nd ω is (k 1)-form defined on n open set contining M, then ω M The importnce of this unified theorem is tht, unlike the previously stted theorems of vector clculus, this theorem, through the lnguge of differentil forms, cn be generlized to functions of ny number of vribles. This is becuse opertions on differentil forms re not defined in terms of other opertions, such s the cross product, tht re limited to three vribles. For exmple, given 3-form ω f(x, y, z, w) dx dy dw, its integrl over 3-dimensionl, closed, positively oriented hypersurfce embedded in R 4 is equl to the integrl of dω over the 4-dimensionl solid E tht is enclosed by, where dω is computed using the previously stted rules for differentition nd multipliction of differentil forms. M 8

9 Prctice Problems Prctice problems from the recommended textbooks re: Mrsden/Tromb: ection 8.6, Exercises 1, 3, 5, 7, 11 9

df dt f () b f () a dt

df dt f () b f () a dt Vector lculus 16.7 tokes Theorem Nme: toke's Theorem is higher dimensionl nlogue to Green's Theorem nd the Fundmentl Theorem of clculus. Why, you sk? Well, let us revisit these theorems. Fundmentl Theorem

More information

MAS 4156 Lecture Notes Differential Forms

MAS 4156 Lecture Notes Differential Forms MAS 4156 Lecture Notes Differentil Forms Definitions Differentil forms re objects tht re defined on mnifolds. For this clss, the only mnifold we will put forms on is R 3. The full definition is: Definition:

More information

Note 16. Stokes theorem Differential Geometry, 2005

Note 16. Stokes theorem Differential Geometry, 2005 Note 16. Stokes theorem ifferentil Geometry, 2005 Stokes theorem is the centrl result in the theory of integrtion on mnifolds. It gives the reltion between exterior differentition (see Note 14) nd integrtion

More information

MATH 13 FINAL STUDY GUIDE, WINTER 2012

MATH 13 FINAL STUDY GUIDE, WINTER 2012 MATH 13 FINAL TUY GUI, WINTR 2012 This is ment to be quick reference guide for the topics you might wnt to know for the finl. It probbly isn t comprehensive, but should cover most of wht we studied in

More information

I. INTEGRAL THEOREMS. A. Introduction

I. INTEGRAL THEOREMS. A. Introduction 1 U Deprtment of Physics 301A Mechnics - I. INTEGRAL THEOREM A. Introduction The integrl theorems of mthemticl physics ll hve their origin in the ordinry fundmentl theorem of clculus, i.e. xb x df dx dx

More information

Jim Lambers MAT 280 Spring Semester Lecture 17 Notes. These notes correspond to Section 13.2 in Stewart and Section 7.2 in Marsden and Tromba.

Jim Lambers MAT 280 Spring Semester Lecture 17 Notes. These notes correspond to Section 13.2 in Stewart and Section 7.2 in Marsden and Tromba. Jim Lmbers MAT 28 Spring Semester 29- Lecture 7 Notes These notes correspond to Section 3.2 in Stewrt nd Section 7.2 in Mrsden nd Tromb. Line Integrls Recll from single-vrible clclus tht if constnt force

More information

MATH Summary of Chapter 13

MATH Summary of Chapter 13 MATH 21-259 ummry of hpter 13 1. Vector Fields re vector functions of two or three vribles. Typiclly, vector field is denoted by F(x, y, z) = P (x, y, z)i+q(x, y, z)j+r(x, y, z)k where P, Q, R re clled

More information

Chapter One: Calculus Revisited

Chapter One: Calculus Revisited Chpter One: Clculus Revisited 1 Clculus of Single Vrible Question in your mind: How do you understnd the essentil concepts nd theorems in Clculus? Two bsic concepts in Clculus re differentition nd integrtion

More information

Week 10: Line Integrals

Week 10: Line Integrals Week 10: Line Integrls Introduction In this finl week we return to prmetrised curves nd consider integrtion long such curves. We lredy sw this in Week 2 when we integrted long curve to find its length.

More information

Math Advanced Calculus II

Math Advanced Calculus II Mth 452 - Advnced Clculus II Line Integrls nd Green s Theorem The min gol of this chpter is to prove Stoke s theorem, which is the multivrible version of the fundmentl theorem of clculus. We will be focused

More information

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space. Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xy-plne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)

More information

FINAL REVIEW. 1. Vector Fields, Work, and Flux Suggested Problems:

FINAL REVIEW. 1. Vector Fields, Work, and Flux Suggested Problems: FINAL EVIEW 1. Vector Fields, Work, nd Flux uggested Problems: { 14.1 7, 13, 16 14.2 17, 25, 27, 29, 36, 45 We dene vector eld F (x, y) to be vector vlued function tht mps ech point in the plne to two

More information

Section 17.2 Line Integrals

Section 17.2 Line Integrals Section 7. Line Integrls Integrting Vector Fields nd Functions long urve In this section we consider the problem of integrting functions, both sclr nd vector (vector fields) long curve in the plne. We

More information

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt Jim Lambers MAT 28 ummer emester 212-1 Practice Final Exam olution 1. Evaluate the line integral xy dx + e y dy + xz dz, where is given by r(t) t 4, t 2, t, t 1. olution From r (t) 4t, 2t, t 2, we obtain

More information

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b. Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

More information

MA 124 January 18, Derivatives are. Integrals are.

MA 124 January 18, Derivatives are. Integrals are. MA 124 Jnury 18, 2018 Prof PB s one-minute introduction to clculus Derivtives re. Integrls re. In Clculus 1, we lern limits, derivtives, some pplictions of derivtives, indefinite integrls, definite integrls,

More information

10 Vector Integral Calculus

10 Vector Integral Calculus Vector Integrl lculus Vector integrl clculus extends integrls s known from clculus to integrls over curves ("line integrls"), surfces ("surfce integrls") nd solids ("volume integrls"). These integrls hve

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

7.2 The Definite Integral

7.2 The Definite Integral 7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where

More information

1.9 C 2 inner variations

1.9 C 2 inner variations 46 CHAPTER 1. INDIRECT METHODS 1.9 C 2 inner vritions So fr, we hve restricted ttention to liner vritions. These re vritions of the form vx; ǫ = ux + ǫφx where φ is in some liner perturbtion clss P, for

More information

1 Line Integrals in Plane.

1 Line Integrals in Plane. MA213 thye Brief Notes on hpter 16. 1 Line Integrls in Plne. 1.1 Introduction. 1.1.1 urves. A piece of smooth curve is ssumed to be given by vector vlued position function P (t) (or r(t) ) s the prmeter

More information

u(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C.

u(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C. Lecture 4 Complex Integrtion MATH-GA 2451.001 Complex Vriles 1 Construction 1.1 Integrting complex function over curve in C A nturl wy to construct the integrl of complex function over curve in the complex

More information

The Algebra (al-jabr) of Matrices

The Algebra (al-jabr) of Matrices Section : Mtri lgebr nd Clculus Wshkewicz College of Engineering he lgebr (l-jbr) of Mtrices lgebr s brnch of mthemtics is much broder thn elementry lgebr ll of us studied in our high school dys. In sense

More information

Generalizations of the Basic Functional

Generalizations of the Basic Functional 3 Generliztions of the Bsic Functionl 3 1 Chpter 3: GENERALIZATIONS OF THE BASIC FUNCTIONAL TABLE OF CONTENTS Pge 3.1 Functionls with Higher Order Derivtives.......... 3 3 3.2 Severl Dependent Vribles...............

More information

Math 3B: Lecture 9. Noah White. October 18, 2017

Math 3B: Lecture 9. Noah White. October 18, 2017 Mth 3B: Lecture 9 Noh White October 18, 2017 The definite integrl Defintion The definite integrl of function f (x) is defined to be where x = b n. f (x) dx = lim n x n f ( + k x) k=1 Properties of definite

More information

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012 Lecture 6: Line Integrls INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Anlysis Autumn 2012 August 8, 2012 Lecture 6: Line Integrls Lecture 6: Line Integrls Lecture 6: Line Integrls Integrls of complex

More information

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors Vectors Skill Achieved? Know tht sclr is quntity tht hs only size (no direction) Identify rel-life exmples of sclrs such s, temperture, mss, distnce, time, speed, energy nd electric chrge Know tht vector

More information

Math 100 Review Sheet

Math 100 Review Sheet Mth 100 Review Sheet Joseph H. Silvermn December 2010 This outline of Mth 100 is summry of the mteril covered in the course. It is designed to be study id, but it is only n outline nd should be used s

More information

(4.1) D r v(t) ω(t, v(t))

(4.1) D r v(t) ω(t, v(t)) 1.4. Differentil inequlities. Let D r denote the right hnd derivtive of function. If ω(t, u) is sclr function of the sclrs t, u in some open connected set Ω, we sy tht function v(t), t < b, is solution

More information

4. Calculus of Variations

4. Calculus of Variations 4. Clculus of Vritions Introduction - Typicl Problems The clculus of vritions generlises the theory of mxim nd minim. Exmple (): Shortest distnce between two points. On given surfce (e.g. plne), nd the

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

Pre-Session Review. Part 1: Basic Algebra; Linear Functions and Graphs

Pre-Session Review. Part 1: Basic Algebra; Linear Functions and Graphs Pre-Session Review Prt 1: Bsic Algebr; Liner Functions nd Grphs A. Generl Review nd Introduction to Algebr Hierrchy of Arithmetic Opertions Opertions in ny expression re performed in the following order:

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

Anonymous Math 361: Homework 5. x i = 1 (1 u i )

Anonymous Math 361: Homework 5. x i = 1 (1 u i ) Anonymous Mth 36: Homewor 5 Rudin. Let I be the set of ll u (u,..., u ) R with u i for ll i; let Q be the set of ll x (x,..., x ) R with x i, x i. (I is the unit cube; Q is the stndrd simplex in R ). Define

More information

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation 1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

More information

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones. Mth 20B Integrl Clculus Lecture Review on Integrtion (Secs. 5. - 5.3) Remrks on the course. Slide Review: Sec. 5.-5.3 Origins of Clculus. Riemnn Sums. New functions from old ones. A mthemticl description

More information

Line Integrals. Partitioning the Curve. Estimating the Mass

Line Integrals. Partitioning the Curve. Estimating the Mass Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to

More information

MA Handout 2: Notation and Background Concepts from Analysis

MA Handout 2: Notation and Background Concepts from Analysis MA350059 Hndout 2: Nottion nd Bckground Concepts from Anlysis This hndout summrises some nottion we will use nd lso gives recp of some concepts from other units (MA20023: PDEs nd CM, MA20218: Anlysis 2A,

More information

Introduction to Group Theory

Introduction to Group Theory Introduction to Group Theory Let G be n rbitrry set of elements, typiclly denoted s, b, c,, tht is, let G = {, b, c, }. A binry opertion in G is rule tht ssocites with ech ordered pir (,b) of elements

More information

Introduction To Matrices MCV 4UI Assignment #1

Introduction To Matrices MCV 4UI Assignment #1 Introduction To Mtrices MCV UI Assignment # INTRODUCTION: A mtrix plurl: mtrices) is rectngulr rry of numbers rrnged in rows nd columns Exmples: ) b) c) [ ] d) Ech number ppering in the rry is sid to be

More information

SYDE 112, LECTURES 3 & 4: The Fundamental Theorem of Calculus

SYDE 112, LECTURES 3 & 4: The Fundamental Theorem of Calculus SYDE 112, LECTURES & 4: The Fundmentl Theorem of Clculus So fr we hve introduced two new concepts in this course: ntidifferentition nd Riemnn sums. It turns out tht these quntities re relted, but it is

More information

Final Exam Solutions, MAC 3474 Calculus 3 Honors, Fall 2018

Final Exam Solutions, MAC 3474 Calculus 3 Honors, Fall 2018 Finl xm olutions, MA 3474 lculus 3 Honors, Fll 28. Find the re of the prt of the sddle surfce z xy/ tht lies inside the cylinder x 2 + y 2 2 in the first positive) octnt; is positive constnt. olution:

More information

Handout 4. Inverse and Implicit Function Theorems.

Handout 4. Inverse and Implicit Function Theorems. 8.95 Hndout 4. Inverse nd Implicit Function Theorems. Theorem (Inverse Function Theorem). Suppose U R n is open, f : U R n is C, x U nd df x is invertible. Then there exists neighborhood V of x in U nd

More information

Matrix & Vector Basic Linear Algebra & Calculus

Matrix & Vector Basic Linear Algebra & Calculus Mtrix & Vector Bsic Liner lgebr & lculus Wht is mtrix? rectngulr rry of numbers (we will concentrte on rel numbers). nxm mtrix hs n rows n m columns M x4 M M M M M M M M M M M M 4 4 4 First row Secon row

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

Summary: Method of Separation of Variables

Summary: Method of Separation of Variables Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section

More information

Surface Integrals of Vector Fields

Surface Integrals of Vector Fields Mth 32B iscussion ession Week 7 Notes Februry 21 nd 23, 2017 In lst week s notes we introduced surfce integrls, integrting sclr-vlued functions over prmetrized surfces. As with our previous integrls, we

More information

Module 9: The Method of Green s Functions

Module 9: The Method of Green s Functions Module 9: The Method of Green s Functions The method of Green s functions is n importnt technique for solving oundry vlue nd, initil nd oundry vlue prolems for prtil differentil equtions. In this module,

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

Math 32B Discussion Session Session 7 Notes August 28, 2018

Math 32B Discussion Session Session 7 Notes August 28, 2018 Mth 32B iscussion ession ession 7 Notes August 28, 28 In tody s discussion we ll tlk bout surfce integrls both of sclr functions nd of vector fields nd we ll try to relte these to the mny other integrls

More information

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick

More information

set is not closed under matrix [ multiplication, ] and does not form a group.

set is not closed under matrix [ multiplication, ] and does not form a group. Prolem 2.3: Which of the following collections of 2 2 mtrices with rel entries form groups under [ mtrix ] multipliction? i) Those of the form for which c d 2 Answer: The set of such mtrices is not closed

More information

Functions of Several Variables

Functions of Several Variables Functions of Severl Vribles Sketching Level Curves Sections Prtil Derivtives on every open set on which f nd the prtils, 2 f y = 2 f y re continuous. Norml Vector x, y, 2 f y, 2 f y n = ± (x 0,y 0) (x

More information

Line Integrals. Chapter Definition

Line Integrals. Chapter Definition hpter 2 Line Integrls 2.1 Definition When we re integrting function of one vrible, we integrte long n intervl on one of the xes. We now generlize this ide by integrting long ny curve in the xy-plne. It

More information

Matrix Algebra. Matrix Addition, Scalar Multiplication and Transposition. Linear Algebra I 24

Matrix Algebra. Matrix Addition, Scalar Multiplication and Transposition. Linear Algebra I 24 Mtrix lger Mtrix ddition, Sclr Multipliction nd rnsposition Mtrix lger Section.. Mtrix ddition, Sclr Multipliction nd rnsposition rectngulr rry of numers is clled mtrix ( the plurl is mtrices ) nd the

More information

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve. Clculus Li Vs The Fundmentl Theorem of Clculus. The Totl Chnge Theorem nd the Are Under Curve. Recll the following fct from Clculus course. If continuous function f(x) represents the rte of chnge of F

More information

Stuff You Need to Know From Calculus

Stuff You Need to Know From Calculus Stuff You Need to Know From Clculus For the first time in the semester, the stuff we re doing is finlly going to look like clculus (with vector slnt, of course). This mens tht in order to succeed, you

More information

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim Mth 9 Course Summry/Study Guide Fll, 2005 [1] Limits Definition of Limit: We sy tht L is the limit of f(x) s x pproches if f(x) gets closer nd closer to L s x gets closer nd closer to. We write lim f(x)

More information

Partial Differential Equations

Partial Differential Equations Prtil Differentil Equtions Notes by Robert Piché, Tmpere University of Technology reen s Functions. reen s Function for One-Dimensionl Eqution The reen s function provides complete solution to boundry

More information

Calculus of Variations: The Direct Approach

Calculus of Variations: The Direct Approach Clculus of Vritions: The Direct Approch Lecture by Andrejs Treibergs, Notes by Bryn Wilson June 7, 2010 The originl lecture slides re vilble online t: http://www.mth.uth.edu/~treiberg/directmethodslides.pdf

More information

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes Jim Lmbers MAT 169 Fll Semester 2009-10 Lecture 4 Notes These notes correspond to Section 8.2 in the text. Series Wht is Series? An infinte series, usully referred to simply s series, is n sum of ll of

More information

Section 14.3 Arc Length and Curvature

Section 14.3 Arc Length and Curvature Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in

More information

INTRODUCTION TO INTEGRATION

INTRODUCTION TO INTEGRATION INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide

More information

ad = cb (1) cf = ed (2) adf = cbf (3) cf b = edb (4)

ad = cb (1) cf = ed (2) adf = cbf (3) cf b = edb (4) 10 Most proofs re left s reding exercises. Definition 10.1. Z = Z {0}. Definition 10.2. Let be the binry reltion defined on Z Z by, b c, d iff d = cb. Theorem 10.3. is n equivlence reltion on Z Z. Proof.

More information

Chapter 3. Vector Spaces

Chapter 3. Vector Spaces 3.4 Liner Trnsformtions 1 Chpter 3. Vector Spces 3.4 Liner Trnsformtions Note. We hve lredy studied liner trnsformtions from R n into R m. Now we look t liner trnsformtions from one generl vector spce

More information

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY Chpter 3 MTRIX In this chpter: Definition nd terms Specil Mtrices Mtrix Opertion: Trnspose, Equlity, Sum, Difference, Sclr Multipliction, Mtrix Multipliction, Determinnt, Inverse ppliction of Mtrix in

More information

Overview of Calculus I

Overview of Calculus I Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,

More information

Advanced Computational Fluid Dynamics AA215A Lecture 3 Polynomial Interpolation: Numerical Differentiation and Integration.

Advanced Computational Fluid Dynamics AA215A Lecture 3 Polynomial Interpolation: Numerical Differentiation and Integration. Advnced Computtionl Fluid Dynmics AA215A Lecture 3 Polynomil Interpoltion: Numericl Differentition nd Integrtion Antony Jmeson Winter Qurter, 2016, Stnford, CA Lst revised on Jnury 7, 2016 Contents 3 Polynomil

More information

Heat flux and total heat

Heat flux and total heat Het flux nd totl het John McCun Mrch 14, 2017 1 Introduction Yesterdy (if I remember correctly) Ms. Prsd sked me question bout the condition of insulted boundry for the 1D het eqution, nd (bsed on glnce

More information

STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS

STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS Throughout, we let [, b] be bounded intervl in R. C 2 ([, b]) denotes the spce of functions with derivtives of second order continuous up to the endpoints. Cc 2

More information

MAT 211 Final Exam. Spring Jennings. Show your work!

MAT 211 Final Exam. Spring Jennings. Show your work! MAT 211 Final Exam. pring 215. Jennings. how your work! Hessian D = f xx f yy (f xy ) 2 (for optimization). Polar coordinates x = r cos(θ), y = r sin(θ), da = r dr dθ. ylindrical coordinates x = r cos(θ),

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

Math Calculus with Analytic Geometry II

Math Calculus with Analytic Geometry II orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove x-xis) ( bove f under x-xis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem

More information

4.4 Areas, Integrals and Antiderivatives

4.4 Areas, Integrals and Antiderivatives . res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

(uv) = u v + uv, (1) u vdx + b [uv] b a = u vdx + u v dx. (8) u vds =

(uv) = u v + uv, (1) u vdx + b [uv] b a = u vdx + u v dx. (8) u vds = Integrtion by prts Integrting the both sides of yields (uv) u v + uv, (1) or b (uv) dx b u vdx + b uv dx, (2) or b [uv] b u vdx + Eqution (4) is the 1-D formul for integrtion by prts. Eqution (4) cn be

More information

Chapters 4 & 5 Integrals & Applications

Chapters 4 & 5 Integrals & Applications Contents Chpters 4 & 5 Integrls & Applictions Motivtion to Chpters 4 & 5 2 Chpter 4 3 Ares nd Distnces 3. VIDEO - Ares Under Functions............................................ 3.2 VIDEO - Applictions

More information

University of. d Class. 3 st Lecture. 2 nd

University of. d Class. 3 st Lecture. 2 nd University of Technology Electromechnicl Deprtment Energy Brnch Advnced Mthemtics Line Integrl nd d lss st Lecture nd Advnce Mthemtic Line Integrl lss Electromechnicl Engineer y Dr.Eng.Muhmmd.A.R.Yss Dr.Eng

More information

Reversing the Chain Rule. As we have seen from the Second Fundamental Theorem ( 4.3), the easiest way to evaluate an integral b

Reversing the Chain Rule. As we have seen from the Second Fundamental Theorem ( 4.3), the easiest way to evaluate an integral b Mth 32 Substitution Method Stewrt 4.5 Reversing the Chin Rule. As we hve seen from the Second Fundmentl Theorem ( 4.3), the esiest wy to evlute n integrl b f(x) dx is to find n ntiderivtive, the indefinite

More information

1 The Riemann Integral

1 The Riemann Integral The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

Field calculus. C.1 Spatial derivatives

Field calculus. C.1 Spatial derivatives Field clculus n continuum physics the bsic mthemticl objects re fields Like the geometric objects discussed in the preceding chpter, fields re clssified s sclr, vector, nd tensor fields, ech type hving

More information

Theoretical foundations of Gaussian quadrature

Theoretical foundations of Gaussian quadrature Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

Student Handbook for MATH 3300

Student Handbook for MATH 3300 Student Hndbook for MATH 3300 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 0.5 0 0.5 0.5 0 0.5 If people do not believe tht mthemtics is simple, it is only becuse they do not relize how complicted life is. John Louis

More information

Math 6A Notes. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30pm Last updated 6/1/2016

Math 6A Notes. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30pm Last updated 6/1/2016 Prmetric Equtions Mth 6A Notes Written by Victori Kl vtkl@mth.ucsb.edu H 6432u Office Hours: R 12:30 1:30pm Lst updted 6/1/2016 If x = f(t), y = g(t), we sy tht x nd y re prmetric equtions of the prmeter

More information

Review of basic calculus

Review of basic calculus Review of bsic clculus This brief review reclls some of the most importnt concepts, definitions, nd theorems from bsic clculus. It is not intended to tech bsic clculus from scrtch. If ny of the items below

More information

MTH 5102 Linear Algebra Practice Exam 1 - Solutions Feb. 9, 2016

MTH 5102 Linear Algebra Practice Exam 1 - Solutions Feb. 9, 2016 Nme (Lst nme, First nme): MTH 502 Liner Algebr Prctice Exm - Solutions Feb 9, 206 Exm Instructions: You hve hour & 0 minutes to complete the exm There re totl of 6 problems You must show your work Prtil

More information

MATH 144: Business Calculus Final Review

MATH 144: Business Calculus Final Review MATH 144: Business Clculus Finl Review 1 Skills 1. Clculte severl limits. 2. Find verticl nd horizontl symptotes for given rtionl function. 3. Clculte derivtive by definition. 4. Clculte severl derivtives

More information

f(a+h) f(a) x a h 0. This is the rate at which

f(a+h) f(a) x a h 0. This is the rate at which M408S Concept Inventory smple nswers These questions re open-ended, nd re intended to cover the min topics tht we lerned in M408S. These re not crnk-out-n-nswer problems! (There re plenty of those in the

More information

Topics Covered AP Calculus AB

Topics Covered AP Calculus AB Topics Covered AP Clculus AB ) Elementry Functions ) Properties of Functions i) A function f is defined s set of ll ordered pirs (, y), such tht for ech element, there corresponds ectly one element y.

More information

Jim Lambers MAT 280 Fall Semester Practice Final Exam Solution

Jim Lambers MAT 280 Fall Semester Practice Final Exam Solution Jim Lambers MAT 8 Fall emester 6-7 Practice Final Exam olution. Use Lagrange multipliers to find the point on the circle x + 4 closest to the point (, 5). olution We have f(x, ) (x ) + ( 5), the square

More information

Construction of Gauss Quadrature Rules

Construction of Gauss Quadrature Rules Jim Lmbers MAT 772 Fll Semester 2010-11 Lecture 15 Notes These notes correspond to Sections 10.2 nd 10.3 in the text. Construction of Guss Qudrture Rules Previously, we lerned tht Newton-Cotes qudrture

More information

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004 Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when

More information

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

Chapter 8.2: The Integral

Chapter 8.2: The Integral Chpter 8.: The Integrl You cn think of Clculus s doule-wide triler. In one width of it lives differentil clculus. In the other hlf lives wht is clled integrl clculus. We hve lredy eplored few rooms in

More information

PDE Notes. Paul Carnig. January ODE s vs PDE s 1

PDE Notes. Paul Carnig. January ODE s vs PDE s 1 PDE Notes Pul Crnig Jnury 2014 Contents 1 ODE s vs PDE s 1 2 Section 1.2 Het diffusion Eqution 1 2.1 Fourier s w of Het Conduction............................. 2 2.2 Energy Conservtion.....................................

More information

1 1D heat and wave equations on a finite interval

1 1D heat and wave equations on a finite interval 1 1D het nd wve equtions on finite intervl In this section we consider generl method of seprtion of vribles nd its pplictions to solving het eqution nd wve eqution on finite intervl ( 1, 2. Since by trnsltion

More information