Math 32B Discussion Session Session 7 Notes August 28, 2018

Size: px
Start display at page:

Download "Math 32B Discussion Session Session 7 Notes August 28, 2018"

Transcription

1 Mth 32B iscussion ession ession 7 Notes August 28, 28 In tody s discussion we ll tlk bout surfce integrls both of sclr functions nd of vector fields nd we ll try to relte these to the mny other integrls we ve discussed so fr. As with the recent notes on chnge of vribles, mny of the detils presented here won t ctully show up in discussion, where we ll focus insted on computtion. urfce Integrls Recently we ve found ourselves needing to compute integrls over less-thn-idel objects, such s funny regions or curves in Eucliden spce. A technique we ve used to compute these integrls is to find some trnsformtion from nice region in Eucliden spce whose imge is the region or curve we cre bout, nd then to pull our integrl bck to the nice region using the trnsformtion. For instnce, when integrting over strnge regions in the plne, we found suitble trnsformtion T : R 2 R 2 which we used to rewrite our integrl s n integrl over rectngle. For line integrls we wnt to integrte over some curve, nd we use prmetriztion r of this curve to write our integrl s n integrl over n intervl in R. In both cses, the trnsformtion gives us some stretch fctor which determines the integrl over the nicer-looking spce. Figure : A ptch of the unit sphere. Now tht we wnt to integrte functions nd vector fields over surfces, we re going to follow this fmilir script. We hve prmetriztion T : R 2 of our surfce, nd we ll use this to pull integrls over (or regions within ) bck to integrls over regions in R 2. Along the wy, we ll pick up stretch fctor tht looks very similr to the Jcobin fctor we encountered erlier. Let s motivte this by wy of n exmple. Consider the prmetriztion of the unit sphere in R 3 given by G(u, v) = (cos u sin v, sin u sin v, cos v), for u 2π nd v π. A plot of the unit sphere cn be seen in Figure. In this plot the sphere hs few grid lines on it, where we ve held one vrible constnt nd llowed the other to vry. The blue curves on the sphere correspond to fixing v nd llowing u to vry, while the red

2 curves hve u fixed nd llow v to vry. Just s uv-coordinte system on R 2 subdivides the plne into smll ptches, these grid lines subdivide our sphere into smll regions, which we consider to be our most simple regions. Just s in the cse of trnsformtion T : R 2 R 2, we need to pproximte the re of these most simple regions, since they would be used in defining n integrl over the region. Recll tht in the previous cse, we pproximted these strnge regions in the plne by using tngent vectors to the grid lines. pecificlly, if we consider ptch in the plne where (u, v) strts t (u, v ) nd we llow u nd v to vry by u nd v, respectively, we pproximted this ptch by the prllelogrm in the plne spnned by the vectors T u nd T v. The sitution now is only slightly different: our ptch lies in the sphere, but the vectors G u nd G v lie in the plne tht s tngent to the sphere t (u, v ). ince the sphere is curving wy from the plne, this pproximtion of our ptch by prllelogrm isn t tht gret when u nd v re lrge. But when u nd v re very smll, this should be very good pproximtion indeed, the tngent plne is intended to represent the best first-order (flt) pproximtion we cn mke to the sphere t the point where the two meet. o for very smll u, v we should hve u u v, where is the (surfce) re of the smll ptch. Pssing to differentils puts this in the form d = u dudv. Here is intended to represent the surfce re of the surfce prmetrized by G, so tht d is the locl contribution to the surfce re. We cn use this, for exmple, to compute the surfce re of surfce : surfce re of = d = ˆ d ˆ b c u dudv, where we ssume G prmetrizes on the domin u [, b], v [c, d]. Exmple. Use the provided prmetriztion to compute the surfce re of the unit sphere. (olution) ince G(u, v) = (cos u sin v, sin u sin v, cos v), we hve (u, v) = sin u sin v, cos u sin v, u nd (u, v) = cos u cos v, sin u cos v, sin v. Then the cross product is given by u = cos u sin2 v, sin u sin 2 v, cos 2 u cos v sin v cos v sin 2 u sin v. 2

3 o we hve d = u cos dudv = 2 v sin 2 v + sin 4 vdudv = Finlly, the surfce re is given by A = ˆ π ˆ 2π sin vdudv = 2π ˆ π As you might expect, the fudge fctor for surfce integrls. sin 2 vdudv = sin vdudv. sin vdv = 2π [ cos v] π = 2π ( ( )) = 4π. u finds its wy into the more generl formul Theorem. Let G(u, v) be prmetriztion of surfce with prmeter domin. Assume tht G is continuously differentible, one-to-one, nd regulr, except possibly t the boundry of. Then f(x, y, z)d = f(g(u, v)) N(u, v) dudv, where N(u, v) is the norml vector obtined from the prmetriztion. N(u, v) = u Exmple. We cn use surfce integrls to compute the mss of thin lmin. If our lmin is represented by the surfce nd this lmin hs density δ(x, y, z), then the mss of the lmin is given by integrting δ over. Find the mss of the lmin tht is the portion of the surfce y 2 = 4 z between the plnes x =, x = 3, y =, nd y = 3 if the density is δ(x, y, z) = y. (olution) First we need prmetriztion of our surfce, which cn be seen in Figure 2. ince both x nd y re llowed to vry from to 3 without ny other condition, it mkes sense to tke x = u nd y = v. Then we hve z = 4 y 2 = 4 v 2, so our prmetriztion is G(u, v) = (u, v, 4 v 2 ), u 3, v 3. We compute the relevnt tngent vectors: u =, =. 2v Then the norml vector ssocited to our prmetriztion is N(u, v) = u = i j k 2v = 2v. This exmple is tken from the eighth edition of Anton, Bivens, nd vis s Clculus. 3

4 Figure 2: A thin lmin. Our fudge fctor is the mgnitude of this norml vector: N(u, v) = 4v 2 +. Finlly, we notice tht δ(g(u, v)) = δ(u, v, 4 v 2 ) = v, so the mss is given by M = = ˆ 3 ˆ 3 δ(x, y, z)d = ˆ 3 ˆ 3 v 4v 2 + dudv = δ(g(u, v)) N(u, v) dudv ˆ 3 3v 4v 2 + dv. Here we cn mke substitution w = 4v 2 +, so tht dw = 8vdv. As v vries from to 3, w will vry from to 37, so we hve M = ˆ 37 [ ] wdw = w3/2 = 4 (373/2 ) for the mss of our lmin. urfce Integrls of Vector Fields uppose we hve surfce R 3 nd vector field F defined on R 3, such s those seen in the following figure: 4

5 We wnt to mke sense of wht it mens to integrte the vector field over the surfce. Tht is, we wnt to define the symbol ˆ F d. When defining integrtion of vector fields over curves we set things up so tht our integrl would mesure the work done by the vector field long the curve. This doesn t lift very nicely to surfces which direction in the surfce should be considered positive? Insted of mesuring the extent to which F is pushing long the surfce, we ll mesure the extent to which F is pushing through. o insted of work, we wnt the surfce integrl of vector field to mesure the flux of the vector field through the surfce. We cn mesure the pointwise contribution to flux in much the sme wy we mesured the pointwise contribution to work for line integrls. We focus on fixed point p in our surfce. At this point, the flux through is the sme s the flux through the tngent plne to t p, s indicted here: The blue vector in this figure is the vector ssocited to p by the vector field F. Only tht prt of this vector which is perpendiculr to the tngent plne is mking ny contribution to the flux. Tht is, the blue vector cn be decomposed s sum of two vectors, one of which is perpendiculr to the tngent plne, nd one of which is in the tngent plne. The vector tht is in the tngent plne is not pushing through the surfce, nd thus mkes no contribution to the flux. All of the flux dt of our blue vector is encoded in its projection onto the line norml to the tngent plne. The pointwise contribution to flux is then the (signed) mgnitude of this vector, so we see tht pointwise contribution to flux = F n, where n is the unit norml vector to t p pointing in the positive direction. For this reson we mke the following definition. efinition. Let R 3 be surfce nd suppose F is vector field whose domin contins. We define the vector surfce integrl of F long to be F d := (F n)d, 5

6 where n(p ) is the unit norml vector to the tngent plne of t P, for ech point P in. The sitution so fr is very similr to tht of line integrls. When integrting sclr vlued functions we pick up strnge fudge fctor, nd when integrting vector fields we compute the dot product of our vector field with some distinguished unit vector field. Just s in the line integrl cse, the fudge fctor nd the distinguished vector field re relted in wy tht gretly simplifies the computtionl difficulty of integrting vector fields. Theorem. Let G(u, v) be n oriented prmetriztion of n oriented surfce with prmeter domin. Assume tht G is one-to-one nd regulr, except possibly t the boundry of. Then F d = F(G(u, v)) N(u, v)dudv. Our lone ppliction of this theorem will be fluid flow exmple. If fluid is flowing with velocity vector field v, its flow rte cross, mesured in units of volume per unit time, is given by flow rte cross = v d. Exmple. (ection 7.5, Exercise 26) upose we hve net given by y = x 2 z 2, where y, nd this net is dipped in river. If the river hs velocity vector field given by v = x y, z+y+4, z 2, determine the flow rte of wter through the net in the positive y-direction. (olution) Here s plot of the net in question, long with severl vectors depicting the flow of the river. Note tht these velocity vectors hve been given unit length for purposes of the figure, but in fct hve vrying mgnitudes. Now we need prmetriztion of this surfce. Becuse the projection of this surfce onto the xz-plne is unit circle, it s very nturl to define G(r, θ) = (x(r, θ), y(r, θ), z(r, θ)), where x(r, θ) = r cos θ, z(r, θ) = r sin θ, nd then y(r, θ) = r 2, 6

7 for r nd θ 2π. We cn now compute our tngent vectors t ech point (r, θ): T r (r, θ) = cos θ, 2r, sin θ nd T θ (r, θ) = r sin θ,, r cos θ. o we hve norml vector is given by i j k T r (r, θ) T θ (r, θ) = cos θ 2r sin θ r sin θ r cos θ = 2r2 cos θ, r, 2r 2 sin θ. Notice tht since r <, this vector points in the negtive y-direction, opposite our orienttion. o we choose the norml vector pointing in the opposite direction nd hve Next, notice tht o we hve N(r, θ) = 2r 2 cos θ, r, 2r 2 sin θ. v(g(r, θ)) = r cos θ ( r 2 ), r sin θ + ( r 2 ) + 4, r 2 sin 2 θ. v(g(r, θ)) N(r, θ) = 2r 3 cos 2 θ 2r 2 cos θ( r 2 ) + r 2 sin θ + 5r r 3 + 2r 4 sin 3 θ Finlly, our flow rte cross is given by ˆ 2π ˆ v d = v(g(r, θ)) N(r, θ)drdθ = ˆ 2π ˆ = 2r 2 cos θ(r 2 + r cos θ) + 2r 4 sin 3 θ + r(5 r 2 + r sin θ). 2r 2 cos θ(r 2 + r cos θ) + 2r 4 sin 3 θ + r(5 r 2 + r sin θ)drdθ = 5π. This lst integrl isn t hrd, it s just relly ugly. ince this integrl is not very nice, one might expect sphericl prmetriztion such s G(θ, φ) = (cos θ sin φ, cos 2 φ, sin θ sin φ) would work out better. I didn t find the resulting integrl to be ny nicer. Line Integrls nd urfce Integrls We ll finish by summrizing the vrious integrls we ve considered in the lst few sections. Throughout, C is curve prmetrized by r(t) with t [, b] nd is surfce prmetrized by G(u, v) with (u, v). We write T for unit tngent vector to curve C, nd we write n for unit norml vector to curve C or surfce. In both cses we ssume tht the vectors re positively oriented. Given prmetriztion G of, we lso write N(u, v) = ±G u G v = ± u. The ± is needed here becuse we wnt N(u, v) to be outwrd-pointing, nd this my require negting G u G v. 7

8 rc length/surfce re integrl of sclr function f integrl of vector field F fluid flowing through C or ˆ C Line Integrls urfce Integrls ˆ b r (t) dt u dudv ˆ b f(r(t)) r (t) dt f(g(u, v)) u dudv ˆ F dr := C (F T)ds = ˆ b F(r(t)) r (t)dt F d := (F n)d = F(G(u, v)) N(u, v)dudv ˆ C F nds = ˆ b F(r(t)) n(t) r (t) dt F d = F(G(u, v)) N(u, v)dudv 8

9 Group Work. how tht G(u, v) = (2u +, u v, 3u + v) prmetrizes the plne 2x y z = 2. Then () Clculte G u, G v, nd n(u, v). (b) Find the re of = G(), where = {(u, v) : u 2, v }. (c) Express f(x, y, z) = yz in terms of u nd v nd evlute f(x, y, z)d. 2. Clculte f(x, y, z)d, where is the prt of the surfce z = x 3 for which x nd y nd f(x, y, z) = z. 3. Let be the disk x 2 +y 2 in the xy-plne, oriented with norml in the positive z-direction. etermine F d for ech of the following constnt vector fields: () F =,, (b) F =,, (c) F =,, (Hint: rw picture.) 4. Let T be the tringulr region in R 3 with vertices (,, ), (,, ), nd (,, ), oriented so tht its norml vector hs positive y-component. Assume tht the units of R 3 re mesured in meters. A fluid flows in R 3 with constnt velocity field v = j m/s. Answers () Clculte the flow rte through T. (b) Clculte the flow rte through the projection of T onto the xz-plne (i.e., through the tringle with vertices (,, ), (,, ), nd (,, )).. () G u = 2,, 3, G v =,,, n(u, v) = 4, 2, 2. (b) Are() = 4 6. (c) f(x, y, z)d = 32 6/ /27 3. () (b) π (c) π 4. () /2 m 3 /s (b) /2 m 3 /s 9

Surface Integrals of Vector Fields

Surface Integrals of Vector Fields Mth 32B iscussion ession Week 7 Notes Februry 21 nd 23, 2017 In lst week s notes we introduced surfce integrls, integrting sclr-vlued functions over prmetrized surfces. As with our previous integrls, we

More information

Surface Area of Parametrized Surfaces

Surface Area of Parametrized Surfaces Math 3B Discussion ession Week 7 Notes May 1 and 1, 16 In 3A we learned how to parametrize a curve and compute its arc length. More recently we discussed line integrals, or integration along these curves,

More information

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b. Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

More information

Line and Surface Integrals: An Intuitive Understanding

Line and Surface Integrals: An Intuitive Understanding Line nd Surfce Integrls: An Intuitive Understnding Joseph Breen Introduction Multivrible clculus is ll bout bstrcting the ides of differentition nd integrtion from the fmilir single vrible cse to tht of

More information

Week 10: Line Integrals

Week 10: Line Integrals Week 10: Line Integrls Introduction In this finl week we return to prmetrised curves nd consider integrtion long such curves. We lredy sw this in Week 2 when we integrted long curve to find its length.

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

Section 17.2 Line Integrals

Section 17.2 Line Integrals Section 7. Line Integrls Integrting Vector Fields nd Functions long urve In this section we consider the problem of integrting functions, both sclr nd vector (vector fields) long curve in the plne. We

More information

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space. Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xy-plne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)

More information

MATH 13 FINAL STUDY GUIDE, WINTER 2012

MATH 13 FINAL STUDY GUIDE, WINTER 2012 MATH 13 FINAL TUY GUI, WINTR 2012 This is ment to be quick reference guide for the topics you might wnt to know for the finl. It probbly isn t comprehensive, but should cover most of wht we studied in

More information

Section 14.3 Arc Length and Curvature

Section 14.3 Arc Length and Curvature Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in

More information

FINAL REVIEW. 1. Vector Fields, Work, and Flux Suggested Problems:

FINAL REVIEW. 1. Vector Fields, Work, and Flux Suggested Problems: FINAL EVIEW 1. Vector Fields, Work, nd Flux uggested Problems: { 14.1 7, 13, 16 14.2 17, 25, 27, 29, 36, 45 We dene vector eld F (x, y) to be vector vlued function tht mps ech point in the plne to two

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

10 Vector Integral Calculus

10 Vector Integral Calculus Vector Integrl lculus Vector integrl clculus extends integrls s known from clculus to integrls over curves ("line integrls"), surfces ("surfce integrls") nd solids ("volume integrls"). These integrls hve

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

Line Integrals. Partitioning the Curve. Estimating the Mass

Line Integrals. Partitioning the Curve. Estimating the Mass Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Anonymous Math 361: Homework 5. x i = 1 (1 u i )

Anonymous Math 361: Homework 5. x i = 1 (1 u i ) Anonymous Mth 36: Homewor 5 Rudin. Let I be the set of ll u (u,..., u ) R with u i for ll i; let Q be the set of ll x (x,..., x ) R with x i, x i. (I is the unit cube; Q is the stndrd simplex in R ). Define

More information

Note 16. Stokes theorem Differential Geometry, 2005

Note 16. Stokes theorem Differential Geometry, 2005 Note 16. Stokes theorem ifferentil Geometry, 2005 Stokes theorem is the centrl result in the theory of integrtion on mnifolds. It gives the reltion between exterior differentition (see Note 14) nd integrtion

More information

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1 The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

More information

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a). The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples

More information

Math Advanced Calculus II

Math Advanced Calculus II Mth 452 - Advnced Clculus II Line Integrls nd Green s Theorem The min gol of this chpter is to prove Stoke s theorem, which is the multivrible version of the fundmentl theorem of clculus. We will be focused

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

Math 6A Notes. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30pm Last updated 6/1/2016

Math 6A Notes. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30pm Last updated 6/1/2016 Prmetric Equtions Mth 6A Notes Written by Victori Kl vtkl@mth.ucsb.edu H 6432u Office Hours: R 12:30 1:30pm Lst updted 6/1/2016 If x = f(t), y = g(t), we sy tht x nd y re prmetric equtions of the prmeter

More information

Lecture 3: Curves in Calculus. Table of contents

Lecture 3: Curves in Calculus. Table of contents Mth 348 Fll 7 Lecture 3: Curves in Clculus Disclimer. As we hve textook, this lecture note is for guidnce nd supplement only. It should not e relied on when prepring for exms. In this lecture we set up

More information

df dt f () b f () a dt

df dt f () b f () a dt Vector lculus 16.7 tokes Theorem Nme: toke's Theorem is higher dimensionl nlogue to Green's Theorem nd the Fundmentl Theorem of clculus. Why, you sk? Well, let us revisit these theorems. Fundmentl Theorem

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

Recitation 3: More Applications of the Derivative

Recitation 3: More Applications of the Derivative Mth 1c TA: Pdric Brtlett Recittion 3: More Applictions of the Derivtive Week 3 Cltech 2012 1 Rndom Question Question 1 A grph consists of the following: A set V of vertices. A set E of edges where ech

More information

Math 6455 Oct 10, Differential Geometry I Fall 2006, Georgia Tech

Math 6455 Oct 10, Differential Geometry I Fall 2006, Georgia Tech Mth 6455 Oct 10, 2006 1 Differentil Geometry I Fll 2006, Georgi Tech Lecture Notes 12 Riemnnin Metrics 0.1 Definition If M is smooth mnifold then by Riemnnin metric g on M we men smooth ssignment of n

More information

Math 231E, Lecture 33. Parametric Calculus

Math 231E, Lecture 33. Parametric Calculus Mth 31E, Lecture 33. Prmetric Clculus 1 Derivtives 1.1 First derivtive Now, let us sy tht we wnt the slope t point on prmetric curve. Recll the chin rule: which exists s long s /. = / / Exmple 1.1. Reconsider

More information

APPLICATIONS OF THE DEFINITE INTEGRAL

APPLICATIONS OF THE DEFINITE INTEGRAL APPLICATIONS OF THE DEFINITE INTEGRAL. Volume: Slicing, disks nd wshers.. Volumes by Slicing. Suppose solid object hs boundries extending from x =, to x = b, nd tht its cross-section in plne pssing through

More information

Chapters 4 & 5 Integrals & Applications

Chapters 4 & 5 Integrals & Applications Contents Chpters 4 & 5 Integrls & Applictions Motivtion to Chpters 4 & 5 2 Chpter 4 3 Ares nd Distnces 3. VIDEO - Ares Under Functions............................................ 3.2 VIDEO - Applictions

More information

Math 1102: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 230 Homework 2 solutions

Math 1102: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 230 Homework 2 solutions Mth 1102: Clculus I (Mth/Sci mjors) MWF 3pm, Fulton Hll 230 Homework 2 solutions Plese write netly, nd show ll work. Cution: An nswer with no work is wrong! Do the following problems from Chpter III: 6,

More information

MAS 4156 Lecture Notes Differential Forms

MAS 4156 Lecture Notes Differential Forms MAS 4156 Lecture Notes Differentil Forms Definitions Differentil forms re objects tht re defined on mnifolds. For this clss, the only mnifold we will put forms on is R 3. The full definition is: Definition:

More information

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 UNIFORM CONVERGENCE Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 Suppose f n : Ω R or f n : Ω C is sequence of rel or complex functions, nd f n f s n in some sense. Furthermore,

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019 ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 7.. Introduction to Integrtion. 7. Integrl Clculus As ws the cse with the chpter on differentil

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

More information

Lecture 1: Introduction to integration theory and bounded variation

Lecture 1: Introduction to integration theory and bounded variation Lecture 1: Introduction to integrtion theory nd bounded vrition Wht is this course bout? Integrtion theory. The first question you might hve is why there is nything you need to lern bout integrtion. You

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

Chapter 0. What is the Lebesgue integral about?

Chapter 0. What is the Lebesgue integral about? Chpter 0. Wht is the Lebesgue integrl bout? The pln is to hve tutoril sheet ech week, most often on Fridy, (to be done during the clss) where you will try to get used to the ides introduced in the previous

More information

Math 426: Probability Final Exam Practice

Math 426: Probability Final Exam Practice Mth 46: Probbility Finl Exm Prctice. Computtionl problems 4. Let T k (n) denote the number of prtitions of the set {,..., n} into k nonempty subsets, where k n. Argue tht T k (n) kt k (n ) + T k (n ) by

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1 MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further

More information

MA 124 January 18, Derivatives are. Integrals are.

MA 124 January 18, Derivatives are. Integrals are. MA 124 Jnury 18, 2018 Prof PB s one-minute introduction to clculus Derivtives re. Integrls re. In Clculus 1, we lern limits, derivtives, some pplictions of derivtives, indefinite integrls, definite integrls,

More information

Conservation Law. Chapter Goal. 5.2 Theory

Conservation Law. Chapter Goal. 5.2 Theory Chpter 5 Conservtion Lw 5.1 Gol Our long term gol is to understnd how mny mthemticl models re derived. We study how certin quntity chnges with time in given region (sptil domin). We first derive the very

More information

Things to Memorize: A Partial List. January 27, 2017

Things to Memorize: A Partial List. January 27, 2017 Things to Memorize: A Prtil List Jnury 27, 2017 Chpter 2 Vectors - Bsic Fcts A vector hs mgnitude (lso clled size/length/norm) nd direction. It does not hve fixed position, so the sme vector cn e moved

More information

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.) MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give

More information

1 The Riemann Integral

1 The Riemann Integral The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re

More information

Math 1B, lecture 4: Error bounds for numerical methods

Math 1B, lecture 4: Error bounds for numerical methods Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

Jim Lambers MAT 280 Spring Semester Lecture 17 Notes. These notes correspond to Section 13.2 in Stewart and Section 7.2 in Marsden and Tromba.

Jim Lambers MAT 280 Spring Semester Lecture 17 Notes. These notes correspond to Section 13.2 in Stewart and Section 7.2 in Marsden and Tromba. Jim Lmbers MAT 28 Spring Semester 29- Lecture 7 Notes These notes correspond to Section 3.2 in Stewrt nd Section 7.2 in Mrsden nd Tromb. Line Integrls Recll from single-vrible clclus tht if constnt force

More information

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve. Clculus Li Vs The Fundmentl Theorem of Clculus. The Totl Chnge Theorem nd the Are Under Curve. Recll the following fct from Clculus course. If continuous function f(x) represents the rte of chnge of F

More information

Math 113 Exam 1-Review

Math 113 Exam 1-Review Mth 113 Exm 1-Review September 26, 2016 Exm 1 covers 6.1-7.3 in the textbook. It is dvisble to lso review the mteril from 5.3 nd 5.5 s this will be helpful in solving some of the problems. 6.1 Are Between

More information

7.2 The Definite Integral

7.2 The Definite Integral 7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where

More information

So the `chnge of vribles formul' for sphericl coordintes reds: W f(x; y; z) dv = R f(ρ cos sin ffi; ρ sin sin ffi; ρ cos ffi) ρ 2 sin ffi dρ d dffi So

So the `chnge of vribles formul' for sphericl coordintes reds: W f(x; y; z) dv = R f(ρ cos sin ffi; ρ sin sin ffi; ρ cos ffi) ρ 2 sin ffi dρ d dffi So Mth 28 Topics for third exm Techniclly, everything covered on the first two exms, plus hpter 15: Multiple Integrls x4: Double integrls with polr coordintes Polr coordintes describe point in the plne by

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

and that at t = 0 the object is at position 5. Find the position of the object at t = 2.

and that at t = 0 the object is at position 5. Find the position of the object at t = 2. 7.2 The Fundmentl Theorem of Clculus 49 re mny, mny problems tht pper much different on the surfce but tht turn out to be the sme s these problems, in the sense tht when we try to pproimte solutions we

More information

5.2 Volumes: Disks and Washers

5.2 Volumes: Disks and Washers 4 pplictions of definite integrls 5. Volumes: Disks nd Wshers In the previous section, we computed volumes of solids for which we could determine the re of cross-section or slice. In this section, we restrict

More information

We divide the interval [a, b] into subintervals of equal length x = b a n

We divide the interval [a, b] into subintervals of equal length x = b a n Arc Length Given curve C defined by function f(x), we wnt to find the length of this curve between nd b. We do this by using process similr to wht we did in defining the Riemnn Sum of definite integrl:

More information

ragsdale (zdr82) HW2 ditmire (58335) 1

ragsdale (zdr82) HW2 ditmire (58335) 1 rgsdle (zdr82) HW2 ditmire (58335) This print-out should hve 22 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. 00 0.0 points A chrge of 8. µc

More information

Lecture 13 - Linking E, ϕ, and ρ

Lecture 13 - Linking E, ϕ, and ρ Lecture 13 - Linking E, ϕ, nd ρ A Puzzle... Inner-Surfce Chrge Density A positive point chrge q is locted off-center inside neutrl conducting sphericl shell. We know from Guss s lw tht the totl chrge on

More information

INTRODUCTION TO INTEGRATION

INTRODUCTION TO INTEGRATION INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

Practice final exam solutions

Practice final exam solutions University of Pennsylvni Deprtment of Mthemtics Mth 26 Honors Clculus II Spring Semester 29 Prof. Grssi, T.A. Asher Auel Prctice finl exm solutions 1. Let F : 2 2 be defined by F (x, y (x + y, x y. If

More information

MATH 144: Business Calculus Final Review

MATH 144: Business Calculus Final Review MATH 144: Business Clculus Finl Review 1 Skills 1. Clculte severl limits. 2. Find verticl nd horizontl symptotes for given rtionl function. 3. Clculte derivtive by definition. 4. Clculte severl derivtives

More information

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick

More information

along the vector 5 a) Find the plane s coordinate after 1 hour. b) Find the plane s coordinate after 2 hours. c) Find the plane s coordinate

along the vector 5 a) Find the plane s coordinate after 1 hour. b) Find the plane s coordinate after 2 hours. c) Find the plane s coordinate L8 VECTOR EQUATIONS OF LINES HL Mth - Sntowski Vector eqution of line 1 A plne strts journey t the point (4,1) moves ech hour long the vector. ) Find the plne s coordinte fter 1 hour. b) Find the plne

More information

Recitation 3: Applications of the Derivative. 1 Higher-Order Derivatives and their Applications

Recitation 3: Applications of the Derivative. 1 Higher-Order Derivatives and their Applications Mth 1c TA: Pdric Brtlett Recittion 3: Applictions of the Derivtive Week 3 Cltech 013 1 Higher-Order Derivtives nd their Applictions Another thing we could wnt to do with the derivtive, motivted by wht

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

Lecture 3. Limits of Functions and Continuity

Lecture 3. Limits of Functions and Continuity Lecture 3 Limits of Functions nd Continuity Audrey Terrs April 26, 21 1 Limits of Functions Notes I m skipping the lst section of Chpter 6 of Lng; the section bout open nd closed sets We cn probbly live

More information

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows: Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl

More information

Contents. 4.1 Line Integrals. Calculus III (part 4): Vector Calculus (by Evan Dummit, 2018, v. 3.00) 4 Vector Calculus

Contents. 4.1 Line Integrals. Calculus III (part 4): Vector Calculus (by Evan Dummit, 2018, v. 3.00) 4 Vector Calculus lculus III prt 4): Vector lculus by Evn Dummit, 8, v. 3.) ontents 4 Vector lculus 4. Line Integrls................................................. 4. Surfces nd Surfce Integrls........................................

More information

dt. However, we might also be curious about dy

dt. However, we might also be curious about dy Section 0. The Clculus of Prmetric Curves Even though curve defined prmetricly my not be function, we cn still consider concepts such s rtes of chnge. However, the concepts will need specil tretment. For

More information

12 TRANSFORMING BIVARIATE DENSITY FUNCTIONS

12 TRANSFORMING BIVARIATE DENSITY FUNCTIONS 1 TRANSFORMING BIVARIATE DENSITY FUNCTIONS Hving seen how to trnsform the probbility density functions ssocited with single rndom vrible, the next logicl step is to see how to trnsform bivrite probbility

More information

Bernoulli Numbers Jeff Morton

Bernoulli Numbers Jeff Morton Bernoulli Numbers Jeff Morton. We re interested in the opertor e t k d k t k, which is to sy k tk. Applying this to some function f E to get e t f d k k tk d k f f + d k k tk dk f, we note tht since f

More information

Final Exam Solutions, MAC 3474 Calculus 3 Honors, Fall 2018

Final Exam Solutions, MAC 3474 Calculus 3 Honors, Fall 2018 Finl xm olutions, MA 3474 lculus 3 Honors, Fll 28. Find the re of the prt of the sddle surfce z xy/ tht lies inside the cylinder x 2 + y 2 2 in the first positive) octnt; is positive constnt. olution:

More information

1 Line Integrals in Plane.

1 Line Integrals in Plane. MA213 thye Brief Notes on hpter 16. 1 Line Integrls in Plne. 1.1 Introduction. 1.1.1 urves. A piece of smooth curve is ssumed to be given by vector vlued position function P (t) (or r(t) ) s the prmeter

More information

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012 Lecture 6: Line Integrls INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Anlysis Autumn 2012 August 8, 2012 Lecture 6: Line Integrls Lecture 6: Line Integrls Lecture 6: Line Integrls Integrls of complex

More information

l 2 p2 n 4n 2, the total surface area of the

l 2 p2 n 4n 2, the total surface area of the Week 6 Lectures Sections 7.5, 7.6 Section 7.5: Surfce re of Revolution Surfce re of Cone: Let C be circle of rdius r. Let P n be n n-sided regulr polygon of perimeter p n with vertices on C. Form cone

More information

Continuous Random Variables

Continuous Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is rel-vlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht

More information

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

More information

Definite integral. Mathematics FRDIS MENDELU

Definite integral. Mathematics FRDIS MENDELU Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the

More information

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1 Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions

More information

1 Probability Density Functions

1 Probability Density Functions Lis Yn CS 9 Continuous Distributions Lecture Notes #9 July 6, 28 Bsed on chpter by Chris Piech So fr, ll rndom vribles we hve seen hve been discrete. In ll the cses we hve seen in CS 9, this ment tht our

More information

Overview of Calculus I

Overview of Calculus I Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,

More information

Math Calculus with Analytic Geometry II

Math Calculus with Analytic Geometry II orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove x-xis) ( bove f under x-xis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem

More information

p(t) dt + i 1 re it ireit dt =

p(t) dt + i 1 re it ireit dt = Note: This mteril is contined in Kreyszig, Chpter 13. Complex integrtion We will define integrls of complex functions long curves in C. (This is bit similr to [relvlued] line integrls P dx + Q dy in R2.)

More information

Riemann Integrals and the Fundamental Theorem of Calculus

Riemann Integrals and the Fundamental Theorem of Calculus Riemnn Integrls nd the Fundmentl Theorem of Clculus Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University September 16, 2013 Outline Grphing Riemnn Sums

More information

Notes on length and conformal metrics

Notes on length and conformal metrics Notes on length nd conforml metrics We recll how to mesure the Eucliden distnce of n rc in the plne. Let α : [, b] R 2 be smooth (C ) rc. Tht is α(t) (x(t), y(t)) where x(t) nd y(t) re smooth rel vlued

More information

Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED

Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED Mth 43 Section 4839 M TH 4: PM 6: PM Susn Wheeler swheeler@mth.uh.edu Office Hours: Wed 6: 7: PM Online ***NOTE LABS ARE MON AND WED t :3 PM to 3: pm ONLINE Approimting the re under curve given the type

More information

Jackson 2.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson.7 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: Consider potentil problem in the hlf-spce defined by, with Dirichlet boundry conditions on the plne

More information

Math 360: A primitive integral and elementary functions

Math 360: A primitive integral and elementary functions Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:

More information

13.4 Work done by Constant Forces

13.4 Work done by Constant Forces 13.4 Work done by Constnt Forces We will begin our discussion of the concept of work by nlyzing the motion of n object in one dimension cted on by constnt forces. Let s consider the following exmple: push

More information

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30 Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function

More information

1B40 Practical Skills

1B40 Practical Skills B40 Prcticl Skills Comining uncertinties from severl quntities error propgtion We usully encounter situtions where the result of n experiment is given in terms of two (or more) quntities. We then need

More information

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

Section 6: Area, Volume, and Average Value

Section 6: Area, Volume, and Average Value Chpter The Integrl Applied Clculus Section 6: Are, Volume, nd Averge Vlue Are We hve lredy used integrls to find the re etween the grph of function nd the horizontl xis. Integrls cn lso e used to find

More information

Student Handbook for MATH 3300

Student Handbook for MATH 3300 Student Hndbook for MATH 3300 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 0.5 0 0.5 0.5 0 0.5 If people do not believe tht mthemtics is simple, it is only becuse they do not relize how complicted life is. John Louis

More information